Pub Date : 2024-03-01Epub Date: 2023-05-10DOI: 10.1007/s10548-023-00958-9
Povilas Tarailis, Thomas Koenig, Christoph M Michel, Inga Griškova-Bulanova
A growing body of clinical and cognitive neuroscience studies have adapted a broadband EEG microstate approach to evaluate the electrical activity of large-scale cortical networks. However, the functional aspects of these microstates have not yet been systematically reviewed. Here, we present an overview of the existing literature and systematize the results to provide hints on the functional role of electrical brain microstates. Studies that evaluated and manipulated the temporal properties of resting-state microstates and utilized questionnaires, task-initiated thoughts, specific tasks before or between EEG session(s), pharmacological interventions, neuromodulation approaches, or localized sources of the extracted microstates were selected. Fifty studies that met the inclusion criteria were included. A new microstate labeling system has been proposed for a comprehensible comparison between the studies, where four classical microstates are referred to as A-D, and the others are labeled by the frequency of their appearance. Microstate A was associated with both auditory and visual processing and links to subjects' arousal/arousability. Microstate B showed associations with visual processing related to self, self-visualization, and autobiographical memory. Microstate C was related to processing personally significant information, self-reflection, and self-referential internal mentation rather than autonomic information processing. In contrast, microstate E was related to processing interoceptive and emotional information and to the salience network. Microstate D was associated with executive functioning. Microstate F is suggested to be a part of the Default Mode Network and plays a role in personally significant information processing, mental simulations, and theory of mind. Microstate G is potentially linked to the somatosensory network.
越来越多的临床和认知神经科学研究采用宽带脑电图微状态方法来评估大规模皮层网络的电活动。然而,这些微状态的功能方面尚未得到系统的回顾。在此,我们对现有文献进行了综述,并对结果进行了系统整理,以提供有关脑电微状态功能作用的提示。我们选取了对静息态微状态的时间特性进行评估和操作的研究,并利用了问卷调查、任务引发的思考、脑电图会话之前或之间的特定任务、药物干预、神经调节方法或提取微状态的局部来源。符合纳入标准的研究有 50 项。为了便于比较研究结果,我们提出了一个新的微状态标记系统,其中四个经典微状态被称为 A-D,其他微状态则根据出现频率进行标记。微状态 A 与听觉和视觉处理相关,并与受试者的唤醒/唤醒性相关。微状态 B 与自我、自我想象和自传体记忆相关的视觉处理有关。微状态 C 与个人重要信息处理、自我反思和自我内部思维有关,而不是与自主信息处理有关。相比之下,微状态 E 与内感知信息和情感信息的处理以及显著性网络有关。微状态 D 与执行功能有关。微态 F 被认为是默认模式网络的一部分,在个人重要信息处理、心理模拟和心智理论中发挥作用。微状态 G 可能与体感网络有关。
{"title":"The Functional Aspects of Resting EEG Microstates: A Systematic Review.","authors":"Povilas Tarailis, Thomas Koenig, Christoph M Michel, Inga Griškova-Bulanova","doi":"10.1007/s10548-023-00958-9","DOIUrl":"10.1007/s10548-023-00958-9","url":null,"abstract":"<p><p>A growing body of clinical and cognitive neuroscience studies have adapted a broadband EEG microstate approach to evaluate the electrical activity of large-scale cortical networks. However, the functional aspects of these microstates have not yet been systematically reviewed. Here, we present an overview of the existing literature and systematize the results to provide hints on the functional role of electrical brain microstates. Studies that evaluated and manipulated the temporal properties of resting-state microstates and utilized questionnaires, task-initiated thoughts, specific tasks before or between EEG session(s), pharmacological interventions, neuromodulation approaches, or localized sources of the extracted microstates were selected. Fifty studies that met the inclusion criteria were included. A new microstate labeling system has been proposed for a comprehensible comparison between the studies, where four classical microstates are referred to as A-D, and the others are labeled by the frequency of their appearance. Microstate A was associated with both auditory and visual processing and links to subjects' arousal/arousability. Microstate B showed associations with visual processing related to self, self-visualization, and autobiographical memory. Microstate C was related to processing personally significant information, self-reflection, and self-referential internal mentation rather than autonomic information processing. In contrast, microstate E was related to processing interoceptive and emotional information and to the salience network. Microstate D was associated with executive functioning. Microstate F is suggested to be a part of the Default Mode Network and plays a role in personally significant information processing, mental simulations, and theory of mind. Microstate G is potentially linked to the somatosensory network.</p>","PeriodicalId":55329,"journal":{"name":"Brain Topography","volume":" ","pages":"181-217"},"PeriodicalIF":2.3,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9809003","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-01Epub Date: 2023-09-13DOI: 10.1007/s10548-023-01004-4
Anthony P Zanesco
The large-scale electrophysiological events known as electroencephalographic microstates provide an important window into the intrinsic activity of whole-brain neuronal networks. The spontaneous activity of coordinated brain networks, including the ongoing temporal dynamics expressed by microstates, are thought to reflect individuals' neurocognitive functioning, and predict development, disease progression, and psychological differences among varied populations. A comprehensive understanding of human brain function therefore requires characterizing typical and atypical patterns in the temporal dynamics of microstates. But population-level estimates of normative microstate temporal dynamics are still unknown. To address this gap, I conducted a systematic search of the literature and accompanying meta-analysis of the average dynamics of microstates obtained from studies investigating spontaneous brain activity in individuals during periods of eyes-closed and eyes-open rest. Meta-analyses provided estimates of the average temporal dynamics of microstates across 93 studies totaling 6583 unique individual participants drawn from diverse populations. Results quantified the expected range of plausible estimates of average microstate dynamics across study samples, as well as characterized heterogeneity resulting from sampling variability and systematic differences in development, clinical diagnoses, or other study methodological factors. Specifically, microstate dynamics significantly differed for samples with specific developmental differences or clinical diagnoses, relative to healthy, typically developing samples. This research supports the notion that microstates and their dynamics reflect functionally relevant properties of large-scale brain networks, encoding typical and atypical neurocognitive functioning.
