首页 > 最新文献

Cybernetics and Systems最新文献

英文 中文
Performance Evaluation and Comparative Analysis of Machine Learning Models on the UNSW-NB15 Dataset: A Contemporary Approach to Cyber Threat Detection 新南威尔士大学-NB15 数据集上机器学习模型的性能评估和比较分析:网络威胁检测的现代方法
IF 1.7 4区 计算机科学 Q3 COMPUTER SCIENCE, CYBERNETICS Pub Date : 2023-12-25 DOI: 10.1080/01969722.2023.2296246
Afrah Fathima, Amir Khan, Md Faizan Uddin, Mohammad Maqbool Waris, Sultan Ahmad, Cesar Sanin, Edward Szczerbicki
This research work utilizes the University of New South Wales Network Based 2015 (UNSW-NB15) dataset to investigate the dynamic nature of cyber threats, departing from the obsolete Knowledge Discov...
本研究利用新南威尔士大学基于网络的 2015 年(UNSW-NB15)数据集调查网络威胁的动态性质,摆脱了过时的知识发现(Knowledge Discov...
{"title":"Performance Evaluation and Comparative Analysis of Machine Learning Models on the UNSW-NB15 Dataset: A Contemporary Approach to Cyber Threat Detection","authors":"Afrah Fathima, Amir Khan, Md Faizan Uddin, Mohammad Maqbool Waris, Sultan Ahmad, Cesar Sanin, Edward Szczerbicki","doi":"10.1080/01969722.2023.2296246","DOIUrl":"https://doi.org/10.1080/01969722.2023.2296246","url":null,"abstract":"This research work utilizes the University of New South Wales Network Based 2015 (UNSW-NB15) dataset to investigate the dynamic nature of cyber threats, departing from the obsolete Knowledge Discov...","PeriodicalId":55188,"journal":{"name":"Cybernetics and Systems","volume":"49 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2023-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139036807","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
How to Explain Sentiment Polarity – A Survey of Explainable Sentiment Analysis Approaches 如何解释情感极性--可解释情感分析方法调查
IF 1.7 4区 计算机科学 Q3 COMPUTER SCIENCE, CYBERNETICS Pub Date : 2023-12-25 DOI: 10.1080/01969722.2023.2296251
Bernadetta Maleszka
Sentiment analysis area has become more and more popular due to information and opinion overload (especially in social networks). With growth of efficient and high accuracy methods of artificial in...
由于信息和观点过载(尤其是在社交网络中),情感分析领域变得越来越受欢迎。随着高效、高准确度的人工智能方法的发展,情感分析的应用也越来越广泛。
{"title":"How to Explain Sentiment Polarity – A Survey of Explainable Sentiment Analysis Approaches","authors":"Bernadetta Maleszka","doi":"10.1080/01969722.2023.2296251","DOIUrl":"https://doi.org/10.1080/01969722.2023.2296251","url":null,"abstract":"Sentiment analysis area has become more and more popular due to information and opinion overload (especially in social networks). With growth of efficient and high accuracy methods of artificial in...","PeriodicalId":55188,"journal":{"name":"Cybernetics and Systems","volume":"3 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2023-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139036806","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Applied Machine Learning, Data Science, and Generative AI with Exploratory and Descriptive Case Studies in Varied Domains 应用机器学习、数据科学和生成式人工智能,以及不同领域的探索性和描述性案例研究
IF 1.7 4区 计算机科学 Q3 COMPUTER SCIENCE, CYBERNETICS Pub Date : 2023-12-23 DOI: 10.1080/01969722.2023.2296245
Edward Szczerbicki, Ngoc Thanh Nguyen
Published in Cybernetics and Systems: An International Journal (Ahead of Print, 2023)
发表于《控制论与系统》:国际期刊》(2023 年提前出版)
{"title":"Applied Machine Learning, Data Science, and Generative AI with Exploratory and Descriptive Case Studies in Varied Domains","authors":"Edward Szczerbicki, Ngoc Thanh Nguyen","doi":"10.1080/01969722.2023.2296245","DOIUrl":"https://doi.org/10.1080/01969722.2023.2296245","url":null,"abstract":"Published in Cybernetics and Systems: An International Journal (Ahead of Print, 2023)","PeriodicalId":55188,"journal":{"name":"Cybernetics and Systems","volume":"1 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2023-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139036764","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Improved Skin Disease Classification with Mask R-CNN and Augmented Dataset 利用掩码 R-CNN 和增强数据集改进皮肤病分类
IF 1.7 4区 计算机科学 Q3 COMPUTER SCIENCE, CYBERNETICS Pub Date : 2023-12-23 DOI: 10.1080/01969722.2023.2296254
Kushal Pokhrel, Cesar Sanin, Md. Kowsar Hossain Sakib, Md Rafiqul Islam, Edward Szczerbicki
Skin diseases are a significant global health concern, impacting millions worldwide. Severe diseases like psoriasis and dermatitis can coexist with more benign skin issues like acne and eczema. Pri...
