首页 > 最新文献

Computers & Geosciences最新文献

英文 中文
An oil production prediction approach based on variational mode decomposition and ensemble learning model 基于变异模式分解和集合学习模型的石油产量预测方法
IF 4.2 2区 地球科学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2024-09-24 DOI: 10.1016/j.cageo.2024.105734
Junyi Fang , Zhen Yan , Xiaoya Lu , Yifei Xiao , Zhen Zhao
Well production forecasting can provide scientific guidance for oilfield production and management, which is an indispensable part of the oilfield development process. In this study, the daily oil production data from oil wells are first decomposed into components with different frequencies by variational mode decomposition (VMD), which is usually used to process complex time series. The new features obtained from decomposition and other filtered features are then used as input data and for training and forecasting of GRU, TCN and Transformer models respectively. In the end, the three models are integrated as base learners using the Blending method, which specifically involves using the predicted outputs of the three models as new inputs to the RBFNN for training and realizing the final predictions. The VMD-Blending model was compared with traditional models based on the production dynamics data of three production wells in an oil field in the Tarim area, China. The result shows that VMD can effectively improve the prediction effect of the base learners, and the prediction effect of these models is further improved after Blending integration, and all of their prediction indexes are significantly better than those of the base learners and the traditional SVM and RNN models. The proposed VMD-Blending model has a well performance in the task of well capacity prediction and is an accurate and effective method for oil production prediction.
油井产量预测可以为油田生产和管理提供科学指导,是油田开发过程中不可或缺的一部分。在本研究中,首先通过变异模态分解(VMD)将油井的日产量数据分解为不同频率的成分,这种方法通常用于处理复杂的时间序列。然后将分解得到的新特征和其他过滤特征作为输入数据,分别用于 GRU、TCN 和 Transformer 模型的训练和预测。最后,使用混合法将这三个模型整合为基础学习器,具体来说,就是将这三个模型的预测输出作为 RBFNN 的新输入,用于训练和实现最终预测。基于中国塔里木地区某油田三口生产井的生产动态数据,将 VMD-Blending 模型与传统模型进行了比较。结果表明,VMD 能有效提高基础学习器的预测效果,而这些模型的预测效果在经过 Blending 集成后得到进一步提高,其各项预测指标均明显优于基础学习器和传统 SVM、RNN 模型。所提出的 VMD-Blending 模型在油井产能预测任务中表现良好,是一种准确有效的石油产量预测方法。
{"title":"An oil production prediction approach based on variational mode decomposition and ensemble learning model","authors":"Junyi Fang ,&nbsp;Zhen Yan ,&nbsp;Xiaoya Lu ,&nbsp;Yifei Xiao ,&nbsp;Zhen Zhao","doi":"10.1016/j.cageo.2024.105734","DOIUrl":"10.1016/j.cageo.2024.105734","url":null,"abstract":"<div><div>Well production forecasting can provide scientific guidance for oilfield production and management, which is an indispensable part of the oilfield development process. In this study, the daily oil production data from oil wells are first decomposed into components with different frequencies by variational mode decomposition (VMD), which is usually used to process complex time series. The new features obtained from decomposition and other filtered features are then used as input data and for training and forecasting of GRU, TCN and Transformer models respectively. In the end, the three models are integrated as base learners using the Blending method, which specifically involves using the predicted outputs of the three models as new inputs to the RBFNN for training and realizing the final predictions. The VMD-Blending model was compared with traditional models based on the production dynamics data of three production wells in an oil field in the Tarim area, China. The result shows that VMD can effectively improve the prediction effect of the base learners, and the prediction effect of these models is further improved after Blending integration, and all of their prediction indexes are significantly better than those of the base learners and the traditional SVM and RNN models. The proposed VMD-Blending model has a well performance in the task of well capacity prediction and is an accurate and effective method for oil production prediction.</div></div>","PeriodicalId":55221,"journal":{"name":"Computers & Geosciences","volume":"193 ","pages":"Article 105734"},"PeriodicalIF":4.2,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142357130","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
MAMCL: Multi-attributes Masking Contrastive Learning for explainable seismic facies analysis MAMCL:用于可解释地震剖面分析的多属性屏蔽对比学习
IF 4.2 2区 地球科学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2024-09-24 DOI: 10.1016/j.cageo.2024.105731
Long Han , Xinming Wu , Zhanxuan Hu , Jintao Li , Huijing Fang
Seismic facies analysis is crucial in hydrocarbon exploration and development. Traditional machine learning approaches typically require manual selection of attributes and lack interpretability analysis. We propose an interpretable framework, multi-attribute masking contrastive learning (MAMCL), designed to adaptively select, explore and aggregate seismic attributes for seismic facies analysis. The MAMCL framework includes a depthwise CNN module for feature extraction and an iTransformer module for feature aggregation. Based on the assumption that different attributes computed on the same seismic sample imply common information associated with the same geologic facies, we formulate an unsupervised strategy of contrastive learning to pre-train the MAMCL framework for refining the attributes. This pre-training method encourages the network to extract and integrate highly correlated attribute features by enhancing the expression of commonalities within the same sample, and implicitly increase the distance between features of different categories by differentiating the expressions of different samples. Ultimately, these refined features only need to be input into a simple clustering algorithm, such as K-Means, to achieve seismic facies classification. MAMCL requires no labels or manual selection of attributes and can utilize the self-attention mechanism of iTransformer to compute adaptive attribute weights, facilitating interpretability analysis. We applied MAMCL framework to both unlogged turbidite channel systems in Canterbury Basin, New Zealand, and logged Chengdao area in Bohai Bay Basin, China, achieving reliable classification results and providing interpretability analysis.
