首页 > 最新文献

Computational Statistics最新文献

英文 中文
High-dimensional data analysis and visualisation 高维数据分析和可视化
4区 数学 Q3 STATISTICS & PROBABILITY Pub Date : 2023-11-10 DOI: 10.1007/s00180-023-01428-3
Cathy W. S. Chen, Rosaria Lombardo, Enrico Ripamonti
{"title":"High-dimensional data analysis and visualisation","authors":"Cathy W. S. Chen, Rosaria Lombardo, Enrico Ripamonti","doi":"10.1007/s00180-023-01428-3","DOIUrl":"https://doi.org/10.1007/s00180-023-01428-3","url":null,"abstract":"","PeriodicalId":55223,"journal":{"name":"Computational Statistics","volume":"117 34","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135137888","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A software reliability model incorporating fault removal efficiency and it’s release policy 一个包含故障去除效率和发布策略的软件可靠性模型
4区 数学 Q3 STATISTICS & PROBABILITY Pub Date : 2023-11-09 DOI: 10.1007/s00180-023-01430-9
Umashankar Samal, Ajay Kumar
{"title":"A software reliability model incorporating fault removal efficiency and it’s release policy","authors":"Umashankar Samal, Ajay Kumar","doi":"10.1007/s00180-023-01430-9","DOIUrl":"https://doi.org/10.1007/s00180-023-01430-9","url":null,"abstract":"","PeriodicalId":55223,"journal":{"name":"Computational Statistics","volume":" 7","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135192295","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Estimation and testing of kink regression model with endogenous regressors 具有内生回归量的扭结回归模型的估计与检验
4区 数学 Q3 STATISTICS & PROBABILITY Pub Date : 2023-11-06 DOI: 10.1007/s00180-023-01429-2
Yan Sun, Wei Huang
{"title":"Estimation and testing of kink regression model with endogenous regressors","authors":"Yan Sun, Wei Huang","doi":"10.1007/s00180-023-01429-2","DOIUrl":"https://doi.org/10.1007/s00180-023-01429-2","url":null,"abstract":"","PeriodicalId":55223,"journal":{"name":"Computational Statistics","volume":"625 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135636112","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fuzzy clustering of time series based on weighted conditional higher moments 基于加权条件高矩的时间序列模糊聚类
4区 数学 Q3 STATISTICS & PROBABILITY Pub Date : 2023-11-05 DOI: 10.1007/s00180-023-01425-6
Roy Cerqueti, Pierpaolo D’Urso, Livia De Giovanni, Raffaele Mattera, Vincenzina Vitale
Abstract This paper proposes a new approach to fuzzy clustering of time series based on the dissimilarity among conditional higher moments. A system of weights accounts for the relevance of each conditional moment in defining the clusters. Robustness against outliers is also considered by extending the above clustering method using a suitable exponential transformation of the distance measure defined on the conditional higher moments. To show the usefulness of the proposed approach, we provide a study with simulated data and an empirical application to the time series of stocks included in the FTSEMIB 30 Index.