{"title":"Normative Temporal Dynamics of Resting EEG Microstates.","authors":"Anthony P Zanesco","doi":"10.1007/s10548-023-01004-4","DOIUrl":"10.1007/s10548-023-01004-4","url":null,"abstract":"<p><p>The large-scale electrophysiological events known as electroencephalographic microstates provide an important window into the intrinsic activity of whole-brain neuronal networks. The spontaneous activity of coordinated brain networks, including the ongoing temporal dynamics expressed by microstates, are thought to reflect individuals' neurocognitive functioning, and predict development, disease progression, and psychological differences among varied populations. A comprehensive understanding of human brain function therefore requires characterizing typical and atypical patterns in the temporal dynamics of microstates. But population-level estimates of normative microstate temporal dynamics are still unknown. To address this gap, I conducted a systematic search of the literature and accompanying meta-analysis of the average dynamics of microstates obtained from studies investigating spontaneous brain activity in individuals during periods of eyes-closed and eyes-open rest. Meta-analyses provided estimates of the average temporal dynamics of microstates across 93 studies totaling 6583 unique individual participants drawn from diverse populations. Results quantified the expected range of plausible estimates of average microstate dynamics across study samples, as well as characterized heterogeneity resulting from sampling variability and systematic differences in development, clinical diagnoses, or other study methodological factors. Specifically, microstate dynamics significantly differed for samples with specific developmental differences or clinical diagnoses, relative to healthy, typically developing samples. This research supports the notion that microstates and their dynamics reflect functionally relevant properties of large-scale brain networks, encoding typical and atypical neurocognitive functioning.</p>","PeriodicalId":55329,"journal":{"name":"Brain Topography","volume":" ","pages":"243-264"},"PeriodicalIF":2.3,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10224343","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-05DOI: 10.1007/s10548-023-01032-0
Abstract
Human beings represent spatial information according to egocentric (body-to-object) and allocentric (object-to-object) frames of reference. In everyday life, we constantly switch from one frame of reference to another in order to react effectively to the specific needs of the environment and task demands. However, to the best of our knowledge, no study to date has investigated the cortical activity of switching and non-switching processes between egocentric and allocentric spatial encodings. To this aim, a custom-designed visuo-spatial memory task was administered and the cortical activities underlying switching vs non-switching spatial processes were investigated. Changes in concentrations of oxygenated and deoxygenated haemoglobin were measured using functional near-infrared spectroscopy (fNIRS). Participants were asked to memorize triads of geometric objects and then make two consecutive judgments about the same triad. In the non-switching condition, both spatial judgments considered the same frame of reference: only egocentric or only allocentric. In the switching condition, if the first judgment was egocentric, the second one was allocentric (or vice versa). The results showed a generalized activation of the frontal regions during the switching compared to the non-switching condition. Additionally, increased cortical activity was found in the temporo-parietal junction during the switching condition compared to the non-switching condition. Overall, these results illustrate the cortical activity underlying the processing of switching between body position and environmental stimuli, showing an important role of the temporo-parietal junction and frontal regions in the preparation and switching between egocentric and allocentric reference frames.