地震剖面分析在油气勘探和开发中至关重要。传统的机器学习方法通常需要人工选择属性,缺乏可解释性分析。我们提出了一种可解释性框架--多属性掩蔽对比学习(MAMCL),旨在为地震剖面分析自适应地选择、探索和聚合地震属性。MAMCL 框架包括一个用于特征提取的深度 CNN 模块和一个用于特征聚合的 iTransformer 模块。基于对同一地震样本计算的不同属性意味着与同一地质面相关的共同信息这一假设,我们制定了一种无监督的对比学习策略,对 MAMCL 框架进行预训练,以完善属性。这种预训练方法通过增强同一样本内共性的表达,鼓励网络提取和整合高度相关的属性特征,并通过区分不同样本的表达,隐式地增加不同类别特征之间的距离。最终,只需将这些细化特征输入 K-Means 等简单聚类算法,即可实现地震剖面分类。MAMCL 不需要标签或人工选择属性,并可利用 iTransformer 的自注意机制计算自适应属性权重,从而促进可解释性分析。我们将 MAMCL 框架应用于新西兰坎特伯雷盆地的未测井浊积岩河道系统和中国渤海湾盆地的测井成岛地区,取得了可靠的分类结果,并提供了可解释性分析。
{"title":"MAMCL: Multi-attributes Masking Contrastive Learning for explainable seismic facies analysis","authors":"Long Han ,&nbsp;Xinming Wu ,&nbsp;Zhanxuan Hu ,&nbsp;Jintao Li ,&nbsp;Huijing Fang","doi":"10.1016/j.cageo.2024.105731","DOIUrl":"10.1016/j.cageo.2024.105731","url":null,"abstract":"<div><div>Seismic facies analysis is crucial in hydrocarbon exploration and development. Traditional machine learning approaches typically require manual selection of attributes and lack interpretability analysis. We propose an interpretable framework, multi-attribute masking contrastive learning (MAMCL), designed to adaptively select, explore and aggregate seismic attributes for seismic facies analysis. The MAMCL framework includes a depthwise CNN module for feature extraction and an iTransformer module for feature aggregation. Based on the assumption that different attributes computed on the same seismic sample imply common information associated with the same geologic facies, we formulate an unsupervised strategy of contrastive learning to pre-train the MAMCL framework for refining the attributes. This pre-training method encourages the network to extract and integrate highly correlated attribute features by enhancing the expression of commonalities within the same sample, and implicitly increase the distance between features of different categories by differentiating the expressions of different samples. Ultimately, these refined features only need to be input into a simple clustering algorithm, such as K-Means, to achieve seismic facies classification. MAMCL requires no labels or manual selection of attributes and can utilize the self-attention mechanism of iTransformer to compute adaptive attribute weights, facilitating interpretability analysis. We applied MAMCL framework to both unlogged turbidite channel systems in Canterbury Basin, New Zealand, and logged Chengdao area in Bohai Bay Basin, China, achieving reliable classification results and providing interpretability analysis.</div></div>","PeriodicalId":55221,"journal":{"name":"Computers & Geosciences","volume":"193 ","pages":"Article 105731"},"PeriodicalIF":4.2,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142322571","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Estimation of electrical conductivity models using multi-coil rigid-boom electromagnetic induction measurements 利用多线圈刚性导波电磁感应测量估算导电率模型
IF 4.2 2区 地球科学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2024-09-23 DOI: 10.1016/j.cageo.2024.105732
Maria Carrizo Mascarell, Dieter Werthmüller, Evert Slob
Electromagnetic induction measurements from multi-coil configuration instruments are used to obtain information about the electrical conductivity distribution in the subsurface. The resulting inverse problem might not have a unique and stable solution. In that case, a local inversion method can be trapped in a local minimum and lead to an incorrect solution. In this study, we evaluate the well-posedness of the inverse problem for two and three-layered electrical conductivity models. We show that for a two-layered model, uniqueness is ensured only when both in-phase and quadrature data are available from the measurements. Results from a Gauss–Newton inversion and a lookup table demonstrate that the solution space is convex. Furthermore, we demonstrate that for even a simple three-layered model, the data contained in such measurements are insufficient to reach a correct or stable solution. For models with more than 2 layers, independent prior information is necessary to solve the inverse problem. The insights from the numerical examples are applied in a field case.
多线圈配置仪器的电磁感应测量用于获取地下电导率分布信息。由此产生的反演问题可能没有唯一且稳定的解。在这种情况下,局部反演方法可能会陷入局部最小值而导致错误的解。在本研究中,我们评估了两层和三层电导率模型的反演问题的好求解性。我们发现,对于双层模型,只有当测量数据中同时存在同相数据和正交数据时,才能确保唯一性。高斯-牛顿反演和查找表的结果表明,解空间是凸的。此外,我们还证明,即使是简单的三层模型,这些测量数据也不足以得出正确或稳定的解。对于两层以上的模型,独立的先验信息是解决逆问题的必要条件。从数值示例中获得的启示将应用于一个实地案例。
{"title":"Estimation of electrical conductivity models using multi-coil rigid-boom electromagnetic induction measurements","authors":"Maria Carrizo Mascarell,&nbsp;Dieter Werthmüller,&nbsp;Evert Slob","doi":"10.1016/j.cageo.2024.105732","DOIUrl":"10.1016/j.cageo.2024.105732","url":null,"abstract":"<div><div>Electromagnetic induction measurements from multi-coil configuration instruments are used to obtain information about the electrical conductivity distribution in the subsurface. The resulting inverse problem might not have a unique and stable solution. In that case, a local inversion method can be trapped in a local minimum and lead to an incorrect solution. In this study, we evaluate the well-posedness of the inverse problem for two and three-layered electrical conductivity models. We show that for a two-layered model, uniqueness is ensured only when both in-phase and quadrature data are available from the measurements. Results from a Gauss–Newton inversion and a lookup table demonstrate that the solution space is convex. Furthermore, we demonstrate that for even a simple three-layered model, the data contained in such measurements are insufficient to reach a correct or stable solution. For models with more than 2 layers, independent prior information is necessary to solve the inverse problem. The insights from the numerical examples are applied in a field case.</div></div>","PeriodicalId":55221,"journal":{"name":"Computers & Geosciences","volume":"193 ","pages":"Article 105732"},"PeriodicalIF":4.2,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142326942","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sample size effects on landslide susceptibility models: A comparative study of heuristic, statistical, machine learning, deep learning and ensemble learning models with SHAP analysis 样本量对滑坡易感性模型的影响:启发式、统计、机器学习、深度学习和集合学习模型与 SHAP 分析的比较研究
IF 4.2 2区 地球科学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2024-09-13 DOI: 10.1016/j.cageo.2024.105723
Shilong Yang , Jiayao Tan , Danyuan Luo , Yuzhou Wang , Xu Guo , Qiuyu Zhu , Chuanming Ma , Hanxiang Xiong

