Pub Date : 2024-12-04DOI: 10.1088/1748-3190/ad9534
Osman Kaan Karagoz, Aysegul Kilic, Emin Yusuf Aydin, Mustafa Mert Ankarali, Ismail Uyanik
Animals use active sensing movements to shape the spatiotemporal characteristics of sensory signals to better perceive their environment under varying conditions. However, the underlying mechanisms governing the generation of active sensing movements are not known. To address this, we investigated the role of active sensing movements in the refuge tracking behavior ofEigenmannia virescens, a species of weakly electric fish. These fish track the longitudinal movements of a refuge in which they hide by swimming back and forth in a single linear dimension. During refuge tracking,Eigenmanniaexhibits stereotyped whole-body oscillations when the quality of the sensory signals degrades. We developed a closed-loop feedback control model to examine the role of these ancillary movements on the task performance. Our modeling suggests that fish may use active sensing to minimize predictive uncertainty in state estimation during refuge tracking. The proposed model generates simulated fish trajectories that are statistically indistinguishable from that of the actual fish, unlike the open-loop noise generator and stochastic resonance generator models in the literature. These findings reveal the significance of closed-loop control in active sensing behavior, offering new insights into the underlying mechanisms of dynamic sensory modulation.
{"title":"Predictive uncertainty in state-estimation drives active sensing.","authors":"Osman Kaan Karagoz, Aysegul Kilic, Emin Yusuf Aydin, Mustafa Mert Ankarali, Ismail Uyanik","doi":"10.1088/1748-3190/ad9534","DOIUrl":"10.1088/1748-3190/ad9534","url":null,"abstract":"<p><p>Animals use active sensing movements to shape the spatiotemporal characteristics of sensory signals to better perceive their environment under varying conditions. However, the underlying mechanisms governing the generation of active sensing movements are not known. To address this, we investigated the role of active sensing movements in the refuge tracking behavior of<i>Eigenmannia virescens</i>, a species of weakly electric fish. These fish track the longitudinal movements of a refuge in which they hide by swimming back and forth in a single linear dimension. During refuge tracking,<i>Eigenmannia</i>exhibits stereotyped whole-body oscillations when the quality of the sensory signals degrades. We developed a closed-loop feedback control model to examine the role of these ancillary movements on the task performance. Our modeling suggests that fish may use active sensing to minimize predictive uncertainty in state estimation during refuge tracking. The proposed model generates simulated fish trajectories that are statistically indistinguishable from that of the actual fish, unlike the open-loop noise generator and stochastic resonance generator models in the literature. These findings reveal the significance of closed-loop control in active sensing behavior, offering new insights into the underlying mechanisms of dynamic sensory modulation.</p>","PeriodicalId":55377,"journal":{"name":"Bioinspiration & Biomimetics","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142683694","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-03DOI: 10.1088/1748-3190/ad9532
Emily Duan, Matthew Bryant
In this paper, we present a design optimization framework for a fluidic artificial muscle (FAM) bundle subject to geometric constraints. The architecture of natural skeletal muscles allows for compact actuation packaging by distributing a substantial number of actuation elements or muscle fiber motor units, which are to be arranged, oriented, and sized in various formations. Many researchers have drawn inspiration from these natural muscle architectures to assist in designing soft robotic systems safe for human-robot interaction. Although there are known tradeoffs identified between different muscle architectures, this optimization framework offers a method to map these architectural tradeoffs to soft actuator designs. The actuation elements selected for this study are FAMs or McKibben muscles due to their inherent compliance, cheap construction, high force-to-weight ratio, and muscle-like force-contraction behavior. Preceding studies analytically modeled the behavior of arranging FAMs in parallel, asymmetrical unipennate, and symmetrical bipennate topologies inspired by the fiber architectures found in human muscle tissues. A more recent study examined the implications of spatial constraints on bipennate FAM bundle actuation and found that by careful design, a bipennate FAM bundle can produce more force, contraction, stiffness, and work output than that of a parallel FAM bundle under equivalent spatial bounds. This multi-objective genetic algorithm-based optimization framework is used to realize desirable topological properties of a FAM bundle for maximum force and stroke for a given spatial envelope. The results help identify tradeoffs to inform design decisions based on the force and stroke demand from the desired operating task. This study further demonstrates how the desirable topological properties of the optimized FAM bundle change with different spatial bounds.