{"title":"Cortical Correlates of Visuospatial Switching Processes Between Egocentric and Allocentric Frames of Reference: A fNIRS Study","authors":"","doi":"10.1007/s10548-023-01032-0","DOIUrl":"https://doi.org/10.1007/s10548-023-01032-0","url":null,"abstract":"<h3>Abstract</h3> <p>Human beings represent spatial information according to egocentric (body-to-object) and allocentric (object-to-object) frames of reference. In everyday life, we constantly switch from one frame of reference to another in order to react effectively to the specific needs of the environment and task demands. However, to the best of our knowledge, no study to date has investigated the cortical activity of switching and non-switching processes between egocentric and allocentric spatial encodings. To this aim, a custom-designed visuo-spatial memory task was administered and the cortical activities underlying switching vs non-switching spatial processes were investigated. Changes in concentrations of oxygenated and deoxygenated haemoglobin were measured using functional near-infrared spectroscopy (fNIRS). Participants were asked to memorize triads of geometric objects and then make two consecutive judgments about the same triad. In the non-switching condition, both spatial judgments considered the same frame of reference: only egocentric or only allocentric. In the switching condition, if the first judgment was egocentric, the second one was allocentric (or vice versa). The results showed a generalized activation of the frontal regions during the switching compared to the non-switching condition. Additionally, increased cortical activity was found in the temporo-parietal junction during the switching condition compared to the non-switching condition. Overall, these results illustrate the cortical activity underlying the processing of switching between body position and environmental stimuli, showing an important role of the temporo-parietal junction and frontal regions in the preparation and switching between egocentric and allocentric reference frames.</p>","PeriodicalId":55329,"journal":{"name":"Brain Topography","volume":"70 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139689438","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-01DOI: 10.1007/s10548-024-01033-7
Abstract
Few resting-state functional magnetic resonance imaging (RS-fMRI) studies evaluated the impact of acute ischemic changes on cerebral functional connectivity (FC) and its relationship with functional outcomes after acute ischemic stroke (AIS), considering the side of lesions. To characterize alterations of FC of patients with AIS by analyzing 12 large-scale brain networks (NWs) with RS-fMRI. Additionally, we evaluated the impact of the side (right (RH) or left (LH) hemisphere) of insult on the disruption of brain NWs. 38 patients diagnosed with AIS (17 RH and 21 LH) who performed 3T MRI scans up to 72 h after stroke were compared to 44 healthy controls. Images were processed and analyzed with the software toolbox UF2C with SPM12. For the first level, we generated individual matrices based on the time series extraction from 70 regions of interest (ROIs) from 12 functional NWs, constructing Pearson’s cross-correlation; the second-level analysis included an analysis of covariance (ANCOVA) to investigate differences between groups. The statistical significance was determined with p < 0.05, after correction for multiple comparisons with false discovery rate (FDR) correction. Overall, individuals with LH insults developed poorer clinical outcomes after six months. A widespread pattern of lower FC was observed in the presence of LH insults, while a contralateral pattern of increased FC was identified in the group with RH insults. Our findings suggest that LH stroke causes a severe and widespread pattern of reduction of brain networks’ FC, presumably related to the impairment in their long-term recovery.
{"title":"Disruption of Resting-State Functional Connectivity in Acute Ischemic Stroke: Comparisons Between Right and Left Hemispheric Insults","authors":"","doi":"10.1007/s10548-024-01033-7","DOIUrl":"https://doi.org/10.1007/s10548-024-01033-7","url":null,"abstract":"<h3>Abstract</h3> <p>Few resting-state functional magnetic resonance imaging (RS-fMRI) studies evaluated the impact of acute ischemic changes on cerebral functional connectivity (FC) and its relationship with functional outcomes after acute ischemic stroke (AIS), considering the side of lesions. To characterize alterations of FC of patients with AIS by analyzing 12 large-scale brain networks (NWs) with RS-fMRI. Additionally, we evaluated the impact of the side (right (RH) or left (LH) hemisphere) of insult on the disruption of brain NWs. 38 patients diagnosed with AIS (17 RH and 21 LH) who performed 3T MRI scans up to 72 h after stroke were compared to 44 healthy controls. Images were processed and analyzed with the software toolbox UF<sup>2</sup>C with SPM12. For the first level, we generated individual matrices based on the time series extraction from 70 regions of interest (ROIs) from 12 functional NWs, constructing Pearson’s cross-correlation; the second-level analysis included an analysis of covariance (ANCOVA) to investigate differences between groups. The statistical significance was determined with p < 0.05, after correction for multiple comparisons with false discovery rate (FDR) correction. Overall, individuals with LH insults developed poorer clinical outcomes after six months. A widespread pattern of lower FC was observed in the presence of LH insults, while a contralateral pattern of increased FC was identified in the group with RH insults. Our findings suggest that LH stroke causes a severe and widespread pattern of reduction of brain networks’ FC, presumably related to the impairment in their long-term recovery.</p>","PeriodicalId":55329,"journal":{"name":"Brain Topography","volume":"71 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139666178","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01Epub Date: 2023-10-09DOI: 10.1007/s10548-023-01011-5
