Pub Date : 2024-07-01Epub Date: 2023-12-23DOI: 10.1007/s10548-023-01030-2
Armen Bagdasarov, Kenneth Roberts, Denis Brunet, Christoph M Michel, Michael S Gaffrey
The error-related negativity (ERN) is a negative deflection in the electroencephalography (EEG) waveform at frontal-central scalp sites that occurs after error commission. The relationship between the ERN and broader patterns of brain activity measured across the entire scalp that support error processing during early childhood is unclear. We examined the relationship between the ERN and EEG microstates - whole-brain patterns of dynamically evolving scalp potential topographies that reflect periods of synchronized neural activity - during both a go/no-go task and resting-state in 90, 4-8-year-old children. The mean amplitude of the ERN was quantified during the -64 to 108 millisecond (ms) period of time relative to error commission, which was determined by data-driven microstate segmentation of error-related activity. We found that greater magnitude of the ERN associated with greater global explained variance (GEV; i.e., the percentage of total variance in the data explained by a given microstate) of an error-related microstate observed during the same -64 to 108 ms period (i.e., error-related microstate 3), and to greater anxiety risk as measured by parent-reported behavioral inhibition. During resting-state, six data-driven microstates were identified. Both greater magnitude of the ERN and greater GEV values of error-related microstate 3 associated with greater GEV values of resting-state microstate 4, which showed a frontal-central scalp topography. Source localization results revealed overlap between the underlying neural generators of error-related microstate 3 and resting-state microstate 4 and canonical brain networks (e.g., ventral attention) known to support the higher-order cognitive processes involved in error processing. Taken together, our results clarify how individual differences in error-related and intrinsic brain activity are related and enhance our understanding of developing brain network function and organization supporting error processing during early childhood.
{"title":"Exploring the Association Between EEG Microstates During Resting-State and Error-Related Activity in Young Children.","authors":"Armen Bagdasarov, Kenneth Roberts, Denis Brunet, Christoph M Michel, Michael S Gaffrey","doi":"10.1007/s10548-023-01030-2","DOIUrl":"10.1007/s10548-023-01030-2","url":null,"abstract":"<p><p>The error-related negativity (ERN) is a negative deflection in the electroencephalography (EEG) waveform at frontal-central scalp sites that occurs after error commission. The relationship between the ERN and broader patterns of brain activity measured across the entire scalp that support error processing during early childhood is unclear. We examined the relationship between the ERN and EEG microstates - whole-brain patterns of dynamically evolving scalp potential topographies that reflect periods of synchronized neural activity - during both a go/no-go task and resting-state in 90, 4-8-year-old children. The mean amplitude of the ERN was quantified during the -64 to 108 millisecond (ms) period of time relative to error commission, which was determined by data-driven microstate segmentation of error-related activity. We found that greater magnitude of the ERN associated with greater global explained variance (GEV; i.e., the percentage of total variance in the data explained by a given microstate) of an error-related microstate observed during the same -64 to 108 ms period (i.e., error-related microstate 3), and to greater anxiety risk as measured by parent-reported behavioral inhibition. During resting-state, six data-driven microstates were identified. Both greater magnitude of the ERN and greater GEV values of error-related microstate 3 associated with greater GEV values of resting-state microstate 4, which showed a frontal-central scalp topography. Source localization results revealed overlap between the underlying neural generators of error-related microstate 3 and resting-state microstate 4 and canonical brain networks (e.g., ventral attention) known to support the higher-order cognitive processes involved in error processing. Taken together, our results clarify how individual differences in error-related and intrinsic brain activity are related and enhance our understanding of developing brain network function and organization supporting error processing during early childhood.</p>","PeriodicalId":55329,"journal":{"name":"Brain Topography","volume":" ","pages":"552-570"},"PeriodicalIF":2.3,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11199242/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138886606","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-01Epub Date: 2023-07-31DOI: 10.1007/s10548-023-00987-4
Bastian Schiller, Matthias F J Sperl, Tobias Kleinert, Kyle Nash, Lorena R R Gianotti
Social interactions require both the rapid processing of multifaceted socio-affective signals (e.g., eye gaze, facial expressions, gestures) and their integration with evaluations, social knowledge, and expectations. Researchers interested in understanding complex social cognition and behavior face a "black box" problem: What are the underlying mental processes rapidly occurring between perception and action and why are there such vast individual differences? In this review, we promote electroencephalography (EEG) microstates as a powerful tool for both examining socio-affective states (e.g., processing whether someone is in need in a given situation) and identifying the sources of heterogeneity in socio-affective traits (e.g., general willingness to help others). EEG microstates are identified by analyzing scalp field maps (i.e., the distribution of the electrical field on the scalp) over time. This data-driven, reference-independent approach allows for identifying, timing, sequencing, and quantifying the activation of large-scale brain networks relevant to our socio-affective mind. In light of these benefits, EEG microstates should become an indispensable part of the methodological toolkit of laboratories working in the field of social and affective neuroscience.