皮肤病是一个重大的全球健康问题,影响着全球数百万人。牛皮癣和皮炎等严重疾病可能与痤疮和湿疹等良性皮肤问题并存。Pri...
{"title":"Improved Skin Disease Classification with Mask R-CNN and Augmented Dataset","authors":"Kushal Pokhrel, Cesar Sanin, Md. Kowsar Hossain Sakib, Md Rafiqul Islam, Edward Szczerbicki","doi":"10.1080/01969722.2023.2296254","DOIUrl":"https://doi.org/10.1080/01969722.2023.2296254","url":null,"abstract":"Skin diseases are a significant global health concern, impacting millions worldwide. Severe diseases like psoriasis and dermatitis can coexist with more benign skin issues like acne and eczema. Pri...","PeriodicalId":55188,"journal":{"name":"Cybernetics and Systems","volume":"29 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2023-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139051890","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Adaptive2Former: Enhancing Chromosome Instance Segmentation with Adaptive Query Decoder Adaptive2Former:利用自适应查询解码器加强染色体实例分割
IF 1.7 4区 计算机科学 Q3 COMPUTER SCIENCE, CYBERNETICS Pub Date : 2023-12-21 DOI: 10.1080/01969722.2023.2296249
Linfeng Yu, Xinxu Zhang, Zhenpeng Zhong, Yi Lai, Haoxi Zhang, E. Szczerbicki
{"title":"Adaptive2Former: Enhancing Chromosome Instance Segmentation with Adaptive Query Decoder","authors":"Linfeng Yu, Xinxu Zhang, Zhenpeng Zhong, Yi Lai, Haoxi Zhang, E. Szczerbicki","doi":"10.1080/01969722.2023.2296249","DOIUrl":"https://doi.org/10.1080/01969722.2023.2296249","url":null,"abstract":"","PeriodicalId":55188,"journal":{"name":"Cybernetics and Systems","volume":"12 4","pages":""},"PeriodicalIF":1.7,"publicationDate":"2023-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138953064","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Impact of Generative AI and ChatGPT on Creating Digital Advertising Campaigns 生成式人工智能和 ChatGPT 对创建数字广告活动的影响
IF 1.7 4区 计算机科学 Q3 COMPUTER SCIENCE, CYBERNETICS Pub Date : 2023-12-21 DOI: 10.1080/01969722.2023.2296253
Edyta Gołąb-Andrzejak
{"title":"The Impact of Generative AI and ChatGPT on Creating Digital Advertising Campaigns","authors":"Edyta Gołąb-Andrzejak","doi":"10.1080/01969722.2023.2296253","DOIUrl":"https://doi.org/10.1080/01969722.2023.2296253","url":null,"abstract":"","PeriodicalId":55188,"journal":{"name":"Cybernetics and Systems","volume":"49 2","pages":""},"PeriodicalIF":1.7,"publicationDate":"2023-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138952064","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Learning Disentangled Representation for Chromosome Straightening 学习用于染色体整顿的分离表征
IF 1.7 4区 计算机科学 Q3 COMPUTER SCIENCE, CYBERNETICS Pub Date : 2023-12-21 DOI: 10.1080/01969722.2023.2296250
Tao Liu, Yifeng Peng, Ran Chen, Yi Lai, Haoxi Zhang, Edward Szczerbicki
Chromosome straightening plays an important role in karyotype analysis. Common straightening methods usually adopt geometric algorithms, which tend to affect the chromosome banding patterns in the ...