Zhuoya Yang, Lei Xia, Yixiao Fu, Yingcan Zheng, Mengxue Zhao, Zhengzhi Feng, Chunmeng Shi
Negative bias in prospection may play a crucial role in driving and maintaining depression. Recent research suggests abnormal activation and functional connectivity in regions of the default mode network (DMN) during future event generation in depressed individuals. However, the neural dynamics during prospection in these individuals remain unknown. To capture network dynamics at high temporal resolution, we employed electroencephalogram (EEG) microstate analysis. We examined microstate properties during both positive and negative prospection in 35 individuals with subthreshold depression (SD) and 35 controls. We identified similar sets of four canonical microstates (A-D) across groups and conditions. Source analysis indicated that each microstate map partially overlapped with a subsystem of the DMN (A: verbal; B: visual-spatial; C: self-referential; and D: modulation). Notably, alterations in EEG microstates were primarily observed in negative prospection of individuals with SD. Specifically, when generating negative future events, the coverage, occurrence, and duration of microstate A increased, while the coverage and duration of microstates B and D decreased in the SD group compared to controls. Furthermore, we observed altered transitions, particularly involving microstate C, during negative prospection in the SD group. These altered dynamics suggest dysconnectivity between subsystems of the DMN during negative prospection in individuals with SD. In conclusion, we provide novel insights into the neural mechanisms of negative bias in depression. These alterations could serve as specific markers for depression and potential targets for future interventions.
{"title":"Altered EEG Microstates Dynamics in Individuals with Subthreshold Depression When Generating Negative Future Events.","authors":"Zhuoya Yang, Lei Xia, Yixiao Fu, Yingcan Zheng, Mengxue Zhao, Zhengzhi Feng, Chunmeng Shi","doi":"10.1007/s10548-023-01011-5","DOIUrl":"10.1007/s10548-023-01011-5","url":null,"abstract":"<p><p>Negative bias in prospection may play a crucial role in driving and maintaining depression. Recent research suggests abnormal activation and functional connectivity in regions of the default mode network (DMN) during future event generation in depressed individuals. However, the neural dynamics during prospection in these individuals remain unknown. To capture network dynamics at high temporal resolution, we employed electroencephalogram (EEG) microstate analysis. We examined microstate properties during both positive and negative prospection in 35 individuals with subthreshold depression (SD) and 35 controls. We identified similar sets of four canonical microstates (A-D) across groups and conditions. Source analysis indicated that each microstate map partially overlapped with a subsystem of the DMN (A: verbal; B: visual-spatial; C: self-referential; and D: modulation). Notably, alterations in EEG microstates were primarily observed in negative prospection of individuals with SD. Specifically, when generating negative future events, the coverage, occurrence, and duration of microstate A increased, while the coverage and duration of microstates B and D decreased in the SD group compared to controls. Furthermore, we observed altered transitions, particularly involving microstate C, during negative prospection in the SD group. These altered dynamics suggest dysconnectivity between subsystems of the DMN during negative prospection in individuals with SD. In conclusion, we provide novel insights into the neural mechanisms of negative bias in depression. These alterations could serve as specific markers for depression and potential targets for future interventions.</p>","PeriodicalId":55329,"journal":{"name":"Brain Topography","volume":" ","pages":"52-62"},"PeriodicalIF":2.7,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41154166","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
We applied diffusion-tensor imaging (DTI) including measurements of fractional anisotropy (FA), a parameter of neuronal fiber integrity, mean diffusivity (MD), a parameter of brain tissue integrity, as well as voxel-based morphometry (VBM), a measure of gray and white matter volume, to provide a basis to improve our understanding of the neurobiological basis of dependent personality disorder (DPD). DTI was performed on young girls with DPD (N = 17) and young female healthy controls (N = 17). Tract-based spatial statistics (TBSS) were used to examine microstructural characteristics. Gray matter volume differences between the two groups were investigated using voxel-based morphometry (VBM). The Pearson correlation analysis was utilized to examine the relationship between distinct brain areas of white matter and gray matter and the Dy score on the MMPI. The DPD had significantly higher fractional anisotropy (FA) values than the HC group in the right retrolenticular part of the internal capsule, right external capsule, the corpus callosum, right posterior thalamic radiation (include optic radiation), right cerebral peduncle (p < 0.05), which was strongly positively correlated with the Dy score of MMPI. The volume of gray matter in the right postcentral gyrus and left cuneus in DPD was significantly increased (p < 0.05), which was strongly positively correlated with the Dy score of MMPI (r1,2= 0.467,0.353; p1,2 = 0.005,0.04). Our results provide new insights into the changes in the brain structure in DPD, which suggests that alterations in the brain structure might implicate the pathophysiology of DPD. Possible visual and somatosensory association with motor nerve circuits in DPD.