{"title":"EEG Microstates in Social and Affective Neuroscience.","authors":"Bastian Schiller, Matthias F J Sperl, Tobias Kleinert, Kyle Nash, Lorena R R Gianotti","doi":"10.1007/s10548-023-00987-4","DOIUrl":"10.1007/s10548-023-00987-4","url":null,"abstract":"<p><p>Social interactions require both the rapid processing of multifaceted socio-affective signals (e.g., eye gaze, facial expressions, gestures) and their integration with evaluations, social knowledge, and expectations. Researchers interested in understanding complex social cognition and behavior face a \"black box\" problem: What are the underlying mental processes rapidly occurring between perception and action and why are there such vast individual differences? In this review, we promote electroencephalography (EEG) microstates as a powerful tool for both examining socio-affective states (e.g., processing whether someone is in need in a given situation) and identifying the sources of heterogeneity in socio-affective traits (e.g., general willingness to help others). EEG microstates are identified by analyzing scalp field maps (i.e., the distribution of the electrical field on the scalp) over time. This data-driven, reference-independent approach allows for identifying, timing, sequencing, and quantifying the activation of large-scale brain networks relevant to our socio-affective mind. In light of these benefits, EEG microstates should become an indispensable part of the methodological toolkit of laboratories working in the field of social and affective neuroscience.</p>","PeriodicalId":55329,"journal":{"name":"Brain Topography","volume":" ","pages":"479-495"},"PeriodicalIF":2.3,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11199304/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9895559","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-01Epub Date: 2023-08-24DOI: 10.1007/s10548-023-01001-7
Cristina Berchio, Samika S Kumar, Nadia Micali
The aim of this study was to provide preliminary evidence on temporal dynamics of resting-state brain networks in youth with anorexia nervosa (AN) using electroencephalography (EEG). Resting-state EEG data were collected in 18 young women with AN and 18 healthy controls (HC). Between-group differences in brain networks were assessed using microstates analyses. Five microstates were identified across all subjects (A, B, C, D, E). Using a single set of maps representative of the whole dataset, group differences were identified for microstates A, C, and E. A common-for-all template revealed a relatively high degree of consistency in results for reduced time coverage of microstate C, but also an increased presence of microstate class E. AN and HC had different microstate transition probabilities, largely involving microstate A. Using LORETA, for microstate D, we found that those with AN had augmented activations in the left frontal inferior operculum, left insula, and bilateral paracentral lobule, compared with HC. For microstate E, AN had augmented activations in the para-hippocampal gyrus, caudate, pallidum, cerebellum, and cerebellar vermis. Our findings suggest altered microstates in young women with AN associated with integration of sensory and bodily signals, monitoring of internal/external mental states, and self-referential processes. Future research should examine how EEG-derived microstates could be applied to develop diagnostic and prognostic models of AN.
本研究旨在利用脑电图(EEG)为神经性厌食症(AN)青年静息态大脑网络的时间动态提供初步证据。研究收集了18名患有神经性厌食症的年轻女性和18名健康对照组(HC)的静息态脑电数据。通过微观状态分析评估了组间大脑网络的差异。在所有受试者中确定了五个微观状态(A、B、C、D、E)。使用代表整个数据集的单组地图,确定了微状态 A、C 和 E 的组间差异。一个通用的模板显示,微状态 C 的时间覆盖范围缩小,结果的一致性相对较高,但微状态类 E 的存在也有所增加。使用 LORETA,我们发现对于微状态 D,与 HC 相比,AN 患者的左额下丘、左侧岛叶和双侧中央小叶旁的激活增强。在微状态 E 中,AN 在海马旁回、尾状核、苍白球、小脑和小脑蚓部的激活增强。我们的研究结果表明,年轻女性自闭症患者的微观状态发生了改变,这些微观状态与感觉和身体信号的整合、内部/外部精神状态的监测以及自我参照过程有关。未来的研究应探讨如何将脑电图衍生的微状态应用于开发AN的诊断和预后模型。
{"title":"EEG Spatial-temporal Dynamics of Resting-state Activity in Young Women with Anorexia Nervosa: Preliminary Evidence.","authors":"Cristina Berchio, Samika S Kumar, Nadia Micali","doi":"10.1007/s10548-023-01001-7","DOIUrl":"10.1007/s10548-023-01001-7","url":null,"abstract":"<p><p>The aim of this study was to provide preliminary evidence on temporal dynamics of resting-state brain networks in youth with anorexia nervosa (AN) using electroencephalography (EEG). Resting-state EEG data were collected in 18 young women with AN and 18 healthy controls (HC). Between-group differences in brain networks were assessed using microstates analyses. Five microstates were identified across all subjects (A, B, C, D, E). Using a single set of maps representative of the whole dataset, group differences were identified for microstates A, C, and E. A common-for-all template revealed a relatively high degree of consistency in results for reduced time coverage of microstate C, but also an increased presence of microstate class E. AN and HC had different microstate transition probabilities, largely involving microstate A. Using LORETA, for microstate D, we found that those with AN had augmented activations in the left frontal inferior operculum, left insula, and bilateral paracentral lobule, compared with HC. For microstate E, AN had augmented activations in the para-hippocampal gyrus, caudate, pallidum, cerebellum, and cerebellar vermis. Our findings suggest altered microstates in young women with AN associated with integration of sensory and bodily signals, monitoring of internal/external mental states, and self-referential processes. Future research should examine how EEG-derived microstates could be applied to develop diagnostic and prognostic models of AN.