摘要提出了一种基于条件高阶矩不相似性的时间序列模糊聚类方法。在定义聚类时,权重系统说明了每个条件时刻的相关性。通过使用在条件高矩上定义的距离度量的适当指数变换扩展上述聚类方法,还考虑了对异常值的鲁棒性。为了证明所提出方法的有效性,我们对FTSEMIB 30指数中包含的股票时间序列进行了模拟数据研究和实证应用。
{"title":"Fuzzy clustering of time series based on weighted conditional higher moments","authors":"Roy Cerqueti, Pierpaolo D’Urso, Livia De Giovanni, Raffaele Mattera, Vincenzina Vitale","doi":"10.1007/s00180-023-01425-6","DOIUrl":"https://doi.org/10.1007/s00180-023-01425-6","url":null,"abstract":"Abstract This paper proposes a new approach to fuzzy clustering of time series based on the dissimilarity among conditional higher moments. A system of weights accounts for the relevance of each conditional moment in defining the clusters. Robustness against outliers is also considered by extending the above clustering method using a suitable exponential transformation of the distance measure defined on the conditional higher moments. To show the usefulness of the proposed approach, we provide a study with simulated data and an empirical application to the time series of stocks included in the FTSEMIB 30 Index.","PeriodicalId":55223,"journal":{"name":"Computational Statistics","volume":"77 6","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135725100","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nonparametric confidence intervals for generalized Lorenz curve using modified empirical likelihood 基于修正经验似然的广义Lorenz曲线非参数置信区间
4区 数学 Q3 STATISTICS & PROBABILITY Pub Date : 2023-11-03 DOI: 10.1007/s00180-023-01431-8
Suthakaran Ratnasingam, Spencer Wallace, Imran Amani, Jade Romero
{"title":"Nonparametric confidence intervals for generalized Lorenz curve using modified empirical likelihood","authors":"Suthakaran Ratnasingam, Spencer Wallace, Imran Amani, Jade Romero","doi":"10.1007/s00180-023-01431-8","DOIUrl":"https://doi.org/10.1007/s00180-023-01431-8","url":null,"abstract":"","PeriodicalId":55223,"journal":{"name":"Computational Statistics","volume":"30 7","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135820059","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Correction: Housing variables and immigration: an exploratory analysis in New York City 修正:住房变量与移民:对纽约市的探索性分析
4区 数学 Q3 STATISTICS & PROBABILITY Pub Date : 2023-10-27 DOI: 10.1007/s00180-023-01427-4
Jhonatan Medri, Braden D. Probst, Jürgen Symanzik
{"title":"Correction: Housing variables and immigration: an exploratory analysis in New York City","authors":"Jhonatan Medri, Braden D. Probst, Jürgen Symanzik","doi":"10.1007/s00180-023-01427-4","DOIUrl":"https://doi.org/10.1007/s00180-023-01427-4","url":null,"abstract":"","PeriodicalId":55223,"journal":{"name":"Computational Statistics","volume":"44 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136262551","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Combination of optimization-free kriging models for high-dimensional problems 高维问题的无优化克里格模型组合
4区 数学 Q3 STATISTICS & PROBABILITY Pub Date : 2023-10-27 DOI: 10.1007/s00180-023-01424-7
Tanguy Appriou, Didier Rullière, David Gaudrie
Kriging metamodeling (also called Gaussian Process regression) is a popular approach to predict the output of a function based on few observations. The Kriging method involves length-scale hyperparameters whose optimization is essential to obtain an accurate model and is typically performed using maximum likelihood estimation (MLE). However, for high-dimensional problems, the hyperparameter optimization is problematic and often fails to provide correct values. This is especially true for Kriging-based design optimization where the dimension is often quite high. In this article, we propose a method for building high-dimensional surrogate models which avoids the hyperparameter optimization by combining Kriging sub-models with randomly chosen length-scales. Contrarily to other approaches, it does not rely on dimension reduction techniques and it provides a closed-form expression for the model. We present a recipe to determine a suitable range for the sub-models length-scales. We also compare different approaches to compute the weights in the combination. We show for a high-dimensional test problem and a real-world application that our combination is more accurate than the classical Kriging approach using MLE.