In landslide susceptibility assessment (LSA), inventory incompleteness impacts the accuracy of different models to varying degrees. However, this area remains under-researched. This study investigated six LSA models from heuristic, statistical, machine learning and ensemble learning models (analytical hierarchy process (AHP), frequency ratio (FR), logistic regression (LR), Keras based deep learning (KBDL), XGBoost, and LightGBM) across six different sample sizes (100%, 90%, 75%, 50%, 25%, and 10%). Results revealed that XGBoost and LightGBM consistently outperformed other models across all sample sizes. The LR and KBDL models followed, while FR model was the most affected by sample size variations. AHP, an empirical model, remained unaffected by sample size. Through SHapley Additive exPlanations (SHAP) analysis, elevation, NDVI, slope, land use, and distance to roads and rivers emerged as pivotal indicators for landslide occurrences in the study area, suggesting that human activities significantly influence these events. Five time-varying indicators regarding human activity and climate validated this inference, which provides a new method to identify landslide triggering factors, especially in areas of intense human activity. Based on the findings, a comprehensive framework for LSA is proposed to assist landslide managers in making informed decisions. Future research should focus on expanding model diversity to address the effects of sample size, enhancing the adaptability of the LSA framework, deepening the analysis of human activity impacts on landslides using explainable machine learning techniques, addressing temporal inventory incompleteness in LSA, and critically evaluating model sensitivity to sample size variations across multiple disciplines.

在滑坡易发性评估(LSA)中,清单的不完整性会在不同程度上影响不同模型的准确性。然而,这一领域的研究仍然不足。本研究调查了六种不同样本量(100%、90%、75%、50%、25% 和 10%)的启发式、统计、机器学习和集合学习模型(分析层次过程 (AHP)、频率比 (FR)、逻辑回归 (LR)、基于 Keras 的深度学习 (KBDL)、XGBoost 和 LightGBM)中的六种 LSA 模型。结果显示,在所有样本量下,XGBoost 和 LightGBM 的表现始终优于其他模型。LR 和 KBDL 模型紧随其后,而 FR 模型受样本量变化的影响最大。经验模型 AHP 则不受样本量的影响。通过 SHapley Additive exPlanations(SHAP)分析,海拔、NDVI、坡度、土地利用以及与道路和河流的距离成为研究区域滑坡发生的关键指标,这表明人类活动对这些事件有重大影响。有关人类活动和气候的五个时变指标验证了这一推论,为识别滑坡诱发因素,尤其是人类活动频繁地区的滑坡诱发因素提供了一种新方法。根据研究结果,提出了一个全面的山体滑坡评估框架,以帮助山体滑坡管理者做出明智的决策。未来的研究应侧重于扩大模型的多样性以解决样本大小的影响,增强 LSA 框架的适应性,利用可解释的机器学习技术深化人类活动对滑坡影响的分析,解决 LSA 中时间清单的不完整性,以及批判性地评估模型对跨学科样本大小变化的敏感性。
{"title":"Sample size effects on landslide susceptibility models: A comparative study of heuristic, statistical, machine learning, deep learning and ensemble learning models with SHAP analysis","authors":"Shilong Yang ,&nbsp;Jiayao Tan ,&nbsp;Danyuan Luo ,&nbsp;Yuzhou Wang ,&nbsp;Xu Guo ,&nbsp;Qiuyu Zhu ,&nbsp;Chuanming Ma ,&nbsp;Hanxiang Xiong","doi":"10.1016/j.cageo.2024.105723","DOIUrl":"10.1016/j.cageo.2024.105723","url":null,"abstract":"<div><p>In landslide susceptibility assessment (LSA), inventory incompleteness impacts the accuracy of different models to varying degrees. However, this area remains under-researched. This study investigated six LSA models from heuristic, statistical, machine learning and ensemble learning models (analytical hierarchy process (AHP), frequency ratio (FR), logistic regression (LR), Keras based deep learning (KBDL), XGBoost, and LightGBM) across six different sample sizes (100%, 90%, 75%, 50%, 25%, and 10%). Results revealed that XGBoost and LightGBM consistently outperformed other models across all sample sizes. The LR and KBDL models followed, while FR model was the most affected by sample size variations. AHP, an empirical model, remained unaffected by sample size. Through SHapley Additive exPlanations (SHAP) analysis, elevation, NDVI, slope, land use, and distance to roads and rivers emerged as pivotal indicators for landslide occurrences in the study area, suggesting that human activities significantly influence these events. Five time-varying indicators regarding human activity and climate validated this inference, which provides a new method to identify landslide triggering factors, especially in areas of intense human activity. Based on the findings, a comprehensive framework for LSA is proposed to assist landslide managers in making informed decisions. Future research should focus on expanding model diversity to address the effects of sample size, enhancing the adaptability of the LSA framework, deepening the analysis of human activity impacts on landslides using explainable machine learning techniques, addressing temporal inventory incompleteness in LSA, and critically evaluating model sensitivity to sample size variations across multiple disciplines.</p></div>","PeriodicalId":55221,"journal":{"name":"Computers & Geosciences","volume":"193 ","pages":"Article 105723"},"PeriodicalIF":4.2,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142242003","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Calculating traveltimes in 2D general tilted transversely isotropic media using fast sweeping method 利用快速扫描法计算二维一般倾斜横向各向同性介质中的行进时间
IF 4.2 2区 地球科学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2024-09-13 DOI: 10.1016/j.cageo.2024.105724
Yongming Lu , Wei Zhang , Jianfeng Zhang