</p>","PeriodicalId":55329,"journal":{"name":"Brain Topography","volume":" ","pages":"447-460"},"PeriodicalIF":2.7,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10063123","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Autism spectrum disorder (ASD) is not a discrete disorder and that symptoms of ASD (i.e., so-called "autistic traits") are found to varying degrees in the general population. Typically developing individuals with sub-clinical yet high-level autistic traits have similar abnormities both in behavioral performances and cortical activation patterns to individuals diagnosed with ASD. Thus it's crucial to develop objective and efficient tools that could be used in the assessment of autistic traits. Here, we proposed a novel machine learning-based assessment of the autistic traits using EEG microstate features derived from a brief resting-state EEG recording. The results showed that: (1) through the Least Absolute Shrinkage and Selection Operator (LASSO) algorithm and correlation analysis, the mean duration of microstate class D, the occurrence rate of microstate class A, the time coverage of microstate class D and the transition rate from microstate class B to D were selected to be crucial microstate features which could be used in autistic traits prediction; (2) in the support vector regression (SVR) model, which was constructed to predict the participants' autistic trait scores using these four microstate features, the out-of-sample predicted autistic trait scores showed a significant and good match with the self-reported scores. These results suggest that the resting-state EEG microstate analysis technique can be used to predict autistic trait to some extent.
{"title":"Resting-state EEG Microstate Features Can Quantitatively Predict Autistic Traits in Typically Developing Individuals.","authors":"Huibin Jia, Xiangci Wu, Xiaolin Zhang, Meiling Guo, Chunying Yang, Enguo Wang","doi":"10.1007/s10548-023-01010-6","DOIUrl":"10.1007/s10548-023-01010-6","url":null,"abstract":"<p><p>Autism spectrum disorder (ASD) is not a discrete disorder and that symptoms of ASD (i.e., so-called \"autistic traits\") are found to varying degrees in the general population. Typically developing individuals with sub-clinical yet high-level autistic traits have similar abnormities both in behavioral performances and cortical activation patterns to individuals diagnosed with ASD. Thus it's crucial to develop objective and efficient tools that could be used in the assessment of autistic traits. Here, we proposed a novel machine learning-based assessment of the autistic traits using EEG microstate features derived from a brief resting-state EEG recording. The results showed that: (1) through the Least Absolute Shrinkage and Selection Operator (LASSO) algorithm and correlation analysis, the mean duration of microstate class D, the occurrence rate of microstate class A, the time coverage of microstate class D and the transition rate from microstate class B to D were selected to be crucial microstate features which could be used in autistic traits prediction; (2) in the support vector regression (SVR) model, which was constructed to predict the participants' autistic trait scores using these four microstate features, the out-of-sample predicted autistic trait scores showed a significant and good match with the self-reported scores. These results suggest that the resting-state EEG microstate analysis technique can be used to predict autistic trait to some extent.</p>","PeriodicalId":55329,"journal":{"name":"Brain Topography","volume":" ","pages":"410-419"},"PeriodicalIF":2.7,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41220869","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-01Epub Date: 2023-09-26DOI: 10.1007/s10548-023-01009-z
Yukari Takarae, Anthony Zanesco, Craig A Erickson, Ernest V Pedapati
Fragile X syndrome (FXS) is one of the most common inherited causes of intellectual disabilities. While there is currently no cure for FXS, EEG is considered an important method to investigate the pathophysiology and evaluate behavioral and cognitive treatments. We conducted EEG microstate analysis to investigate resting brain dynamics in FXS participants. Resting-state recordings from 70 FXS participants and 71 chronological age-matched typically developing control (TDC) participants were used to derive microstates via modified k-means clustering. The occurrence, mean global field power (GFP), and global explained variance (GEV) of microstate C were significantly higher in the FXS group compared to the TDC group. The mean GFP was significantly negatively correlated with non-verbal IQ (NVIQ) in the FXS group, where lower NVIQ scores were associated with greater GFP. In addition, the occurrence, mean duration, mean GFP, and GEV of microstate D were significantly greater in the FXS group than the TDC group. The mean GFP and occurrence of microstate D were also correlated with individual alpha frequencies in the FXS group, where lower IAF frequencies accompanied greater microstate GFP and occurrence. Alterations in microstates C and D may be related to the two well-established cognitive characteristics of FXS, intellectual disabilities and attention impairments, suggesting that microstate parameters could serve as markers to study cognitive impairments and evaluate treatment outcomes in this population. Slowing of the alpha peak frequency and its correlation to microstate D parameters may suggest changes in thalamocortical dynamics in FXS, which could be specifically related to attention control. (250 words).
