Process alignment aims at establishing a matching between a process model run and a log trace. To improve such a matching, process alignment techniques often exploit contextual conditions to enable computations that are more informed than the simple edit distance between model runs and log traces. The paper introduces a novel approach to process alignment which relies on contextual information expressed as responsibilities. The notion of responsibility is fundamental in business and organization models, but it is often overlooked. We show the computation of optimal alignments can take advantage of responsibilities. We leverage on them in two ways. First, responsibilities may sometimes justify deviations. In these cases, we consider them as correct behaviors rather than errors. Second, responsibilities can either be met or neglected in the execution of a trace. Thus, we prefer alignments where neglected responsibilities are minimized.
The paper proposes a formal framework for responsibilities in a process model, including the definition of cost functions for computing optimal alignments. We also propose a branch-and-bound algorithm for optimal alignment computation and exemplify its usage by way of two event logs from real executions.
Data Petri nets (DPNs) have gained traction as a model for data-aware processes, thanks to their ability to balance simplicity with expressiveness, and because they can be automatically discovered from event logs. While model checking techniques for DPNs have been studied, more complex analysis tasks that are highly relevant for BPM are beyond methods known in the literature. We focus here on equivalence and inclusion of process behaviour with respect to language and configuration spaces, optionally taking data into account. Such comparisons are important in the context of key process mining tasks, namely process repair and discovery, and related to conformance checking. To solve these tasks, we propose approaches for bounded DPNs based on constraint graphs, which are faithful abstractions of the reachable state space. Though the considered verification tasks are undecidable in general, we show that our method is a decision procedure DPNs that admit a finite history set. This property guarantees that constraint graphs are finite and computable, and was shown to hold for large classes of DPNs that are mined automatically, and DPNs presented in the literature. The new techniques are implemented in the tool ada, and an evaluation proving feasibility is provided.