染色体校直在核型分析中发挥着重要作用。常见的整顿方法通常采用几何算法,而这种算法往往会影响染色体条带模式的...
{"title":"Learning Disentangled Representation for Chromosome Straightening","authors":"Tao Liu, Yifeng Peng, Ran Chen, Yi Lai, Haoxi Zhang, Edward Szczerbicki","doi":"10.1080/01969722.2023.2296250","DOIUrl":"https://doi.org/10.1080/01969722.2023.2296250","url":null,"abstract":"Chromosome straightening plays an important role in karyotype analysis. Common straightening methods usually adopt geometric algorithms, which tend to affect the chromosome banding patterns in the ...","PeriodicalId":55188,"journal":{"name":"Cybernetics and Systems","volume":"15 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2023-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138824462","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Improving Landslides Prediction: Meteorological Data Preprocessing Based on Supervised and Unsupervised Learning 改进滑坡预测:基于监督和无监督学习的气象数据预处理
4区 计算机科学 Q3 COMPUTER SCIENCE, CYBERNETICS Pub Date : 2023-11-07 DOI: 10.1080/01969722.2023.2240647
Byron Guerrero-Rodriguez, Jaime Salvador-Meneses, Jose Garcia-Rodriguez, Christian Mejia-Escobar
AbstractThe hazard of landslides has been demonstrated over time with numerous events causing damage to human lives and high material costs. Several previous studies have shown that one of the predominant factors in landslides is intensive rainfall. The present work proposes the use of data generated by weather stations to predict landslides. We give special treatment to precipitation information as the most influential factor and whose data are accumulated in time windows (3, 5, 7, 10, 15, 20, and 30 days) looking for the persistence of meteorological conditions. To optimize the dataset composed of geological, geomorphological, and climatological data, a feature selection process is applied to the meteorological variables. We use filter-based feature ranking and Self-Organizing Map (SOM) with Clustering as supervised and unsupervised machine learning techniques, respectively. This contribution was successfully verified by experimenting with different classification models, improving the test accuracy of the prediction, and obtaining 99.29% for Multilayer Perceptron, 96.80% for Random Forest, and 88.79% for Support Vector Machine. To validate the proposal, a geographical area sensitive to this phenomenon was selected, which is monitored by several meteorological stations. Practical use is a valuable tool for risk management decision making, can help save lives and reduce economic losses.Keywords: Clusteringlandslidesmeteorological dataMLPprecipitationrandom forestSOMSVMtime windows AcknowledgementsWe would like to express our gratitude to the Central University of Ecuador and FIGEMPA, which in the framework of the interinstitutional agreement with the University of Alicante, made this research work possible.Disclosure StatementThe authors declare that there is no conflict of interest regarding the publication of this paper.Data Availability StatementThe dataset and code used to support the findings of this study have been deposited in the GitHub repository (https://github.com/ByronGuerreroR/Improving-Landslides-Prediction).