{"title":"EEG Microstates as Markers for Cognitive Impairments in Fragile X Syndrome.","authors":"Yukari Takarae, Anthony Zanesco, Craig A Erickson, Ernest V Pedapati","doi":"10.1007/s10548-023-01009-z","DOIUrl":"10.1007/s10548-023-01009-z","url":null,"abstract":"<p><p>Fragile X syndrome (FXS) is one of the most common inherited causes of intellectual disabilities. While there is currently no cure for FXS, EEG is considered an important method to investigate the pathophysiology and evaluate behavioral and cognitive treatments. We conducted EEG microstate analysis to investigate resting brain dynamics in FXS participants. Resting-state recordings from 70 FXS participants and 71 chronological age-matched typically developing control (TDC) participants were used to derive microstates via modified k-means clustering. The occurrence, mean global field power (GFP), and global explained variance (GEV) of microstate C were significantly higher in the FXS group compared to the TDC group. The mean GFP was significantly negatively correlated with non-verbal IQ (NVIQ) in the FXS group, where lower NVIQ scores were associated with greater GFP. In addition, the occurrence, mean duration, mean GFP, and GEV of microstate D were significantly greater in the FXS group than the TDC group. The mean GFP and occurrence of microstate D were also correlated with individual alpha frequencies in the FXS group, where lower IAF frequencies accompanied greater microstate GFP and occurrence. Alterations in microstates C and D may be related to the two well-established cognitive characteristics of FXS, intellectual disabilities and attention impairments, suggesting that microstate parameters could serve as markers to study cognitive impairments and evaluate treatment outcomes in this population. Slowing of the alpha peak frequency and its correlation to microstate D parameters may suggest changes in thalamocortical dynamics in FXS, which could be specifically related to attention control. (250 words).</p>","PeriodicalId":55329,"journal":{"name":"Brain Topography","volume":" ","pages":"432-446"},"PeriodicalIF":2.7,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41152052","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-01Epub Date: 2023-09-30DOI: 10.1007/s10548-023-01005-3
Marie-Pierre Deiber, Camille Piguet, Cristina Berchio, Christoph M Michel, Nader Perroud, Tomas Ros
Borderline personality disorder (BPD) is a debilitating psychiatric condition characterized by emotional dysregulation, unstable sense of self, and impulsive, potentially self-harming behavior. In order to provide new neurophysiological insights on BPD, we complemented resting-state EEG frequency spectrum analysis with EEG microstates (MS) analysis to capture the spatiotemporal dynamics of large-scale neural networks. High-density EEG was recorded at rest in 16 BPD patients and 16 age-matched neurotypical controls. The relative power spectrum and broadband MS spatiotemporal parameters were compared between groups and their inter-correlations were examined. Compared to controls, BPD patients showed similar global spectral power, but exploratory univariate analyses on single channels indicated reduced relative alpha power and enhanced relative delta power at parietal electrodes. In terms of EEG MS, BPD patients displayed similar MS topographies as controls, indicating comparable neural generators. However, the MS temporal dynamics were significantly altered in BPD patients, who demonstrated opposite prevalence of MS C (lower than controls) and MS E (higher than controls). Interestingly, MS C prevalence correlated positively with global alpha power and negatively with global delta power, while MS E did not correlate with any measures of spectral power. Taken together, these observations suggest that BPD patients exhibit a state of cortical hyperactivation, represented by decreased posterior alpha power, together with an elevated presence of MS E, consistent with symptoms of elevated arousal and/or vigilance. This is the first study to investigate resting-state MS patterns in BPD, with findings of elevated MS E and the suggestion of reduced posterior alpha power indicating a disorder-specific neurophysiological signature previously unreported in a psychiatric population.