Traveltime calculations play an important role in the field of exploration seismology, such as traveltime tomography and seismic imaging and so on. Seismic anisotropy poses a challenge for traveltime calculation, because anisotropic eikonal solvers are more complex than the isotropic counter part. To solve the eikonal equations in 2D tilted transversely isotropic (TTI) media, we have developed a fast algorithm combine with fast sweeping method to compute the first arrival traveltimes of quasi-P (qP)-, quasi-SV (qSV)-, and quasi-SH(qSH)-waves. For the qP- and qSV-waves, we analyzed the quartic coupled slowness surface equation derived from the Christoffel equation. Then, we constructed a local solver to relate traveltime and slowness. We found that in the local solver, one component of the slowness vector is known and the corresponding slowness equation is monotonic. This provides a strong basis for the fast iterative algorithm we proposed, where we use the Newton method to solve the qP- and qSV-wave slowness equation to determine the related traveltimes. For the qSH wave, the slowness equation is quadratic and simple to solve. Numerical experiments demonstrate that the proposed method can obtain accurate traveltimes for simple and complicated 2D TTI models.

在勘探地震学领域,如旅行时间层析成像和地震成像等,旅行时间计算发挥着重要作用。地震各向异性给旅行时间计算带来了挑战,因为各向异性的 eikonal 解算器比各向同性的解算器更复杂。为了求解二维倾斜横向各向同性(TTI)介质中的 eikonal 方程,我们开发了一种结合快速扫描法的快速算法,用于计算准 P 波(qP)、准 SV 波(qSV)和准 SH 波(qSH)的初至旅行时间。对于 qP 波和 qSV 波,我们分析了由 Christoffel 方程导出的四元耦合慢面方程。然后,我们构建了一个局部求解器,将行进时间和慢度联系起来。我们发现,在局部求解器中,慢度矢量的一个分量是已知的,相应的慢度方程是单调的。这为我们提出的快速迭代算法提供了坚实的基础,在该算法中,我们使用牛顿法求解 qP 波和 qSV 波的慢度方程,从而确定相关的旅行时间。对于 qSH 波,慢度方程是二次方程,求解简单。数值实验证明,所提出的方法可以为简单和复杂的二维 TTI 模型获得精确的旅行时间。
{"title":"Calculating traveltimes in 2D general tilted transversely isotropic media using fast sweeping method","authors":"Yongming Lu ,&nbsp;Wei Zhang ,&nbsp;Jianfeng Zhang","doi":"10.1016/j.cageo.2024.105724","DOIUrl":"10.1016/j.cageo.2024.105724","url":null,"abstract":"<div><p>Traveltime calculations play an important role in the field of exploration seismology, such as traveltime tomography and seismic imaging and so on. Seismic anisotropy poses a challenge for traveltime calculation, because anisotropic eikonal solvers are more complex than the isotropic counter part. To solve the eikonal equations in 2D tilted transversely isotropic (TTI) media, we have developed a fast algorithm combine with fast sweeping method to compute the first arrival traveltimes of quasi-P (qP)-, quasi-SV (qSV)-, and quasi-SH(qSH)-waves. For the qP- and qSV-waves, we analyzed the quartic coupled slowness surface equation derived from the Christoffel equation. Then, we constructed a local solver to relate traveltime and slowness. We found that in the local solver, one component of the slowness vector is known and the corresponding slowness equation is monotonic. This provides a strong basis for the fast iterative algorithm we proposed, where we use the Newton method to solve the qP- and qSV-wave slowness equation to determine the related traveltimes. For the qSH wave, the slowness equation is quadratic and simple to solve. Numerical experiments demonstrate that the proposed method can obtain accurate traveltimes for simple and complicated 2D TTI models.</p></div>","PeriodicalId":55221,"journal":{"name":"Computers & Geosciences","volume":"193 ","pages":"Article 105724"},"PeriodicalIF":4.2,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142242004","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A new efficient approach of DFN modelling constrained with fracture occurrence and spatial location 以断裂发生和空间位置为约束的新型高效 DFN 建模方法
IF 4.2 2区 地球科学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2024-09-13 DOI: 10.1016/j.cageo.2024.105729
Yudi Wang , Yungui Xu , Libing Du , Xuri Huang , Haifa AlSalmi , Jiali Liang

Fractures or faults in the subsurface exert a significant impact on fluid flow and engineering activities in that environment. Fracture modelling is one of the crucial techniques, providing essential insights into the mechanisms underlying these impacts. As a useful tool, the Discrete Fracture Network (DFN) method is often utilized to simulate fracture networks and to integrate fracture statistics into 3D numerical models. However, the current DFN modeling technology suffers from low operational efficiency, particularly when handling a substantial quantity of fractures in 3D models. This paper proposes two ways to improve the efficiency and accuracy of modelling fractures: the matrix-based random sampling method (for faster generation of fracture loactions) and the quaternion method (for more accurate description of fractures). These proposed approaches simplify the management of large number of fractures within 3D models. The paper provides a comprehensive description of the proposed methods, accompanied by pseudo-code for the algorithms. The effectiveness of the proposed approach is validated through a practical case study, demonstrating superior computational efficiency and enhanced applicability for large-scale fracture modeling.