{"title":"Genetic algorithm-based optimal design for fluidic artificial muscle (FAM) bundles.","authors":"Emily Duan, Matthew Bryant","doi":"10.1088/1748-3190/ad9532","DOIUrl":"10.1088/1748-3190/ad9532","url":null,"abstract":"<p><p>In this paper, we present a design optimization framework for a fluidic artificial muscle (FAM) bundle subject to geometric constraints. The architecture of natural skeletal muscles allows for compact actuation packaging by distributing a substantial number of actuation elements or muscle fiber motor units, which are to be arranged, oriented, and sized in various formations. Many researchers have drawn inspiration from these natural muscle architectures to assist in designing soft robotic systems safe for human-robot interaction. Although there are known tradeoffs identified between different muscle architectures, this optimization framework offers a method to map these architectural tradeoffs to soft actuator designs. The actuation elements selected for this study are FAMs or McKibben muscles due to their inherent compliance, cheap construction, high force-to-weight ratio, and muscle-like force-contraction behavior. Preceding studies analytically modeled the behavior of arranging FAMs in parallel, asymmetrical unipennate, and symmetrical bipennate topologies inspired by the fiber architectures found in human muscle tissues. A more recent study examined the implications of spatial constraints on bipennate FAM bundle actuation and found that by careful design, a bipennate FAM bundle can produce more force, contraction, stiffness, and work output than that of a parallel FAM bundle under equivalent spatial bounds. This multi-objective genetic algorithm-based optimization framework is used to realize desirable topological properties of a FAM bundle for maximum force and stroke for a given spatial envelope. The results help identify tradeoffs to inform design decisions based on the force and stroke demand from the desired operating task. This study further demonstrates how the desirable topological properties of the optimized FAM bundle change with different spatial bounds.</p>","PeriodicalId":55377,"journal":{"name":"Bioinspiration & Biomimetics","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142683664","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-02DOI: 10.1088/1748-3190/ad936e
Weimian Zhou, Chanchan Xu, Guisong Chen, Xiaojie Wang
The exploration of adaptive robotic systems capable of performing complex tasks in unstructured environments, such as underwater salvage operations, presents a significant challenge. Traditional rigid grippers often struggle with adaptability, whereas bioinspired soft grippers offer enhanced flexibility and adaptability to varied object shapes. In this study, we present a novel bioinspired soft robotic gripper integrated with a shape memory alloy (SMA) actuated suction cup, inspired by the versatile grasping strategies of octopus arms and suckers. Our design leverages a tendon-driven composite arm, enabling precise bending and adaptive grasping, combined with SMA technology to create a compact, efficient suction mechanism. We develop comprehensive kinematic and static models to predict the interaction between arm bending deflection and suction force, thereby optimizing the gripper's performance. Experimental validation demonstrates the efficacy of our integrated design, highlighting its potential for advanced manipulation tasks in challenging environments. This work provides a new perspective on the integration of bioinspired design principles with smart materials, paving the way for future innovations in adaptive robotic systems.