{"title":"Resting-State EEG Microstates and Power Spectrum in Borderline Personality Disorder: A High-Density EEG Study.","authors":"Marie-Pierre Deiber, Camille Piguet, Cristina Berchio, Christoph M Michel, Nader Perroud, Tomas Ros","doi":"10.1007/s10548-023-01005-3","DOIUrl":"10.1007/s10548-023-01005-3","url":null,"abstract":"<p><p>Borderline personality disorder (BPD) is a debilitating psychiatric condition characterized by emotional dysregulation, unstable sense of self, and impulsive, potentially self-harming behavior. In order to provide new neurophysiological insights on BPD, we complemented resting-state EEG frequency spectrum analysis with EEG microstates (MS) analysis to capture the spatiotemporal dynamics of large-scale neural networks. High-density EEG was recorded at rest in 16 BPD patients and 16 age-matched neurotypical controls. The relative power spectrum and broadband MS spatiotemporal parameters were compared between groups and their inter-correlations were examined. Compared to controls, BPD patients showed similar global spectral power, but exploratory univariate analyses on single channels indicated reduced relative alpha power and enhanced relative delta power at parietal electrodes. In terms of EEG MS, BPD patients displayed similar MS topographies as controls, indicating comparable neural generators. However, the MS temporal dynamics were significantly altered in BPD patients, who demonstrated opposite prevalence of MS C (lower than controls) and MS E (higher than controls). Interestingly, MS C prevalence correlated positively with global alpha power and negatively with global delta power, while MS E did not correlate with any measures of spectral power. Taken together, these observations suggest that BPD patients exhibit a state of cortical hyperactivation, represented by decreased posterior alpha power, together with an elevated presence of MS E, consistent with symptoms of elevated arousal and/or vigilance. This is the first study to investigate resting-state MS patterns in BPD, with findings of elevated MS E and the suggestion of reduced posterior alpha power indicating a disorder-specific neurophysiological signature previously unreported in a psychiatric population.</p>","PeriodicalId":55329,"journal":{"name":"Brain Topography","volume":" ","pages":"397-409"},"PeriodicalIF":2.7,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11026215/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41154489","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-01Epub Date: 2024-02-28DOI: 10.1007/s10548-024-01038-2
Giuseppe A Carbone, Christoph M Michel, Benedetto Farina, Mauro Adenzato, Rita B Ardito, Claudio Imperatori, Fiorenzo Artoni
Over the past years, different studies provided preliminary evidence that Disorganized Attachment (DA) may have dysregulatory and disintegrative effects on both autonomic arousal regulation and brain connectivity. However, despite the clinical relevance of this construct, few studies have investigated the specific alterations underlying DA using electroencephalography (EEG). Thus, the main aim of the current study was to investigate EEG microstate parameters of DA in a non-clinical sample (N = 50) before (pre) and after (post) the administration of the Adult Attachment Interview (AAI). Two EEG eyes-closed Resting State (RS) recordings were performed before and after the AAI, which was used for classifying the participants [i.e., Disorganized/Unresolved (D/U) or Organized/Resolved (O/R) individuals] and to trigger the attachment system. Microstates parameters (i.e., Mean Duration, Time Coverage and Occurrence) were extracted from each recording using Cartool software. EEG microstates clustering analysis revealed 6 different maps (labeled A, B, C, D, E, F) in both groups (i.e., D/U and O/R individuals) and in both conditions (i.e., pre-AAI and post-AAI). In the pre-AAI condition, compared to O/R individuals, D/U participants showed a shorter Mean Duration and Time Coverage of Map F; in the post-AAI condition, a significant reduction in the Mean Duration of Map E was also observed in D/U individuals. Finally, in the "within" statistical analysis (i.e., pre-AAI vs. post-AAI), only the D/U group exhibited a significant increase in Time Coverage of Map F after the AAI. Since these maps are associated with brain networks involved in emotional information processing and mentalization (i.e., Salience Network and Default Mode Network), our result might reflect the deficit in the ability to mentalize caregiver's interaction as well as the increased sensitivity to attachment-related stimuli typically observed in individuals with a D/U state of mind.