地下的断裂或断层对该环境中的流体流动和工程活动具有重大影响。断裂建模是关键技术之一,可为了解这些影响的内在机理提供重要依据。作为一种有用的工具,离散断裂网络(DFN)方法经常被用来模拟断裂网络,并将断裂统计数据整合到三维数值模型中。然而,目前的 DFN 建模技术存在运行效率低的问题,尤其是在三维模型中处理大量断裂时。本文提出了两种提高裂缝建模效率和准确性的方法:基于矩阵的随机抽样方法(用于更快地生成裂缝作用)和四元数方法(用于更准确地描述裂缝)。这些建议的方法简化了三维模型中大量裂缝的管理。本文全面介绍了所提出的方法,并附有算法的伪代码。通过实际案例研究验证了所提方法的有效性,证明了其卓越的计算效率和对大规模断裂建模的适用性。
{"title":"A new efficient approach of DFN modelling constrained with fracture occurrence and spatial location","authors":"Yudi Wang ,&nbsp;Yungui Xu ,&nbsp;Libing Du ,&nbsp;Xuri Huang ,&nbsp;Haifa AlSalmi ,&nbsp;Jiali Liang","doi":"10.1016/j.cageo.2024.105729","DOIUrl":"10.1016/j.cageo.2024.105729","url":null,"abstract":"<div><p>Fractures or faults in the subsurface exert a significant impact on fluid flow and engineering activities in that environment. Fracture modelling is one of the crucial techniques, providing essential insights into the mechanisms underlying these impacts. As a useful tool, the Discrete Fracture Network (DFN) method is often utilized to simulate fracture networks and to integrate fracture statistics into 3D numerical models. However, the current DFN modeling technology suffers from low operational efficiency, particularly when handling a substantial quantity of fractures in 3D models. This paper proposes two ways to improve the efficiency and accuracy of modelling fractures: the matrix-based random sampling method (for faster generation of fracture loactions) and the quaternion method (for more accurate description of fractures). These proposed approaches simplify the management of large number of fractures within 3D models. The paper provides a comprehensive description of the proposed methods, accompanied by pseudo-code for the algorithms. The effectiveness of the proposed approach is validated through a practical case study, demonstrating superior computational efficiency and enhanced applicability for large-scale fracture modeling.</p></div>","PeriodicalId":55221,"journal":{"name":"Computers & Geosciences","volume":"193 ","pages":"Article 105729"},"PeriodicalIF":4.2,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142270962","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Study on exploring the extraction of geological elements from 3D geological models within the constraints of geological knowledge 关于探索在地质知识限制下从三维地质模型中提取地质元素的研究
IF 4.2 2区 地球科学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2024-09-12 DOI: 10.1016/j.cageo.2024.105726
Guangjun Ji , Zizhao Cai , Yan Lu , Jixiang Zhu , Keyan Xiao , Li Sun

During the process of visualization, format exchange, and spatial analysis, the 3D geological model tends to emphasize its geometric features, thereby diminishing its geological significance to some extent. However, extracting corresponding geological elements directly from the model based solely on the pure geometric features of geologic bodies proves to be difficult and few studies have focused on related problems. This research aims to extract geological elements from existing geological models under the constraints of geological knowledge to enhance the reusability of existing models and the efficacy of their applications in subsequent research. Firstly, each stratum is assigned its geological significance under the constraints of geological knowledge. Then, the study introduces extraction methods for the topographic interface, eroded interface, stratigraphic top and bottom interfaces, and various constraint boundaries. Furthermore, the potential importance of the studies presented in this paper and their application scenarios are analyzed and explored. Finally, the feasibility and effectiveness of the method for extracting geological elements are validated through a case study. This method holds significant scientific importance for efficiently updating and conducting fine application analyses of geological models. Additionally, this research provides valuable insights that enhance the efficiency of model updating, property model construction, and the splicing of block models across extensive areas.