Kriging元建模(也称为高斯过程回归)是一种基于少量观测值预测函数输出的流行方法。Kriging方法涉及长度尺度超参数,其优化对于获得准确的模型至关重要,通常使用最大似然估计(MLE)进行。然而,对于高维问题,超参数优化是有问题的,往往不能提供正确的值。这对于基于kriging的设计优化来说尤其如此,因为尺寸通常非常高。在本文中,我们提出了一种将Kriging子模型与随机选择的长度尺度相结合的方法来构建高维代理模型,从而避免了超参数优化。与其他方法不同的是,它不依赖于降维技术,它为模型提供了一个封闭的形式表达。我们提出了一种确定子模型长度尺度合适范围的方法。我们还比较了在组合中计算权重的不同方法。对于一个高维测试问题和一个实际应用,我们的组合比使用MLE的经典Kriging方法更准确。
{"title":"Combination of optimization-free kriging models for high-dimensional problems","authors":"Tanguy Appriou, Didier Rullière, David Gaudrie","doi":"10.1007/s00180-023-01424-7","DOIUrl":"https://doi.org/10.1007/s00180-023-01424-7","url":null,"abstract":"Kriging metamodeling (also called Gaussian Process regression) is a popular approach to predict the output of a function based on few observations. The Kriging method involves length-scale hyperparameters whose optimization is essential to obtain an accurate model and is typically performed using maximum likelihood estimation (MLE). However, for high-dimensional problems, the hyperparameter optimization is problematic and often fails to provide correct values. This is especially true for Kriging-based design optimization where the dimension is often quite high. In this article, we propose a method for building high-dimensional surrogate models which avoids the hyperparameter optimization by combining Kriging sub-models with randomly chosen length-scales. Contrarily to other approaches, it does not rely on dimension reduction techniques and it provides a closed-form expression for the model. We present a recipe to determine a suitable range for the sub-models length-scales. We also compare different approaches to compute the weights in the combination. We show for a high-dimensional test problem and a real-world application that our combination is more accurate than the classical Kriging approach using MLE.","PeriodicalId":55223,"journal":{"name":"Computational Statistics","volume":"6 3","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136233155","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Incremental singular value decomposition for some numerical aspects of multiblock redundancy analysis 增量奇异值分解用于多块冗余分析的一些数值方面
4区 数学 Q3 STATISTICS & PROBABILITY Pub Date : 2023-10-24 DOI: 10.1007/s00180-023-01418-5
Alba Martinez-Ruiz, Natale Carlo Lauro
{"title":"Incremental singular value decomposition for some numerical aspects of multiblock redundancy analysis","authors":"Alba Martinez-Ruiz, Natale Carlo Lauro","doi":"10.1007/s00180-023-01418-5","DOIUrl":"https://doi.org/10.1007/s00180-023-01418-5","url":null,"abstract":"","PeriodicalId":55223,"journal":{"name":"Computational Statistics","volume":"25 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135274262","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nonparametric binary regression models with spherical predictors based on the random forests kernel 基于随机森林核的球形预测器非参数二元回归模型
4区 数学 Q3 STATISTICS & PROBABILITY Pub Date : 2023-10-23 DOI: 10.1007/s00180-023-01422-9
Xu Qin, Huiqun Gao
{"title":"Nonparametric binary regression models with spherical predictors based on the random forests kernel","authors":"Xu Qin, Huiqun Gao","doi":"10.1007/s00180-023-01422-9","DOIUrl":"https://doi.org/10.1007/s00180-023-01422-9","url":null,"abstract":"","PeriodicalId":55223,"journal":{"name":"Computational Statistics","volume":"54 6","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135366965","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Empirical likelihood ratio tests for homogeneity of component lifetime distributions based on system lifetime data 基于系统寿命数据的组件寿命分布同质性的经验似然比检验
4区 数学 Q3 STATISTICS & PROBABILITY Pub Date : 2023-10-21 DOI: 10.1007/s00180-023-01421-w
Jingjing Qu, Hon Keung Tony Ng, Chul Moon
{"title":"Empirical likelihood ratio tests for homogeneity of component lifetime distributions based on system lifetime data","authors":"Jingjing Qu, Hon Keung Tony Ng, Chul Moon","doi":"10.1007/s00180-023-01421-w","DOIUrl":"https://doi.org/10.1007/s00180-023-01421-w","url":null,"abstract":"","PeriodicalId":55223,"journal":{"name":"Computational Statistics","volume":"66 2","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135510820","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Computational Statistics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1