探索能够在水下打捞作业等非结构化环境中执行复杂任务的自适应机器人系统是一项重大挑战。传统的刚性机械手往往难以适应环境,而生物启发软机械手则具有更高的灵活性和对不同物体形状的适应性。在这项研究中,我们受章鱼手臂和吸盘的多功能抓取策略启发,提出了一种集成了形状记忆合金(SMA)驱动吸盘的新型生物启发软机器人抓手。我们的设计利用肌腱驱动的复合臂,实现精确弯曲和自适应抓取,并结合 SMA 技术,创造出一种紧凑、高效的吸力机制。我们开发了全面的运动学和静态模型来预测手臂弯曲挠度和吸力之间的相互作用,从而优化了抓取器的性能。实验验证证明了我们的集成设计的有效性,突出了它在挑战性环境中执行高级操纵任务的潜力。这项工作为生物启发设计原理与智能材料的整合提供了一个新的视角,为自适应机器人系统的未来创新铺平了道路。
{"title":"Bioinspired design and validation of a soft robotic end-effector with integrated shape memory alloy-driven suction capabilities.","authors":"Weimian Zhou, Chanchan Xu, Guisong Chen, Xiaojie Wang","doi":"10.1088/1748-3190/ad936e","DOIUrl":"10.1088/1748-3190/ad936e","url":null,"abstract":"<p><p>The exploration of adaptive robotic systems capable of performing complex tasks in unstructured environments, such as underwater salvage operations, presents a significant challenge. Traditional rigid grippers often struggle with adaptability, whereas bioinspired soft grippers offer enhanced flexibility and adaptability to varied object shapes. In this study, we present a novel bioinspired soft robotic gripper integrated with a shape memory alloy (SMA) actuated suction cup, inspired by the versatile grasping strategies of octopus arms and suckers. Our design leverages a tendon-driven composite arm, enabling precise bending and adaptive grasping, combined with SMA technology to create a compact, efficient suction mechanism. We develop comprehensive kinematic and static models to predict the interaction between arm bending deflection and suction force, thereby optimizing the gripper's performance. Experimental validation demonstrates the efficacy of our integrated design, highlighting its potential for advanced manipulation tasks in challenging environments. This work provides a new perspective on the integration of bioinspired design principles with smart materials, paving the way for future innovations in adaptive robotic systems.</p>","PeriodicalId":55377,"journal":{"name":"Bioinspiration & Biomimetics","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142640376","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-29DOI: 10.1088/1748-3190/ad9370
Thomas Speck, Falk Tauber, Olga Speck, Frank D Scherag
{"title":"Bioinspired and bio-based living materials systems.","authors":"Thomas Speck, Falk Tauber, Olga Speck, Frank D Scherag","doi":"10.1088/1748-3190/ad9370","DOIUrl":"https://doi.org/10.1088/1748-3190/ad9370","url":null,"abstract":"","PeriodicalId":55377,"journal":{"name":"Bioinspiration & Biomimetics","volume":"20 1","pages":""},"PeriodicalIF":3.1,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142752418","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Insects' flight is imbued with endless mysteries, offering valuable inspiration to the flapping-wing robots. Particularly, the multi-mode wingbeat motion such as flapping, sweeping and twisting in coordination presents advantages in promoting unsteady aerodynamics and enhancing lift force. To achieve the flapping-twisting-sweeping motion capability, this paper proposes an at-scale three-degree-of-freedom (3-DOF) mechanism driven by three piezoelectric actuators, which consists of three four-bar mechanisms and a parallel spherical mechanism. Compliant hinges are utilized as rotating joints for power transmission. The DOF and the kinematics analysis are performed. The aerodynamic model of the wing and the mechanical model of the compliant hinges are considered to investigate the required driving force response of the mechanism with wing loads. By employing nonlinear programming techniques, the geometric parameters of three piezoelectric actuators are reverse-designed to match the dynamic response of the mechanism in two flapping conditions. The significance of this work lies in proposing a novel concept of an at-scale multi-DOF wingbeat mechanism, demonstrating the feasibility of this mechanism to mimic the flexible and multi-mode wingbeat movement of insects, and providing an initial mechanism-drive solution.