在可视化、格式交换和空间分析过程中,三维地质模型往往会强调其几何特征,从而在一定程度上削弱其地质意义。然而,仅根据地质体的纯几何特征直接从模型中提取相应的地质元素被证明是困难的,很少有研究关注相关问题。本研究旨在地质知识的约束下,从现有地质模型中提取地质元素,以提高现有模型的可重用性及其在后续研究中的应用效果。首先,在地质知识的约束下,对每个地层赋予其地质意义。然后,研究介绍了地形界面、侵蚀界面、地层顶底界面以及各种约束边界的提取方法。此外,还分析和探讨了本文所介绍研究的潜在重要性及其应用场景。最后,通过案例研究验证了该方法提取地质元素的可行性和有效性。该方法对于有效更新和进行地质模型的精细应用分析具有重要的科学意义。此外,这项研究还提供了宝贵的见解,提高了模型更新、属性模型构建以及大范围区块模型拼接的效率。
{"title":"Study on exploring the extraction of geological elements from 3D geological models within the constraints of geological knowledge","authors":"Guangjun Ji ,&nbsp;Zizhao Cai ,&nbsp;Yan Lu ,&nbsp;Jixiang Zhu ,&nbsp;Keyan Xiao ,&nbsp;Li Sun","doi":"10.1016/j.cageo.2024.105726","DOIUrl":"10.1016/j.cageo.2024.105726","url":null,"abstract":"<div><p>During the process of visualization, format exchange, and spatial analysis, the 3D geological model tends to emphasize its geometric features, thereby diminishing its geological significance to some extent. However, extracting corresponding geological elements directly from the model based solely on the pure geometric features of geologic bodies proves to be difficult and few studies have focused on related problems. This research aims to extract geological elements from existing geological models under the constraints of geological knowledge to enhance the reusability of existing models and the efficacy of their applications in subsequent research. Firstly, each stratum is assigned its geological significance under the constraints of geological knowledge. Then, the study introduces extraction methods for the topographic interface, eroded interface, stratigraphic top and bottom interfaces, and various constraint boundaries. Furthermore, the potential importance of the studies presented in this paper and their application scenarios are analyzed and explored. Finally, the feasibility and effectiveness of the method for extracting geological elements are validated through a case study. This method holds significant scientific importance for efficiently updating and conducting fine application analyses of geological models. Additionally, this research provides valuable insights that enhance the efficiency of model updating, property model construction, and the splicing of block models across extensive areas.</p></div>","PeriodicalId":55221,"journal":{"name":"Computers & Geosciences","volume":"193 ","pages":"Article 105726"},"PeriodicalIF":4.2,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142241969","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Improved phase-state identification bypass approach of the hydrocarbons-CO2-H2O system for compositional reservoir simulation 用于成分储层模拟的碳氢化合物-CO2-H2O 系统相态识别旁路改进方法
IF 4.2 2区 地球科学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2024-09-10 DOI: 10.1016/j.cageo.2024.105725
Gang Huang , Bin Yuan , Wei Zhang , Xiaocong Lyu , Xuan Zhu

CO2 injection is a highly effective technique to enhance oil recovery, achieved through continuous or alternative injection. However, the intricate interactions between different phases within porous media present significant challenges when predicting the performance of CO2 injection. To address this, it is crucial to employ compositional simulation, which accounts for the multiphase multicomponent transport. Nonetheless, conventional multiphase flash calculations can be computationally inefficient for large-scale reservoir simulations. Therefore, it is necessary to accelerate the Equation-of-State (EoS)-based compositional simulation, given the widespread use of CO2 enhanced oil recovery (CO2-EOR) in recent years. The phase-state identification bypass method has proven to be superior to other methods in terms of efficiency. However, this approach struggles with regions near phase boundaries, resulting in reduced computational efficiency in those areas.

In this study, an enhanced phase-state identification bypass approach is developed to address this limitation. The first step involves discretising the pressure-temperature space using rectangular grids. Additionally, the tie-simplexes, which represent regions defined by the maximum number of phases formed by the fluid under consideration, are discretized in the phase-fraction space at the pressure and temperature of each discretization node. Subsequently, the discretization grid associated with the given point (the overall composition, pressure, and temperature) is located, and the phase states of the grid nodes are determined using the conventional multiphase flash method. If all nodes exhibit the same phase state, that phase state is assigned to the given point. However, if multiple phase states are obtained, a novel process is proposed to determine the phase state of the given point. To validate this improvement to the phase-state identification bypass method, phase diagram calculations and simulation cases are conducted, and the results demonstrate the robustness of the proposed method and its superior computational efficiency compared to the previous method.

二氧化碳注入是提高石油采收率的一种高效技术,可通过连续注入或替代注入实现。然而,多孔介质中不同相之间错综复杂的相互作用给二氧化碳注入的性能预测带来了巨大挑战。要解决这个问题,关键是要采用成分模拟,以考虑多相多组分传输。然而,传统的多相闪蒸计算在大规模储层模拟中计算效率较低。因此,鉴于近年来二氧化碳提高采油(CO2-EOR)的广泛应用,有必要加快基于状态方程(EoS)的成分模拟。事实证明,相态识别旁路法在效率方面优于其他方法。然而,这种方法在相边界附近区域的计算很困难,导致这些区域的计算效率降低。第一步是使用矩形网格离散压力-温度空间。此外,在每个离散节点的压力和温度处的相分数空间中离散出领带复数(代表由所考虑的流体形成的最大相数所定义的区域)。随后,定位与给定点(总体成分、压力和温度)相关的离散网格,并使用传统的多相闪络法确定网格节点的相态。如果所有节点都表现出相同的相态,则将该相态分配给给定点。但是,如果获得了多个相位状态,则需要采用一种新方法来确定给定点的相位状态。为了验证相态识别旁路方法的这一改进,我们进行了相图计算和仿真案例,结果证明了所提方法的稳健性,以及与之前方法相比更高的计算效率。
{"title":"Improved phase-state identification bypass approach of the hydrocarbons-CO2-H2O system for compositional reservoir simulation","authors":"Gang Huang ,&nbsp;Bin Yuan ,&nbsp;Wei Zhang ,&nbsp;Xiaocong Lyu ,&nbsp;Xuan Zhu","doi":"10.1016/j.cageo.2024.105725","DOIUrl":"10.1016/j.cageo.2024.105725","url":null,"abstract":"<div><p>CO<sub>2</sub> injection is a highly effective technique to enhance oil recovery, achieved through continuous or alternative injection. However, the intricate interactions between different phases within porous media present significant challenges when predicting the performance of CO<sub>2</sub> injection. To address this, it is crucial to employ compositional simulation, which accounts for the multiphase multicomponent transport. Nonetheless, conventional multiphase flash calculations can be computationally inefficient for large-scale reservoir simulations. Therefore, it is necessary to accelerate the Equation-of-State (EoS)-based compositional simulation, given the widespread use of CO<sub>2</sub> enhanced oil recovery (CO<sub>2</sub>-EOR) in recent years. The phase-state identification bypass method has proven to be superior to other methods in terms of efficiency. However, this approach struggles with regions near phase boundaries, resulting in reduced computational efficiency in those areas.</p><p>In this study, an enhanced phase-state identification bypass approach is developed to address this limitation. The first step involves discretising the pressure-temperature space using rectangular grids. Additionally, the tie-simplexes, which represent regions defined by the maximum number of phases formed by the fluid under consideration, are discretized in the phase-fraction space at the pressure and temperature of each discretization node. Subsequently, the discretization grid associated with the given point (the overall composition, pressure, and temperature) is located, and the phase states of the grid nodes are determined using the conventional multiphase flash method. If all nodes exhibit the same phase state, that phase state is assigned to the given point. However, if multiple phase states are obtained, a novel process is proposed to determine the phase state of the given point. To validate this improvement to the phase-state identification bypass method, phase diagram calculations and simulation cases are conducted, and the results demonstrate the robustness of the proposed method and its superior computational efficiency compared to the previous method.</p></div>","PeriodicalId":55221,"journal":{"name":"Computers & Geosciences","volume":"193 ","pages":"Article 105725"},"PeriodicalIF":4.2,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142233631","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Learning CO2 plume migration in faulted reservoirs with Graph Neural Networks 利用图神经网络学习断层储层中的二氧化碳羽流迁移
IF 4.2 2区 地球科学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2024-09-07 DOI: 10.1016/j.cageo.2024.105711
Xin Ju , François P. Hamon , Gege Wen , Rayan Kanfar , Mauricio Araya-Polo , Hamdi A. Tchelepi