{"title":"Altered EEG Patterns in Individuals with Disorganized Attachment: An EEG Microstates Study.","authors":"Giuseppe A Carbone, Christoph M Michel, Benedetto Farina, Mauro Adenzato, Rita B Ardito, Claudio Imperatori, Fiorenzo Artoni","doi":"10.1007/s10548-024-01038-2","DOIUrl":"10.1007/s10548-024-01038-2","url":null,"abstract":"<p><p>Over the past years, different studies provided preliminary evidence that Disorganized Attachment (DA) may have dysregulatory and disintegrative effects on both autonomic arousal regulation and brain connectivity. However, despite the clinical relevance of this construct, few studies have investigated the specific alterations underlying DA using electroencephalography (EEG). Thus, the main aim of the current study was to investigate EEG microstate parameters of DA in a non-clinical sample (N = 50) before (pre) and after (post) the administration of the Adult Attachment Interview (AAI). Two EEG eyes-closed Resting State (RS) recordings were performed before and after the AAI, which was used for classifying the participants [i.e., Disorganized/Unresolved (D/U) or Organized/Resolved (O/R) individuals] and to trigger the attachment system. Microstates parameters (i.e., Mean Duration, Time Coverage and Occurrence) were extracted from each recording using Cartool software. EEG microstates clustering analysis revealed 6 different maps (labeled A, B, C, D, E, F) in both groups (i.e., D/U and O/R individuals) and in both conditions (i.e., pre-AAI and post-AAI). In the pre-AAI condition, compared to O/R individuals, D/U participants showed a shorter Mean Duration and Time Coverage of Map F; in the post-AAI condition, a significant reduction in the Mean Duration of Map E was also observed in D/U individuals. Finally, in the \"within\" statistical analysis (i.e., pre-AAI vs. post-AAI), only the D/U group exhibited a significant increase in Time Coverage of Map F after the AAI. Since these maps are associated with brain networks involved in emotional information processing and mentalization (i.e., Salience Network and Default Mode Network), our result might reflect the deficit in the ability to mentalize caregiver's interaction as well as the increased sensitivity to attachment-related stimuli typically observed in individuals with a D/U state of mind.</p>","PeriodicalId":55329,"journal":{"name":"Brain Topography","volume":" ","pages":"420-431"},"PeriodicalIF":2.7,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139984623","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Subjective sleep quality is an individual's subjective sleep feeling, and its effective evaluation is the premise of improving sleep quality. However, people with autism or mental disorders often experience difficulties in verbally expressing their subjective sleep quality. To solve the above problem, this study provides a non-verbal and convenient brain feature to assess subjective sleep quality. Reportedly, microstates are often used to characterize the patterns of functional brain activity in humans. The occurrence frequency of microstate class D is an important feature in the insomnia population. We therefore hypothesize that the occurrence frequency of microstate class D is a physiological indicator of subjective sleep quality. To test this hypothesis, we recruited college students from China as participants [N = 61, mean age = 20.84 years]. The Chinese version of the Pittsburgh Sleep Quality Index scale was used to measure subjective sleep quality and habitual sleep efficiency, and the state characteristics of the brain at this time were assessed using closed eyes resting-state brain microstate class D. The occurrence frequency of EEG microstate class D was positively associated with subjective sleep quality (r = 0.32, p < 0.05). Further analysis of the moderating effect showed that the occurrence frequency of microstate class D was significantly and positively correlated with subjective sleep quality in the high habitual sleep efficiency group. However, the relationship was not significant in the low sleep efficiency group (βsimple = 0.63, p < 0.001). This study shows that the occurrence frequency of microstate class D is a physiological indicator of assessing subjective sleep quality levels in the high sleep efficiency group. This study provides brain features for assessing subjective sleep quality of people with autism and mental disorders who cannot effectively describe their subjective feelings.
主观睡眠质量是个人的主观睡眠感受,对其进行有效评估是提高睡眠质量的前提。然而,自闭症或精神障碍患者往往难以用语言表达自己的主观睡眠质量。为了解决上述问题,本研究提供了一种非语言且方便的大脑特征来评估主观睡眠质量。据报道,微状态通常用于描述人类大脑功能活动的模式。微状态 D 级的出现频率是失眠人群的一个重要特征。因此,我们假设 D 级微状态的出现频率是主观睡眠质量的生理指标。为了验证这一假设,我们招募了中国的大学生作为参与者[人数=61,平均年龄=20.84岁]。采用中文版匹兹堡睡眠质量指数量表测量主观睡眠质量和习惯性睡眠效率,并使用闭眼静息态脑微状态 D 级评估此时大脑的状态特征。