摘要多年来,山体滑坡的危害已被证明,造成了大量的人员伤亡和巨大的物质损失。先前的几项研究表明,造成滑坡的主要因素之一是强降雨。目前的工作建议使用气象站产生的数据来预测滑坡。我们将降水信息作为最重要的影响因素,其数据在时间窗口(3、5、7、10、15、20和30天)积累,寻找气象条件的持久性。为了优化由地质、地貌和气候数据组成的数据集,对气象变量进行了特征选择。我们分别使用基于过滤器的特征排序和带有聚类的自组织映射(SOM)作为监督和无监督机器学习技术。通过实验不同的分类模型,成功验证了这一贡献,提高了预测的测试准确率,Multilayer Perceptron的准确率为99.29%,Random Forest的准确率为96.80%,Support Vector Machine的准确率为88.79%。为了验证这一建议,选择了一个对这一现象敏感的地理区域,由几个气象站监测。实际应用是风险管理决策的宝贵工具,可以帮助挽救生命和减少经济损失。关键字:聚类滑坡气象数据降水随机森林somsvm时间窗口感谢厄瓜多尔中央大学和FIGEMPA在与阿利坎特大学的机构间协议框架下,使这项研究工作成为可能。声明作者声明本文的发表不存在任何利益冲突。数据可用性声明用于支持本研究结果的数据集和代码已存放在GitHub存储库(https://github.com/ByronGuerreroR/Improving-Landslides-Prediction)中。
{"title":"Improving Landslides Prediction: Meteorological Data Preprocessing Based on Supervised and Unsupervised Learning","authors":"Byron Guerrero-Rodriguez, Jaime Salvador-Meneses, Jose Garcia-Rodriguez, Christian Mejia-Escobar","doi":"10.1080/01969722.2023.2240647","DOIUrl":"https://doi.org/10.1080/01969722.2023.2240647","url":null,"abstract":"AbstractThe hazard of landslides has been demonstrated over time with numerous events causing damage to human lives and high material costs. Several previous studies have shown that one of the predominant factors in landslides is intensive rainfall. The present work proposes the use of data generated by weather stations to predict landslides. We give special treatment to precipitation information as the most influential factor and whose data are accumulated in time windows (3, 5, 7, 10, 15, 20, and 30 days) looking for the persistence of meteorological conditions. To optimize the dataset composed of geological, geomorphological, and climatological data, a feature selection process is applied to the meteorological variables. We use filter-based feature ranking and Self-Organizing Map (SOM) with Clustering as supervised and unsupervised machine learning techniques, respectively. This contribution was successfully verified by experimenting with different classification models, improving the test accuracy of the prediction, and obtaining 99.29% for Multilayer Perceptron, 96.80% for Random Forest, and 88.79% for Support Vector Machine. To validate the proposal, a geographical area sensitive to this phenomenon was selected, which is monitored by several meteorological stations. Practical use is a valuable tool for risk management decision making, can help save lives and reduce economic losses.Keywords: Clusteringlandslidesmeteorological dataMLPprecipitationrandom forestSOMSVMtime windows AcknowledgementsWe would like to express our gratitude to the Central University of Ecuador and FIGEMPA, which in the framework of the interinstitutional agreement with the University of Alicante, made this research work possible.Disclosure StatementThe authors declare that there is no conflict of interest regarding the publication of this paper.Data Availability StatementThe dataset and code used to support the findings of this study have been deposited in the GitHub repository (https://github.com/ByronGuerreroR/Improving-Landslides-Prediction).","PeriodicalId":55188,"journal":{"name":"Cybernetics and Systems","volume":"7 8","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135479586","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Analysis of Machine Learning Based Imputation of Missing Data 基于机器学习的缺失数据补全分析
4区 计算机科学 Q3 COMPUTER SCIENCE, CYBERNETICS Pub Date : 2023-09-09 DOI: 10.1080/01969722.2023.2247257
Syed Tahir Hussain Rizvi, Muhammad Yasir Latif, Muhammad Saad Amin, Achraf Jabeur Telmoudi, Nasir Ali Shah
Data analysis and classification can be affected by the availability of missing data in datasets. To deal with missing data, either deletion- or imputation-based methods are used that result in the reduction of data records or imputation of incorrect predicted value. Quality of imputed data can be significantly improved if missing values are generated accurately using machine learning algorithms. In this work, an analysis of machine learning-based algorithms for missing data imputation is performed. The K-nearest neighbors (KNN) and Sequential KNN (SKNN) algorithms are used to impute missing values in datasets using machine learning. Missing values handled using a statistical deletion approach (List-wise Deletion (LD)) and ML-based imputation methods (KNN and SKNN) are then tested and compared using different ML classifiers (Support Vector Machine and Decision Tree) to evaluate the effectiveness of imputed data. The used algorithms are compared in terms of accuracy, and results yielded that the ML-based imputation method (SKNN) outperforms the LD-based approach and KNN method in terms of the effectiveness of handling missing data in almost every dataset with both classification algorithms (SVM and DT).