Deep-learning-based surrogate models provide an efficient complement to numerical simulations for subsurface flow problems such as CO2 geological storage. Accurately capturing the impact of faults on CO2 plume migration remains a challenge for many existing deep learning surrogate models based on Convolutional Neural Networks (CNNs) or Neural Operators. We address this challenge with a graph-based neural model leveraging recent developments in the field of Graph Neural Networks (GNNs). Our model combines graph-based convolution Long-Short-Term-Memory (GConvLSTM) with a one-step GNN model, MeshGraphNet (MGN), to operate on complex unstructured meshes and limit temporal error accumulation. We demonstrate that our approach can accurately predict the temporal evolution of gas saturation and pore pressure in a synthetic reservoir with impermeable faults. Our results exhibit a better accuracy and a reduced temporal error accumulation compared to the standard MGN model. We also show the excellent generalizability of our algorithm to mesh configurations, boundary conditions, and heterogeneous permeability fields not included in the training set. This work highlights the potential of GNN-based methods to accurately and rapidly model subsurface flow with complex faults and fractures.

基于深度学习的代用模型为二氧化碳地质封存等地下流动问题的数值模拟提供了有效补充。对于许多基于卷积神经网络(CNN)或神经运算器的现有深度学习代用模型来说,准确捕捉断层对二氧化碳羽流迁移的影响仍然是一个挑战。我们利用图神经网络(GNN)领域的最新发展,采用基于图的神经模型来应对这一挑战。我们的模型将基于图的卷积长短期记忆(GConvLSTM)与一步式 GNN 模型 MeshGraphNet(MGN)相结合,可在复杂的非结构网格上运行,并限制时间误差的累积。我们证明,我们的方法可以准确预测具有防渗断层的合成储层中气体饱和度和孔隙压力的时间演化。与标准 MGN 模型相比,我们的结果表明精度更高,时间误差积累更少。我们还展示了我们的算法对网格配置、边界条件和训练集中未包含的异质渗透场的出色通用性。这项工作凸显了基于 GNN 的方法在准确、快速地模拟具有复杂断层和裂缝的地下流动方面的潜力。
{"title":"Learning CO2 plume migration in faulted reservoirs with Graph Neural Networks","authors":"Xin Ju ,&nbsp;François P. Hamon ,&nbsp;Gege Wen ,&nbsp;Rayan Kanfar ,&nbsp;Mauricio Araya-Polo ,&nbsp;Hamdi A. Tchelepi","doi":"10.1016/j.cageo.2024.105711","DOIUrl":"10.1016/j.cageo.2024.105711","url":null,"abstract":"<div><p>Deep-learning-based surrogate models provide an efficient complement to numerical simulations for subsurface flow problems such as CO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> geological storage. Accurately capturing the impact of faults on CO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> plume migration remains a challenge for many existing deep learning surrogate models based on Convolutional Neural Networks (CNNs) or Neural Operators. We address this challenge with a graph-based neural model leveraging recent developments in the field of Graph Neural Networks (GNNs). Our model combines graph-based convolution Long-Short-Term-Memory (GConvLSTM) with a one-step GNN model, MeshGraphNet (MGN), to operate on complex unstructured meshes and limit temporal error accumulation. We demonstrate that our approach can accurately predict the temporal evolution of gas saturation and pore pressure in a synthetic reservoir with impermeable faults. Our results exhibit a better accuracy and a reduced temporal error accumulation compared to the standard MGN model. We also show the excellent generalizability of our algorithm to mesh configurations, boundary conditions, and heterogeneous permeability fields not included in the training set. This work highlights the potential of GNN-based methods to accurately and rapidly model subsurface flow with complex faults and fractures.</p></div>","PeriodicalId":55221,"journal":{"name":"Computers & Geosciences","volume":"193 ","pages":"Article 105711"},"PeriodicalIF":4.2,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142242002","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advanced petrographic thin section segmentation through deep learning-integrated adaptive GLFIF 通过集成深度学习的自适应 GLFIF 进行先进的岩相薄片分割
IF 4.2 2区 地球科学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2024-09-06 DOI: 10.1016/j.cageo.2024.105713
Yubo Han, Ye Liu