{"title":"White and Gray Matter Abnormalities in Young Adult Females with Dependent Personality Disorder: A Diffusion-Tensor Imaging and Voxel-Based Morphometry Study.","authors":"Zhixia Cui, Liangliang Meng, Qing Zhang, Jing Lou, Yuan Lin, Yueji Sun","doi":"10.1007/s10548-023-01013-3","DOIUrl":"10.1007/s10548-023-01013-3","url":null,"abstract":"<p><p>We applied diffusion-tensor imaging (DTI) including measurements of fractional anisotropy (FA), a parameter of neuronal fiber integrity, mean diffusivity (MD), a parameter of brain tissue integrity, as well as voxel-based morphometry (VBM), a measure of gray and white matter volume, to provide a basis to improve our understanding of the neurobiological basis of dependent personality disorder (DPD). DTI was performed on young girls with DPD (N = 17) and young female healthy controls (N = 17). Tract-based spatial statistics (TBSS) were used to examine microstructural characteristics. Gray matter volume differences between the two groups were investigated using voxel-based morphometry (VBM). The Pearson correlation analysis was utilized to examine the relationship between distinct brain areas of white matter and gray matter and the Dy score on the MMPI. The DPD had significantly higher fractional anisotropy (FA) values than the HC group in the right retrolenticular part of the internal capsule, right external capsule, the corpus callosum, right posterior thalamic radiation (include optic radiation), right cerebral peduncle (p < 0.05), which was strongly positively correlated with the Dy score of MMPI. The volume of gray matter in the right postcentral gyrus and left cuneus in DPD was significantly increased (p < 0.05), which was strongly positively correlated with the Dy score of MMPI (r<sub>1,2</sub>= 0.467,0.353; p<sub>1,2</sub> = 0.005,0.04). Our results provide new insights into the changes in the brain structure in DPD, which suggests that alterations in the brain structure might implicate the pathophysiology of DPD. Possible visual and somatosensory association with motor nerve circuits in DPD.</p>","PeriodicalId":55329,"journal":{"name":"Brain Topography","volume":" ","pages":"102-115"},"PeriodicalIF":2.7,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41220870","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01Epub Date: 2023-11-23DOI: 10.1007/s10548-023-01016-0
Y Rama Muni Reddy, P Muralidhar, M Srinivas
Nowadays, road accidents pose a severe risk in cases of sleep disorders. We proposed a novel hybrid deep-learning model for detecting drowsiness to address this issue. The proposed model combines the strengths of discrete wavelet long short-term memory (DWLSTM) and convolutional neural networks (CNN) models to classify single-channel electroencephalogram (EEG) signals. Baseline models such as support vector machine (SVM), linear discriminant analysis (LDA), back propagation neural networks (BPNN), CNN, and CNN merged with LSTM (CNN+LSTM) did not fully utilize the time sequence information. Our proposed model incorporates a majority voting between LSTM layers integrated with discrete wavelet transform (DWT) and the CNN model fed with spectrograms as images. The features extracted from sub-bands generated by DWT can provide more informative & discriminating than using the raw EEG signal. Similarly, spectrogram images fed to CNN learn the specific patterns and features with different levels of drowsiness. Furthermore, the proposed model outperformed state-of-the-art deep learning techniques and conventional baseline methods, achieving an average accuracy of 74.62%, 77.76% (using rounding, F1-score maximization approach respectively for generating labels) on 11 subjects for leave-one-out subject method. It achieved high accuracy while maintaining relatively shorter training and testing times, making it more desirable for quicker drowsiness detection. The performance metrics (accuracy, precision, recall, F1-score) are evaluated after 100 randomized tests along with a 95% confidence interval for classification. Additionally, we validated the mean accuracies from five types of wavelet families, including daubechis, symlet, bi-orthogonal, coiflets, and haar, merged with LSTM layers.