{"title":"Electroencephalography Microstate Class D is a Brain Marker of Subjective Sleep Quality for College Students with High Habitual Sleep Efficiency.","authors":"Xiaoqian Ding, Fengzhi Cao, Menghan Li, Zirong Yang, Yiyuan Tang","doi":"10.1007/s10548-023-00978-5","DOIUrl":"10.1007/s10548-023-00978-5","url":null,"abstract":"<p><p>Subjective sleep quality is an individual's subjective sleep feeling, and its effective evaluation is the premise of improving sleep quality. However, people with autism or mental disorders often experience difficulties in verbally expressing their subjective sleep quality. To solve the above problem, this study provides a non-verbal and convenient brain feature to assess subjective sleep quality. Reportedly, microstates are often used to characterize the patterns of functional brain activity in humans. The occurrence frequency of microstate class D is an important feature in the insomnia population. We therefore hypothesize that the occurrence frequency of microstate class D is a physiological indicator of subjective sleep quality. To test this hypothesis, we recruited college students from China as participants [N = 61, mean age = 20.84 years]. The Chinese version of the Pittsburgh Sleep Quality Index scale was used to measure subjective sleep quality and habitual sleep efficiency, and the state characteristics of the brain at this time were assessed using closed eyes resting-state brain microstate class D. The occurrence frequency of EEG microstate class D was positively associated with subjective sleep quality (r = 0.32, p < 0.05). Further analysis of the moderating effect showed that the occurrence frequency of microstate class D was significantly and positively correlated with subjective sleep quality in the high habitual sleep efficiency group. However, the relationship was not significant in the low sleep efficiency group (βsimple = 0.63, p < 0.001). This study shows that the occurrence frequency of microstate class D is a physiological indicator of assessing subjective sleep quality levels in the high sleep efficiency group. This study provides brain features for assessing subjective sleep quality of people with autism and mental disorders who cannot effectively describe their subjective feelings.</p>","PeriodicalId":55329,"journal":{"name":"Brain Topography","volume":" ","pages":"370-376"},"PeriodicalIF":2.7,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9693826","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-01Epub Date: 2023-08-24DOI: 10.1007/s10548-023-00999-0
Alina Chivu, Simona A Pascal, Alena Damborská, Miralena I Tomescu
To reduce the psycho-social burden increasing attention has focused on brain abnormalities in the most prevalent and highly co-occurring neuropsychiatric disorders, such as mood and anxiety. However, high inter-study variability in these patients results in inconsistent and contradictory alterations in the fast temporal dynamics of large-scale networks as measured by EEG microstates. Thus, in this meta-analysis, we aim to investigate the consistency of these changes to better understand possible common neuro-dynamical mechanisms of these disorders.In the systematic search, twelve studies investigating EEG microstate changes in participants with mood and anxiety disorders and individuals with subclinical depression were included in this meta-analysis, adding up to 787 participants.The results suggest that EEG microstates consistently discriminate mood and anxiety impairments from the general population in patients and subclinical states. Specifically, we found a small significant effect size for B microstates in patients compared to healthy controls, with larger effect sizes for increased B presence in unmedicated patients with comorbidity. In a subgroup meta-analysis of ten mood disorder studies, microstate D showed a significant effect size for decreased presence. When investigating only the two anxiety disorder studies, we found a significantly small effect size for the increased microstate A and a medium effect size for decreased microstate E (one study). However, more studies are needed to elucidate whether these findings are diagnostic-specific markers.Results are discussed in relation to the functional meaning of microstates and possible contribution to an explanatory mechanism of overlapping symptomatology of mood and anxiety disorders.
为了减轻患者的社会心理负担,越来越多的注意力集中在最常见和最容易并发的神经精神疾病(如情绪和焦虑)的大脑异常上。然而,这些患者的研究间差异很大,导致脑电图微观状态测量的大规模网络的快速时间动态变化不一致且相互矛盾。结果表明,在患者和亚临床状态下,脑电图微状态能将情绪和焦虑障碍与普通人群区分开来。具体而言,我们发现与健康对照组相比,患者的 B 微状态具有较小的显著效应,而在未用药的合并症患者中,B 的增加具有更大的效应。在对十项情绪障碍研究进行的分组荟萃分析中,微态 D 显示出显著的效应大小,即存在减少。在仅对两项焦虑症研究进行调查时,我们发现微态 A 增加的效应大小明显较小,微态 E 减少的效应大小中等(一项研究)。这些结果与微状态的功能意义以及对情绪病和焦虑症重叠症状的解释机制的可能贡献有关。
{"title":"EEG Microstates in Mood and Anxiety Disorders: A Meta-analysis.","authors":"Alina Chivu, Simona A Pascal, Alena Damborská, Miralena I Tomescu","doi":"10.1007/s10548-023-00999-0","DOIUrl":"10.1007/s10548-023-00999-0","url":null,"abstract":"<p><p>To reduce the psycho-social burden increasing attention has focused on brain abnormalities in the most prevalent and highly co-occurring neuropsychiatric disorders, such as mood and anxiety. However, high inter-study variability in these patients results in inconsistent and contradictory alterations in the fast temporal dynamics of large-scale networks as measured by EEG microstates. Thus, in this meta-analysis, we aim to investigate the consistency of these changes to better understand possible common neuro-dynamical mechanisms of these disorders.In the systematic search, twelve studies investigating EEG microstate changes in participants with mood and anxiety disorders and individuals with subclinical depression were included in this meta-analysis, adding up to 787 participants.The results suggest that EEG microstates consistently discriminate mood and anxiety impairments from the general population in patients and subclinical states. Specifically, we found a small significant effect size for B microstates in patients compared to healthy controls, with larger effect sizes for increased B presence in unmedicated patients with comorbidity. In a subgroup meta-analysis of ten mood disorder studies, microstate D showed a significant effect size for decreased presence. When investigating only the two anxiety disorder studies, we found a significantly small effect size for the increased microstate A and a medium effect size for decreased microstate E (one study). However, more studies are needed to elucidate whether these findings are diagnostic-specific markers.Results are discussed in relation to the functional meaning of microstates and possible contribution to an explanatory mechanism of overlapping symptomatology of mood and anxiety disorders.