In geological research, precise segmentation of sandstone thin sections is crucial for detailed subsurface material analysis. Traditional methods often fall short in accurately capturing the complexities of these samples. This study presents an innovative segmentation approach that integrates an adaptive Global and Local Fuzzy Image Fitting (GLFIF) algorithm with Otsu's thresholding, significantly enhancing segmentation accuracy and efficiency. Our method combines deep learning and traditional image processing techniques. The adaptive GLFIF algorithm, powered by deep learning, automates parameter tuning, thereby reducing manual intervention and improving precision. Unlike conventional methods that learn fixed parameters, our model dynamically adjusts the segmentation process to achieve accurate results. The dual-phase segmentation strategy effectively isolates small features and handles intricate boundaries, ensuring high-quality outcomes. Experimental results demonstrate that our approach improves segmentation accuracy by 11.2% (from 82.6% to 93.8%), the Jaccard index by 15.4% (from 76.8% to 92.2%), and the Dice coefficient by 9% (from 86.9% to 95.9%) compared to traditional methods. This technique bridges the gap between conventional image analysis and deep learning, combining precise segmentation with the automation and computational power of advanced algorithms. Our segmentation algorithm represents a significant advancement in automated petrographic thin section analysis. Traditional image processing methods, such as thresholding and level sets, excel in handling small objects and complex boundaries but require significant manual intervention and cannot achieve full automation. Recent deep learning methods, particularly semantic segmentation, offer end-to-end automation but struggle with small targets and intricate boundaries. Our approach effectively combines the strengths of both methodologies, providing a comprehensive and efficient solution for geological image analysis that ensures both high accuracy and full automation.

在地质研究中,砂岩薄片的精确分割对于详细的地下材料分析至关重要。传统方法往往无法准确捕捉这些样本的复杂性。本研究提出了一种创新的分割方法,该方法将自适应全局和局部模糊图像拟合(GLFIF)算法与大津阈值法相结合,显著提高了分割精度和效率。我们的方法结合了深度学习和传统图像处理技术。由深度学习驱动的自适应 GLFIF 算法可自动调整参数,从而减少人工干预并提高精度。与学习固定参数的传统方法不同,我们的模型会动态调整分割过程,以获得精确的结果。双阶段分割策略能有效隔离小特征并处理复杂的边界,从而确保高质量的结果。实验结果表明,与传统方法相比,我们的方法将分割准确率提高了 11.2%(从 82.6% 提高到 93.8%),将 Jaccard 指数提高了 15.4%(从 76.8% 提高到 92.2%),将 Dice 系数提高了 9%(从 86.9% 提高到 95.9%)。这项技术弥补了传统图像分析与深度学习之间的差距,将精确分割与先进算法的自动化和计算能力相结合。我们的分割算法代表了自动化岩相薄片分析的重大进步。传统的图像处理方法,如阈值化和水平集,在处理小物体和复杂边界方面表现出色,但需要大量人工干预,无法实现完全自动化。最新的深度学习方法,尤其是语义分割法,可实现端到端的自动化,但在处理小目标和复杂边界时却显得力不从心。我们的方法有效地结合了这两种方法的优势,为地质图像分析提供了全面高效的解决方案,确保了高精度和全自动化。
{"title":"Advanced petrographic thin section segmentation through deep learning-integrated adaptive GLFIF","authors":"Yubo Han,&nbsp;Ye Liu","doi":"10.1016/j.cageo.2024.105713","DOIUrl":"10.1016/j.cageo.2024.105713","url":null,"abstract":"<div><p>In geological research, precise segmentation of sandstone thin sections is crucial for detailed subsurface material analysis. Traditional methods often fall short in accurately capturing the complexities of these samples. This study presents an innovative segmentation approach that integrates an adaptive Global and Local Fuzzy Image Fitting (GLFIF) algorithm with Otsu's thresholding, significantly enhancing segmentation accuracy and efficiency. Our method combines deep learning and traditional image processing techniques. The adaptive GLFIF algorithm, powered by deep learning, automates parameter tuning, thereby reducing manual intervention and improving precision. Unlike conventional methods that learn fixed parameters, our model dynamically adjusts the segmentation process to achieve accurate results. The dual-phase segmentation strategy effectively isolates small features and handles intricate boundaries, ensuring high-quality outcomes. Experimental results demonstrate that our approach improves segmentation accuracy by 11.2% (from 82.6% to 93.8%), the Jaccard index by 15.4% (from 76.8% to 92.2%), and the Dice coefficient by 9% (from 86.9% to 95.9%) compared to traditional methods. This technique bridges the gap between conventional image analysis and deep learning, combining precise segmentation with the automation and computational power of advanced algorithms. Our segmentation algorithm represents a significant advancement in automated petrographic thin section analysis. Traditional image processing methods, such as thresholding and level sets, excel in handling small objects and complex boundaries but require significant manual intervention and cannot achieve full automation. Recent deep learning methods, particularly semantic segmentation, offer end-to-end automation but struggle with small targets and intricate boundaries. Our approach effectively combines the strengths of both methodologies, providing a comprehensive and efficient solution for geological image analysis that ensures both high accuracy and full automation.</p></div>","PeriodicalId":55221,"journal":{"name":"Computers & Geosciences","volume":"193 ","pages":"Article 105713"},"PeriodicalIF":4.2,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142168506","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Computers & Geosciences
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1