{"title":"Analysis and actuation design of a novel at-scale 3-DOF biomimetic flapping-wing mechanism inspired by flying insects.","authors":"Liang Wang, Hongzhi Zhang, Longlong Zhang, Bifeng Song, Zhongchao Sun, Wenming Zhang","doi":"10.1088/1748-3190/ad94c2","DOIUrl":"10.1088/1748-3190/ad94c2","url":null,"abstract":"<p><p>Insects' flight is imbued with endless mysteries, offering valuable inspiration to the flapping-wing robots. Particularly, the multi-mode wingbeat motion such as flapping, sweeping and twisting in coordination presents advantages in promoting unsteady aerodynamics and enhancing lift force. To achieve the flapping-twisting-sweeping motion capability, this paper proposes an at-scale three-degree-of-freedom (3-DOF) mechanism driven by three piezoelectric actuators, which consists of three four-bar mechanisms and a parallel spherical mechanism. Compliant hinges are utilized as rotating joints for power transmission. The DOF and the kinematics analysis are performed. The aerodynamic model of the wing and the mechanical model of the compliant hinges are considered to investigate the required driving force response of the mechanism with wing loads. By employing nonlinear programming techniques, the geometric parameters of three piezoelectric actuators are reverse-designed to match the dynamic response of the mechanism in two flapping conditions. The significance of this work lies in proposing a novel concept of an at-scale multi-DOF wingbeat mechanism, demonstrating the feasibility of this mechanism to mimic the flexible and multi-mode wingbeat movement of insects, and providing an initial mechanism-drive solution.</p>","PeriodicalId":55377,"journal":{"name":"Bioinspiration & Biomimetics","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142683649","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-28DOI: 10.1088/1748-3190/ad936d
Mohamed Niged Mabrouk, Daniel Floryan
When swimming animals form cohesive groups, they can reap several benefits. Our understanding of collective animal motion has traditionally been driven by models based on phenomenological behavioral rules, but more recent work has highlighted the critical importance of hydrodynamic interactions among a group of inertial swimmers. To study how hydrodynamic interactions affect group cohesion, we develop a three-dimensional, inviscid, far-field model of a swimmer. In a group of two model swimmers, we observe several dynamical phases, including following, divergence, collision, and cohesion. Our results illustrate when cohesive groups can passively form through hydrodynamic interactions alone, and when other action is needed to maintain cohesion. We find that misalignment between swimmers makes passive cohesion less likely; nevertheless, it is possible for a cohesive group to form through passive hydrodynamic interactions alone. We also find that the geometry of swimmers critically affects the group dynamics due to its role in how swimmers sample the velocity gradient of the flow.
{"title":"Group cohesion and passive dynamics of a pair of inertial swimmers with three-dimensional hydrodynamic interactions.","authors":"Mohamed Niged Mabrouk, Daniel Floryan","doi":"10.1088/1748-3190/ad936d","DOIUrl":"10.1088/1748-3190/ad936d","url":null,"abstract":"<p><p>When swimming animals form cohesive groups, they can reap several benefits. Our understanding of collective animal motion has traditionally been driven by models based on phenomenological behavioral rules, but more recent work has highlighted the critical importance of hydrodynamic interactions among a group of inertial swimmers. To study how hydrodynamic interactions affect group cohesion, we develop a three-dimensional, inviscid, far-field model of a swimmer. In a group of two model swimmers, we observe several dynamical phases, including following, divergence, collision, and cohesion. Our results illustrate when cohesive groups can passively form through hydrodynamic interactions alone, and when other action is needed to maintain cohesion. We find that misalignment between swimmers makes passive cohesion less likely; nevertheless, it is possible for a cohesive group to form through passive hydrodynamic interactions alone. We also find that the geometry of swimmers critically affects the group dynamics due to its role in how swimmers sample the velocity gradient of the flow.</p>","PeriodicalId":55377,"journal":{"name":"Bioinspiration & Biomimetics","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142640378","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-28DOI: 10.1088/1748-3190/ad918c
Robert Allen
{"title":"To hear or not to hear-That is not the only question.","authors":"Robert Allen","doi":"10.1088/1748-3190/ad918c","DOIUrl":"https://doi.org/10.1088/1748-3190/ad918c","url":null,"abstract":"","PeriodicalId":55377,"journal":{"name":"Bioinspiration & Biomimetics","volume":"20 1","pages":""},"PeriodicalIF":3.1,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142741365","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-27DOI: 10.1088/1748-3190/ad920b