</p>","PeriodicalId":55329,"journal":{"name":"Brain Topography","volume":" ","pages":"357-368"},"PeriodicalIF":2.3,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11026263/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10057640","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-01Epub Date: 2023-10-12DOI: 10.1007/s10548-023-01008-0
Tim Hermans, Mohammad Khazaei, Khadijeh Raeisi, Pierpaolo Croce, Gabriella Tamburro, Anneleen Dereymaeker, Maarten De Vos, Filippo Zappasodi, Silvia Comani
Preterm neonates are at risk of long-term neurodevelopmental impairments due to disruption of natural brain development. Electroencephalography (EEG) analysis can provide insights into brain development of preterm neonates. This study aims to explore the use of microstate (MS) analysis to evaluate global brain dynamics changes during maturation in preterm neonates with normal neurodevelopmental outcome.The dataset included 135 EEGs obtained from 48 neonates at varying postmenstrual ages (26.4 to 47.7 weeks), divided into four age groups. For each recording we extracted a 5-minute epoch during quiet sleep (QS) and during non-quiet sleep (NQS), resulting in eight groups (4 age group x 2 sleep states). We compared MS maps and corresponding (map-specific) MS metrics across groups using group-level maps. Additionally, we investigated individual map metrics.Four group-level MS maps accounted for approximately 70% of the global variance and showed non-random syntax. MS topographies and transitions changed significantly when neonates reached 37 weeks. For both sleep states and all MS maps, MS duration decreased and occurrence increased with age. The same relationships were found using individual maps, showing strong correlations (Pearson coefficients up to 0.74) between individual map metrics and post-menstrual age. Moreover, the Hurst exponent of the individual MS sequence decreased with age.The observed changes in MS metrics with age might reflect the development of the preterm brain, which is characterized by formation of neural networks. Therefore, MS analysis is a promising tool for monitoring preterm neonatal brain maturation, while our study can serve as a valuable reference for investigating EEGs of neonates with abnormal neurodevelopmental outcomes.
{"title":"Microstate Analysis Reflects Maturation of the Preterm Brain.","authors":"Tim Hermans, Mohammad Khazaei, Khadijeh Raeisi, Pierpaolo Croce, Gabriella Tamburro, Anneleen Dereymaeker, Maarten De Vos, Filippo Zappasodi, Silvia Comani","doi":"10.1007/s10548-023-01008-0","DOIUrl":"10.1007/s10548-023-01008-0","url":null,"abstract":"<p><p>Preterm neonates are at risk of long-term neurodevelopmental impairments due to disruption of natural brain development. Electroencephalography (EEG) analysis can provide insights into brain development of preterm neonates. This study aims to explore the use of microstate (MS) analysis to evaluate global brain dynamics changes during maturation in preterm neonates with normal neurodevelopmental outcome.The dataset included 135 EEGs obtained from 48 neonates at varying postmenstrual ages (26.4 to 47.7 weeks), divided into four age groups. For each recording we extracted a 5-minute epoch during quiet sleep (QS) and during non-quiet sleep (NQS), resulting in eight groups (4 age group x 2 sleep states). We compared MS maps and corresponding (map-specific) MS metrics across groups using group-level maps. Additionally, we investigated individual map metrics.Four group-level MS maps accounted for approximately 70% of the global variance and showed non-random syntax. MS topographies and transitions changed significantly when neonates reached 37 weeks. For both sleep states and all MS maps, MS duration decreased and occurrence increased with age. The same relationships were found using individual maps, showing strong correlations (Pearson coefficients up to 0.74) between individual map metrics and post-menstrual age. Moreover, the Hurst exponent of the individual MS sequence decreased with age.The observed changes in MS metrics with age might reflect the development of the preterm brain, which is characterized by formation of neural networks. Therefore, MS analysis is a promising tool for monitoring preterm neonatal brain maturation, while our study can serve as a valuable reference for investigating EEGs of neonates with abnormal neurodevelopmental outcomes.</p>","PeriodicalId":55329,"journal":{"name":"Brain Topography","volume":" ","pages":"461-474"},"PeriodicalIF":2.7,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11026208/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41220868","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}