{"title":"An Effective Hybrid Deep Learning Model for Single-Channel EEG-Based Subject-Independent Drowsiness Recognition.","authors":"Y Rama Muni Reddy, P Muralidhar, M Srinivas","doi":"10.1007/s10548-023-01016-0","DOIUrl":"10.1007/s10548-023-01016-0","url":null,"abstract":"<p><p>Nowadays, road accidents pose a severe risk in cases of sleep disorders. We proposed a novel hybrid deep-learning model for detecting drowsiness to address this issue. The proposed model combines the strengths of discrete wavelet long short-term memory (DWLSTM) and convolutional neural networks (CNN) models to classify single-channel electroencephalogram (EEG) signals. Baseline models such as support vector machine (SVM), linear discriminant analysis (LDA), back propagation neural networks (BPNN), CNN, and CNN merged with LSTM (CNN+LSTM) did not fully utilize the time sequence information. Our proposed model incorporates a majority voting between LSTM layers integrated with discrete wavelet transform (DWT) and the CNN model fed with spectrograms as images. The features extracted from sub-bands generated by DWT can provide more informative & discriminating than using the raw EEG signal. Similarly, spectrogram images fed to CNN learn the specific patterns and features with different levels of drowsiness. Furthermore, the proposed model outperformed state-of-the-art deep learning techniques and conventional baseline methods, achieving an average accuracy of 74.62%, 77.76% (using rounding, F1-score maximization approach respectively for generating labels) on 11 subjects for leave-one-out subject method. It achieved high accuracy while maintaining relatively shorter training and testing times, making it more desirable for quicker drowsiness detection. The performance metrics (accuracy, precision, recall, F1-score) are evaluated after 100 randomized tests along with a 95% confidence interval for classification. Additionally, we validated the mean accuracies from five types of wavelet families, including daubechis, symlet, bi-orthogonal, coiflets, and haar, merged with LSTM layers.</p>","PeriodicalId":55329,"journal":{"name":"Brain Topography","volume":" ","pages":"1-18"},"PeriodicalIF":2.7,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138296622","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01Epub Date: 2023-11-23DOI: 10.1007/s10548-023-01018-y
Yufei Song, Pedro C Gordon, Johanna Metsomaa, Maryam Rostami, Paolo Belardinelli, Ulf Ziemann
Transcranial magnetic stimulation (TMS)-evoked electroencephalography (EEG) potentials (TEPs) provide unique insights into cortical excitability and connectivity. However, confounding EEG signals from auditory and somatosensory co-stimulation complicate TEP interpretation. Our optimized sham procedure established with TMS of primary motor cortex (Gordon in JAMA 245:118708, 2021) differentiates direct cortical EEG responses to TMS from those caused by peripheral sensory inputs. Using this approach, this study aimed to investigate TEPs and their test-retest reliability when targeting regions outside the primary motor cortex, specifically the left angular gyrus, supplementary motor area, and medial prefrontal cortex. We conducted three identical TMS-EEG sessions one week apart involving 24 healthy participants. In each session, we targeted the three areas separately using a figure-of-eight TMS coil for active TMS, while a second coil away from the head produced auditory input for sham TMS. Masking noise and electric scalp stimulation were applied in both conditions to achieve matched EEG responses to peripheral sensory inputs. High test-retest reliability was observed in both conditions. However, reliability declined for the 'cleaned' TEPs, resulting from the subtraction of evoked EEG response to the sham TMS from those to the active, particularly for latencies > 100 ms following the TMS pulse. Significant EEG differences were found between active and sham TMS at latencies < 90 ms for all targeted areas, exhibiting distinct spatiotemporal characteristics specific to each target. In conclusion, our optimized sham procedure effectively reveals EEG responses to direct cortical activation by TMS in brain areas outside primary motor cortex. Moreover, we demonstrate the impact of peripheral sensory inputs on test-retest reliability of TMS-EEG responses.
经颅磁刺激(TMS)诱发脑电图(EEG)电位(TEPs)提供了对皮质兴奋性和连通性的独特见解。然而,来自听觉和体感共刺激的混淆脑电图信号使TEP的解释复杂化。我们利用初级运动皮层经颅磁刺激(Gordon in JAMA 245: 118708,2021)建立了优化的假手术,将经颅磁刺激引起的直接皮层脑电图反应与由外周感觉输入引起的脑电图反应区分开来。使用这种方法,本研究旨在研究TEPs及其测试-重测的可靠性,当目标区域在初级运动皮层之外,特别是左角回、辅助运动区和内侧前额叶皮层。我们进行了三个相同的TMS-EEG会话,间隔一周,涉及24名健康参与者。在每次实验中,我们分别使用8字形经颅磁刺激线圈对活动经颅磁刺激进行定位,而另一个远离头部的线圈对假经颅磁刺激进行听觉输入。在这两种情况下,掩蔽噪声和头皮电刺激都可以获得与周围感觉输入相匹配的脑电图响应。在两种情况下均观察到较高的重测信度。然而,对于“清洁”的tep,可靠性下降了,这是由于对假经颅磁刺激的诱发脑电图反应从对活动的反应中减去了,特别是在经颅磁刺激脉冲后潜伏期> 100 ms的情况下。激活和假经颅磁刺激在潜伏期上有显著的脑电图差异
