Federated Learning (FL) has emerged as a powerful model for training collaborative machine learning (ML) models while maintaining the privacy of participants’ data. However, traditional FL methods can exhibit limitations such as increased communication overhead, vulnerability to poisoning attacks, and reliance on a central server, which can impede their practicality in certain IoT applications. In such cases, the necessity of a central server to oversee the learning process may be infeasible, particularly in situations with limited connectivity and energy management. To address these challenges, peer-to-peer FL (P2PFL) offers an alternative approach, providing greater adaptability by enabling participants to collaboratively train their own models alongside their peers. This paper introduces an original framework that combines P2PFL and Homomorphic Encryption (HE), enabling secure computations on encrypted data. Furthermore, a defense approach against poisoning attacks based on cosine similarity is introduced These techniques enable users to collectively learn while preserving data privacy and accounting for ideal energy optimization. The proposed approach has demonstrated superior performance metrics in terms of accuracy, F-scores, and loss when compared to other similar approaches. Furthermore, it offers robust privacy and security measures, leading to an enhanced security level, with improvements ranging from 5.5% to 14.6%. Moreover, we demonstrate that the proposed approach effectively reduces the communication overhead. The proposed approach resulted in impressive reductions in communication overhead ranging from 63.8% to 79.6%. The implementation of these security models was cumbersome, but we have made the code publicly available for your reference 1.
Unmanned aerial vehicle (UAV)-enabled mobile edge computing (MEC) networks have recently been considered to be a support for ground MEC networks to enhance their computation capability. However, the line-of-sight (LOS) channels between the UAV and Internet of Things (IoT) devices can be interfered by various obstacles, such as trees and buildings, resulting in a considerable reduction in the capacity of MEC networks. To solve this issue, a system that combines multiple reconfigurable intelligence surfaces (RISs) with a UAV-enabled MEC network is proposed in this study. A UAV equipped with edge servers is treated as an aerial computing platform for IoT devices, and multi-RISs are utilized to simultaneously improve the communication quality between enhanced UAV and IoT devices. To maximize the sum computation bits of the system, a problem that jointly optimizes the time slot partition, local computation frequency, transmit power of the devices, UAV receive beamforming vectors, phase shifts of the RISs, and the trajectory of the UAV is formulated. The problem is a typical nonconvex optimization problem; therefore, we propose a recursive algorithm based on the successive convex approximation (SCA) and block coordinate descent (BCD) technology to find an approximate optimal solution. Simulation results demonstrate the effectiveness of the proposed algorithm compared with various benchmark schemes.