首页 > 最新文献

Bioinspiration & Biomimetics最新文献

英文 中文
Learning obstacle avoidance and predation in complex reef environments with deep reinforcement learning. 利用深度强化学习在复杂的珊瑚礁环境中学习避障和捕食。
IF 3.1 3区 计算机科学 Q1 ENGINEERING, MULTIDISCIPLINARY Pub Date : 2024-08-07 DOI: 10.1088/1748-3190/ad6544
Ji Hou, Changling He, Tao Li, Chunze Zhang, Qin Zhou

The reef ecosystem plays a vital role as a habitat for fish species with limited swimming capabilities, serving not only as a sanctuary and food source but also influencing their behavioral tendencies. Understanding the intricate mechanism through which fish adeptly navigate the moving targets within reef environments within complex water flow, all while evading obstacles and maintaining stable postures, has remained a challenging and prominent subject in the realms of fish behavior, ecology, and biomimetics alike. An integrated simulation framework is used to investigate fish predation problems within intricate environments, combining deep reinforcement learning algorithms (DRL) with high-precision fluid-structure interaction numerical methods-immersed boundary lattice Boltzmann method (lB-LBM). The Soft Actor-Critic (SAC) algorithm is used to improve the intelligent fish's capacity for random exploration, tackling the multi-objective sparse reward challenge inherent in real-world scenarios. Additionally, a reward shaping method tailored to its action purposes has been developed, capable of capturing outcomes and trend characteristics effectively. The convergence and robustness advantages of the method elucidated in this paper are showcased through two case studies: one addressing fish capturing randomly moving targets in hydrostatic flow field, and the other focusing on fish counter-current foraging in reef environments to capture drifting food. A comprehensive analysis was conducted of the influence and significance of various reward types on the decision-making processes of intelligent fish within intricate environments.

珊瑚礁生态系统作为游泳能力有限的鱼类的栖息地发挥着至关重要的作用,它不仅是鱼类的避难所和食物来源,还影响着鱼类的行为倾向。在复杂的水流中,鱼类通过复杂的机制在珊瑚礁环境中巧妙地导航移动目标,同时躲避障碍物并保持稳定的姿态,这在鱼类行为学、生态学和生物仿生学领域一直是一个具有挑战性的重要课题。该研究采用了一个综合模拟框架,将深度强化学习算法(DRL)与高精度流固耦合数值方法--浸没边界晶格玻尔兹曼法(lB-LBM)相结合,研究复杂环境中的鱼类捕食问题。软行为批判(SAC)算法用于提高智能鱼的随机探索能力,以应对现实世界场景中固有的多目标稀疏奖励挑战。此外,还开发了一种针对其行动目的的奖励塑造方法,能够有效捕捉结果和趋势特征。本文通过两个案例研究展示了该方法的收敛性和鲁棒性优势:一个案例研究了鱼类在静态流场中捕捉随机移动目标的情况,另一个案例研究了鱼类在珊瑚礁环境中逆流觅食捕捉漂流食物的情况。本文全面分析了各种奖励类型对复杂环境中智能鱼类决策过程的影响和意义。
{"title":"Learning obstacle avoidance and predation in complex reef environments with deep reinforcement learning.","authors":"Ji Hou, Changling He, Tao Li, Chunze Zhang, Qin Zhou","doi":"10.1088/1748-3190/ad6544","DOIUrl":"10.1088/1748-3190/ad6544","url":null,"abstract":"<p><p>The reef ecosystem plays a vital role as a habitat for fish species with limited swimming capabilities, serving not only as a sanctuary and food source but also influencing their behavioral tendencies. Understanding the intricate mechanism through which fish adeptly navigate the moving targets within reef environments within complex water flow, all while evading obstacles and maintaining stable postures, has remained a challenging and prominent subject in the realms of fish behavior, ecology, and biomimetics alike. An integrated simulation framework is used to investigate fish predation problems within intricate environments, combining deep reinforcement learning algorithms (DRL) with high-precision fluid-structure interaction numerical methods-immersed boundary lattice Boltzmann method (lB-LBM). The Soft Actor-Critic (SAC) algorithm is used to improve the intelligent fish's capacity for random exploration, tackling the multi-objective sparse reward challenge inherent in real-world scenarios. Additionally, a reward shaping method tailored to its action purposes has been developed, capable of capturing outcomes and trend characteristics effectively. The convergence and robustness advantages of the method elucidated in this paper are showcased through two case studies: one addressing fish capturing randomly moving targets in hydrostatic flow field, and the other focusing on fish counter-current foraging in reef environments to capture drifting food. A comprehensive analysis was conducted of the influence and significance of various reward types on the decision-making processes of intelligent fish within intricate environments.</p>","PeriodicalId":55377,"journal":{"name":"Bioinspiration & Biomimetics","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141725141","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The effect of shortfin mako shark skin at the reattachment of a separated turbulent boundary layer. 短吻鲭鲨皮肤对分离的湍流边界层重新连接的影响。
IF 3.1 3区 计算机科学 Q1 ENGINEERING, MULTIDISCIPLINARY Pub Date : 2024-08-06 DOI: 10.1088/1748-3190/ad679c
Leonardo M Santos, Amy Lang, Redha Wahidi, Andrew Bonacci, Sashank Gautam, Jacob Parsons