{"title":"Evoked EEG Responses to TMS Targeting Regions Outside the Primary Motor Cortex and Their Test-Retest Reliability.","authors":"Yufei Song, Pedro C Gordon, Johanna Metsomaa, Maryam Rostami, Paolo Belardinelli, Ulf Ziemann","doi":"10.1007/s10548-023-01018-y","DOIUrl":"10.1007/s10548-023-01018-y","url":null,"abstract":"<p><p>Transcranial magnetic stimulation (TMS)-evoked electroencephalography (EEG) potentials (TEPs) provide unique insights into cortical excitability and connectivity. However, confounding EEG signals from auditory and somatosensory co-stimulation complicate TEP interpretation. Our optimized sham procedure established with TMS of primary motor cortex (Gordon in JAMA 245:118708, 2021) differentiates direct cortical EEG responses to TMS from those caused by peripheral sensory inputs. Using this approach, this study aimed to investigate TEPs and their test-retest reliability when targeting regions outside the primary motor cortex, specifically the left angular gyrus, supplementary motor area, and medial prefrontal cortex. We conducted three identical TMS-EEG sessions one week apart involving 24 healthy participants. In each session, we targeted the three areas separately using a figure-of-eight TMS coil for active TMS, while a second coil away from the head produced auditory input for sham TMS. Masking noise and electric scalp stimulation were applied in both conditions to achieve matched EEG responses to peripheral sensory inputs. High test-retest reliability was observed in both conditions. However, reliability declined for the 'cleaned' TEPs, resulting from the subtraction of evoked EEG response to the sham TMS from those to the active, particularly for latencies > 100 ms following the TMS pulse. Significant EEG differences were found between active and sham TMS at latencies < 90 ms for all targeted areas, exhibiting distinct spatiotemporal characteristics specific to each target. In conclusion, our optimized sham procedure effectively reveals EEG responses to direct cortical activation by TMS in brain areas outside primary motor cortex. Moreover, we demonstrate the impact of peripheral sensory inputs on test-retest reliability of TMS-EEG responses.</p>","PeriodicalId":55329,"journal":{"name":"Brain Topography","volume":" ","pages":"19-36"},"PeriodicalIF":2.7,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10771591/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138300698","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01Epub Date: 2023-09-22DOI: 10.1007/s10548-023-01007-1
Assia Chericoni, Lorenzo Ricci, Georgios Ntolkeras, Roberto Billardello, Scellig S D Stone, Joseph R Madsen, Christos Papadelis, P Ellen Grant, Phillip L Pearl, Fabrizio Taffoni, Alexander Rotenberg, Eleonora Tamilia
Introduction: Literature lacks studies investigating the cortical generation of sleep spindles in drug-resistant epilepsy (DRE) and how they evolve after resection of the epileptogenic zone (EZ). Here, we examined sleep EEGs of children with focal DRE who became seizure-free after focal epilepsy surgery, and aimed to investigate the changes in the spindle generation before and after the surgery using low-density scalp EEG and electrical source imaging (ESI).
Methods: We analyzed N2-sleep EEGs from 19 children with DRE before and after surgery. We identified slow (8-12 Hz) and fast spindles (13-16 Hz), computed their spectral features and cortical generators through ESI and computed their distance from the EZ and irritative zone (IZ). We performed two-way ANOVA testing the effect of spindle type (slow vs. fast) and surgical phase (pre-surgery vs. post-surgery) on each feature.
Results: Power, frequency and cortical activation of slow spindles increased after surgery (p < 0.005), while this was not seen for fast spindles. Before surgery, the cortical generators of slow spindles were closer to the EZ (57.3 vs. 66.2 mm, p = 0.007) and IZ (41.3 vs. 55.5 mm, p = 0.02) than fast spindle generators.
Conclusions: Our data indicate alterations in the EEG slow spindles after resective epilepsy surgery. Fast spindle generation on the contrary did not change after surgery. Although the study is limited by its retrospective nature, lack of healthy controls, and reduced cortical spatial sampling, our findings suggest a spatial relationship between the slow spindles and the epileptogenic generators.