Yuchen Gong, Zihao Huang, Haibo Dong
This paper presents a numerical investigation into the aerodynamic characteristics and fluid dynamics of a flying snake-like model employing vertical bending locomotion during aerial undulation in steady gliding. In addition to its typical horizontal undulation, the modeled kinematics incorporates vertical undulations and dorsal-to-ventral bending movements while in motion. Using a computational approach with an incompressible flow solver based on the immersed-boundary method, this study employs topological local mesh refinement mesh blocks to ensure the high resolution of the grid around the moving body. Initially, we applied a vertical wave undulation to a snake model undulating horizontally, investigating the effects of vertical wave amplitudes (ψm). The vortex dynamics analysis unveiled alterations in leading-edge vortices formation within the midplane due to changes in the effective angle of attack resulting from vertical bending, directly influencing lift generation. Our findings highlighted peak lift production atψm=2.5∘and the highest lift-to-drag ratio (L/D) atψm=5∘, with aerodynamic performance declining beyond this threshold. Subsequently, we studied the effects of the dorsal-ventral bending amplitude (ψDV), showing that the tail-up/down body posture can result in different fore-aft body interactions. Compared to the baseline configuration, the lift generation is observed to increase by 17.3% atψDV= 5°, while a preferable L/D is found atψDV= -5°. This study explains the flow dynamics associated with vertical bending and uncovers fundamental mechanisms governing body-body interaction, contributing to the enhancement of lift production and efficiency of aerial undulation in snake-inspired gliding.
{"title":"Vertical bending and aerodynamic performance in flying snake-inspired aerial undulation.","authors":"Yuchen Gong, Zihao Huang, Haibo Dong","doi":"10.1088/1748-3190/ad920b","DOIUrl":"10.1088/1748-3190/ad920b","url":null,"abstract":"<p><p>This paper presents a numerical investigation into the aerodynamic characteristics and fluid dynamics of a flying snake-like model employing vertical bending locomotion during aerial undulation in steady gliding. In addition to its typical horizontal undulation, the modeled kinematics incorporates vertical undulations and dorsal-to-ventral bending movements while in motion. Using a computational approach with an incompressible flow solver based on the immersed-boundary method, this study employs topological local mesh refinement mesh blocks to ensure the high resolution of the grid around the moving body. Initially, we applied a vertical wave undulation to a snake model undulating horizontally, investigating the effects of vertical wave amplitudes (ψm). The vortex dynamics analysis unveiled alterations in leading-edge vortices formation within the midplane due to changes in the effective angle of attack resulting from vertical bending, directly influencing lift generation. Our findings highlighted peak lift production atψm=2.5∘and the highest lift-to-drag ratio (L/D) atψm=5∘, with aerodynamic performance declining beyond this threshold. Subsequently, we studied the effects of the dorsal-ventral bending amplitude (ψDV), showing that the tail-up/down body posture can result in different fore-aft body interactions. Compared to the baseline configuration, the lift generation is observed to increase by 17.3% atψDV= 5°, while a preferable L/D is found atψDV= -5°. This study explains the flow dynamics associated with vertical bending and uncovers fundamental mechanisms governing body-body interaction, contributing to the enhancement of lift production and efficiency of aerial undulation in snake-inspired gliding.</p>","PeriodicalId":55377,"journal":{"name":"Bioinspiration & Biomimetics","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142632920","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-27DOI: 10.1088/1748-3190/ad936f
Zhongying Xiong, Tao Han, Huan Xia
When designing the internals of robotic fish, variations in the internal arrangements of power and control systems cause differences in external morphological structures, particularly the positions of maximum thickness. These differences considerably affect swimming performance. This study examines the impact of the topological structure of self-propelled fish-like swimmers on hydrodynamic performance using fluid-structure interaction techniques. Fish-like swimmers with maximum thickness closest to the head exhibit optimal swimming performance, characterized by modest energy consumption for fast-response acceleration during the starting phase and higher swimming velocity for high-speed travel during steady swimming. As the maximum thickness moves toward the middle, acceleration performance significantly weakens and swimming speed decreases, although maximum energy consumption is relatively reduced. This study will provide a notable reference for the morphological design of underwater robotic fish.