数据集中缺失数据的可用性可能会影响数据分析和分类。为了处理缺失数据,可以使用基于删除或基于推测的方法来减少数据记录或推测不正确的预测值。如果使用机器学习算法准确地生成缺失值,则可以显著提高输入数据的质量。在这项工作中,对基于机器学习的缺失数据输入算法进行了分析。使用k近邻(KNN)和顺序KNN (SKNN)算法使用机器学习来估算数据集中的缺失值。然后使用统计删除方法(List-wise deletion (LD))和基于ML的输入方法(KNN和SKNN)进行测试和比较,使用不同的ML分类器(支持向量机和决策树)来评估输入数据的有效性。在精度方面比较了所使用的算法,结果表明,基于ml的imputation方法(SKNN)在处理几乎每个数据集的缺失数据方面都优于基于ld的方法和KNN方法,这两种分类算法(SVM和DT)。
{"title":"Analysis of Machine Learning Based Imputation of Missing Data","authors":"Syed Tahir Hussain Rizvi, Muhammad Yasir Latif, Muhammad Saad Amin, Achraf Jabeur Telmoudi, Nasir Ali Shah","doi":"10.1080/01969722.2023.2247257","DOIUrl":"https://doi.org/10.1080/01969722.2023.2247257","url":null,"abstract":"Data analysis and classification can be affected by the availability of missing data in datasets. To deal with missing data, either deletion- or imputation-based methods are used that result in the reduction of data records or imputation of incorrect predicted value. Quality of imputed data can be significantly improved if missing values are generated accurately using machine learning algorithms. In this work, an analysis of machine learning-based algorithms for missing data imputation is performed. The K-nearest neighbors (KNN) and Sequential KNN (SKNN) algorithms are used to impute missing values in datasets using machine learning. Missing values handled using a statistical deletion approach (List-wise Deletion (LD)) and ML-based imputation methods (KNN and SKNN) are then tested and compared using different ML classifiers (Support Vector Machine and Decision Tree) to evaluate the effectiveness of imputed data. The used algorithms are compared in terms of accuracy, and results yielded that the ML-based imputation method (SKNN) outperforms the LD-based approach and KNN method in terms of the effectiveness of handling missing data in almost every dataset with both classification algorithms (SVM and DT).","PeriodicalId":55188,"journal":{"name":"Cybernetics and Systems","volume":"32 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136108289","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Reconfiguration Method for Muti-Robot Monitoring Patrols 一种多机器人监控巡逻的重构方法
IF 1.7 4区 计算机科学 Q3 COMPUTER SCIENCE, CYBERNETICS Pub Date : 2023-09-07 DOI: 10.1080/01969722.2023.2247267
Sara Hsaini, Rabah Ammour, L. Brenner, M. E. H. Charaf, I. Demongodin, Dimitri Lefebvre
{"title":"A Reconfiguration Method for Muti-Robot Monitoring Patrols","authors":"Sara Hsaini, Rabah Ammour, L. Brenner, M. E. H. Charaf, I. Demongodin, Dimitri Lefebvre","doi":"10.1080/01969722.2023.2247267","DOIUrl":"https://doi.org/10.1080/01969722.2023.2247267","url":null,"abstract":"","PeriodicalId":55188,"journal":{"name":"Cybernetics and Systems","volume":" ","pages":""},"PeriodicalIF":1.7,"publicationDate":"2023-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47526881","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Cybernetics and Systems
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1