{"title":"Sleep Spindle Generation Before and After Epilepsy Surgery: A Source Imaging Study in Children with Drug-Resistant Epilepsy.","authors":"Assia Chericoni, Lorenzo Ricci, Georgios Ntolkeras, Roberto Billardello, Scellig S D Stone, Joseph R Madsen, Christos Papadelis, P Ellen Grant, Phillip L Pearl, Fabrizio Taffoni, Alexander Rotenberg, Eleonora Tamilia","doi":"10.1007/s10548-023-01007-1","DOIUrl":"10.1007/s10548-023-01007-1","url":null,"abstract":"<p><strong>Introduction: </strong>Literature lacks studies investigating the cortical generation of sleep spindles in drug-resistant epilepsy (DRE) and how they evolve after resection of the epileptogenic zone (EZ). Here, we examined sleep EEGs of children with focal DRE who became seizure-free after focal epilepsy surgery, and aimed to investigate the changes in the spindle generation before and after the surgery using low-density scalp EEG and electrical source imaging (ESI).</p><p><strong>Methods: </strong>We analyzed N2-sleep EEGs from 19 children with DRE before and after surgery. We identified slow (8-12 Hz) and fast spindles (13-16 Hz), computed their spectral features and cortical generators through ESI and computed their distance from the EZ and irritative zone (IZ). We performed two-way ANOVA testing the effect of spindle type (slow vs. fast) and surgical phase (pre-surgery vs. post-surgery) on each feature.</p><p><strong>Results: </strong>Power, frequency and cortical activation of slow spindles increased after surgery (p < 0.005), while this was not seen for fast spindles. Before surgery, the cortical generators of slow spindles were closer to the EZ (57.3 vs. 66.2 mm, p = 0.007) and IZ (41.3 vs. 55.5 mm, p = 0.02) than fast spindle generators.</p><p><strong>Conclusions: </strong>Our data indicate alterations in the EEG slow spindles after resective epilepsy surgery. Fast spindle generation on the contrary did not change after surgery. Although the study is limited by its retrospective nature, lack of healthy controls, and reduced cortical spatial sampling, our findings suggest a spatial relationship between the slow spindles and the epileptogenic generators.</p>","PeriodicalId":55329,"journal":{"name":"Brain Topography","volume":" ","pages":"88-101"},"PeriodicalIF":2.7,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41154167","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01Epub Date: 2023-10-25DOI: 10.1007/s10548-023-01015-1
Ping Xu, Song Wang, Yulu Yang, Bishal Guragai, Qiuzhu Zhang, Junjun Zhang, Zhenlan Jin, Ling Li
Conflict typically occurs when goal-directed processing competes with more automatic responses. Though previous studies have highlighted the importance of the right dorsolateral prefrontal cortex (rDLPFC) in conflict processing, its causal role remains unclear. In the current study, the behavioral experiment, the continuous theta burst stimulation (cTBS), and the electroencephalography (EEG) were combined to explore the effects of behavioral performance and physiological correlates during conflict processing, after the cTBS over the rDLPFC and vertex (the control condition). Twenty-six healthy participants performed the Stroop task which included congruent and incongruent trials. Although the cTBS did not induce significant changes in the behavioral performance, the cTBS over the rDLPFC reduced the Stroop effects of conflict monitoring-related frontal-central N2 component and theta oscillation, and conflict resolution-related parieto-occipital alpha oscillation, compared to the vertex stimulation. Moreover, a significant hemispheric difference in alpha oscillation was exploratively observed after the cTBS over the rDLPFC. Interestingly, we found the rDLPFC stimulation resulted in significantly reduced Stroop effects of theta and gamma oscillation after response, which may reflect the adjustment of cognitive control for the next trial. In conclusion, our study not only demonstrated the critical involvement of the rDLPFC in conflict monitoring, conflict resolution processing, and conflict adaptation but also revealed the electrophysiological mechanism of conflict processing mediated by the rDLPFC.
{"title":"cTBS to Right DLPFC Modulates Physiological Correlates of Conflict Processing: Evidence from a Stroop task.","authors":"Ping Xu, Song Wang, Yulu Yang, Bishal Guragai, Qiuzhu Zhang, Junjun Zhang, Zhenlan Jin, Ling Li","doi":"10.1007/s10548-023-01015-1","DOIUrl":"10.1007/s10548-023-01015-1","url":null,"abstract":"<p><p>Conflict typically occurs when goal-directed processing competes with more automatic responses. Though previous studies have highlighted the importance of the right dorsolateral prefrontal cortex (rDLPFC) in conflict processing, its causal role remains unclear. In the current study, the behavioral experiment, the continuous theta burst stimulation (cTBS), and the electroencephalography (EEG) were combined to explore the effects of behavioral performance and physiological correlates during conflict processing, after the cTBS over the rDLPFC and vertex (the control condition). Twenty-six healthy participants performed the Stroop task which included congruent and incongruent trials. Although the cTBS did not induce significant changes in the behavioral performance, the cTBS over the rDLPFC reduced the Stroop effects of conflict monitoring-related frontal-central N2 component and theta oscillation, and conflict resolution-related parieto-occipital alpha oscillation, compared to the vertex stimulation. Moreover, a significant hemispheric difference in alpha oscillation was exploratively observed after the cTBS over the rDLPFC. Interestingly, we found the rDLPFC stimulation resulted in significantly reduced Stroop effects of theta and gamma oscillation after response, which may reflect the adjustment of cognitive control for the next trial. In conclusion, our study not only demonstrated the critical involvement of the rDLPFC in conflict monitoring, conflict resolution processing, and conflict adaptation but also revealed the electrophysiological mechanism of conflict processing mediated by the rDLPFC.</p>","PeriodicalId":55329,"journal":{"name":"Brain Topography","volume":" ","pages":"37-51"},"PeriodicalIF":2.7,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50163857","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}