{"title":"Effects of maximum thickness position on hydrodynamic performance for fish-like swimmers.","authors":"Zhongying Xiong, Tao Han, Huan Xia","doi":"10.1088/1748-3190/ad936f","DOIUrl":"10.1088/1748-3190/ad936f","url":null,"abstract":"<p><p>When designing the internals of robotic fish, variations in the internal arrangements of power and control systems cause differences in external morphological structures, particularly the positions of maximum thickness. These differences considerably affect swimming performance. This study examines the impact of the topological structure of self-propelled fish-like swimmers on hydrodynamic performance using fluid-structure interaction techniques. Fish-like swimmers with maximum thickness closest to the head exhibit optimal swimming performance, characterized by modest energy consumption for fast-response acceleration during the starting phase and higher swimming velocity for high-speed travel during steady swimming. As the maximum thickness moves toward the middle, acceleration performance significantly weakens and swimming speed decreases, although maximum energy consumption is relatively reduced. This study will provide a notable reference for the morphological design of underwater robotic fish.</p>","PeriodicalId":55377,"journal":{"name":"Bioinspiration & Biomimetics","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142640377","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The robotic fish utilizes a bio-inspired undulatory propulsion system to achieve high swimming performance. However, significant roll motion has been observed at the head when the tail oscillates at certain frequencies, adversely affecting both perception accuracy and propulsion efficiency. In this paper, the roll torque acting on the robotic fish is theoretically analyzed and decomposed into gravitational, inertial, and hydrodynamic components. Resonance is identified as a key factor amplifying the roll response. To mitigate this roll and enhance stability, a passive roll absorber based on tuned mass damper is designed. A simplified rolling structure is dynamically modeled to optimize absorber parameters. Experiments are conducted to quantify the roll torque experienced by the robotic fish, with the effectiveness of the absorber verified on both the simplified model and the robotic fish. Results show that the maximum roll angle of the simplified system under harmonic load decreases from 98° to29∘, representing a reduction of over 70%, while a 25.1% reduction is achieved on the robotic fish.
{"title":"Optimization of a passive roll absorber for robotic fish based on tune mass damper.","authors":"Chunhui Zhu, Chao Zhou, Qianqian Zou, Junfeng Fan, Zhuoliang Zhang, Yaming Ou, Jian Wang","doi":"10.1088/1748-3190/ad920c","DOIUrl":"10.1088/1748-3190/ad920c","url":null,"abstract":"<p><p>The robotic fish utilizes a bio-inspired undulatory propulsion system to achieve high swimming performance. However, significant roll motion has been observed at the head when the tail oscillates at certain frequencies, adversely affecting both perception accuracy and propulsion efficiency. In this paper, the roll torque acting on the robotic fish is theoretically analyzed and decomposed into gravitational, inertial, and hydrodynamic components. Resonance is identified as a key factor amplifying the roll response. To mitigate this roll and enhance stability, a passive roll absorber based on tuned mass damper is designed. A simplified rolling structure is dynamically modeled to optimize absorber parameters. Experiments are conducted to quantify the roll torque experienced by the robotic fish, with the effectiveness of the absorber verified on both the simplified model and the robotic fish. Results show that the maximum roll angle of the simplified system under harmonic load decreases from 98° to29∘, representing a reduction of over 70%, while a 25.1% reduction is achieved on the robotic fish.</p>","PeriodicalId":55377,"journal":{"name":"Bioinspiration & Biomimetics","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142632879","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}