This smooth flat experimental study investigates the capability of mako shark scales to control flow separation when placed downstream of the onset of turbulent boundary layer separation and within the reattachment region. The objective of the study is to validate the hypothesis that the shark scales' bristling and recoiling would prevent the flow separation on the flank region (the fastest flow region) of the shark. A rotating cylinder was used to induce an adverse pressure gradient over a flat plate to produce a region of separated flow where the shark skin specimen was mounted. Two types of mako shark scales (flank (B2) and between flank and dorsal fin (B1)) were positioned in the preferred flow direction on a flat plate. The B2 scales are slender, 200μm tall, and can bristle up to 50°. In contrast, B1 scales are wider, shorter, and can bristle at 30°. The bristling angle and shape are the main mechanisms by which the scales act to inhibit flow from moving upstream near the wall. Thus, the difference in the bristling angles and structures of the scales is attributed to the fact that the B2 scales function in a thicker boundary layer (behind the shark's gills) where they must bristle sufficiently high into the boundary layer to control the flow separation, and because the adverse pressure gradient in this region is higher where flow separation is more likely. The scales are placed in the reattachment region to elucidate their ability to control and reattach an already separated turbulent flow. The results show that B2 scales placed in the reattachment region reduce the size of the turbulent separation bubble and decrease the turbulent kinetic energy, while B1 scales have the opposite effect.

这项光滑平整的实验研究调查了鲭鲨鳞片在湍流边界层分离开始的下游和重新附着区域内控制流动分离的能力。这项研究的目的是验证鲨鱼鳞片的刚毛和反卷可以防止鲨鱼侧翼区域(流速最快的区域)的气流分离的假设。使用旋转圆筒在平板上产生不利的压力梯度,从而在安装鲨鱼皮试样的地方产生分离的流动区域。两种鲭鲨鳞片(侧翼(B2)和侧翼与背鳍之间(B1))被放置在平板的首选流动方向上。B2 鳞片纤细,高 200 μm,鬃毛可达 50°。相比之下,B1 鳞片更宽、更短,鬃毛角度为 30°。鳞片的鬃毛角度和形状是其抑制水流向上游靠近鳞片壁的主要机制。因此,鳞片的鬃毛角度和结构的不同是由于 B2 鳞片在较厚的边界层(鲨鱼鳃的后面)发挥作用,它们必须在边界层足够高的位置鬃毛以控制水流分离,而且该区域的不利压力梯度较高,水流分离的可能性较大。将鳞片置于重新附着区域是为了阐明它们控制和重新附着已经分离的湍流的能力。结果表明,将 B2 鳞片放置在重新附着区域可减小湍流分离气泡的大小并降低湍流动能,而 B1 鳞片则具有相反的效果。
{"title":"The effect of shortfin mako shark skin at the reattachment of a separated turbulent boundary layer.","authors":"Leonardo M Santos, Amy Lang, Redha Wahidi, Andrew Bonacci, Sashank Gautam, Jacob Parsons","doi":"10.1088/1748-3190/ad679c","DOIUrl":"10.1088/1748-3190/ad679c","url":null,"abstract":"<p><p>This smooth flat experimental study investigates the capability of mako shark scales to control flow separation when placed downstream of the onset of turbulent boundary layer separation and within the reattachment region. The objective of the study is to validate the hypothesis that the shark scales' bristling and recoiling would prevent the flow separation on the flank region (the fastest flow region) of the shark. A rotating cylinder was used to induce an adverse pressure gradient over a flat plate to produce a region of separated flow where the shark skin specimen was mounted. Two types of mako shark scales (flank (B2) and between flank and dorsal fin (B1)) were positioned in the preferred flow direction on a flat plate. The B2 scales are slender, 200<i>μ</i>m tall, and can bristle up to 50°. In contrast, B1 scales are wider, shorter, and can bristle at 30°. The bristling angle and shape are the main mechanisms by which the scales act to inhibit flow from moving upstream near the wall. Thus, the difference in the bristling angles and structures of the scales is attributed to the fact that the B2 scales function in a thicker boundary layer (behind the shark's gills) where they must bristle sufficiently high into the boundary layer to control the flow separation, and because the adverse pressure gradient in this region is higher where flow separation is more likely. The scales are placed in the reattachment region to elucidate their ability to control and reattach an already separated turbulent flow. The results show that B2 scales placed in the reattachment region reduce the size of the turbulent separation bubble and decrease the turbulent kinetic energy, while B1 scales have the opposite effect.</p>","PeriodicalId":55377,"journal":{"name":"Bioinspiration & Biomimetics","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141762846","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Visually guided swarm motion coordination via insect-inspired small target motion reactions. 通过昆虫启发的小目标运动反应实现视觉引导的蜂群运动协调。
IF 3.1 3区 计算机科学 Q1 ENGINEERING, MULTIDISCIPLINARY Pub Date : 2024-08-06 DOI: 10.1088/1748-3190/ad6726
Md Arif Billah, Imraan A Faruque

Despite progress developing experimentally-consistent models of insect in-flight sensing and feedback for individual agents, a lack of systematic understanding of the multi-agent and group performance of the resulting bio-inspired sensing and feedback approaches remains a barrier to robotic swarm implementations. This study introduces the small-target motion reactive (STMR) swarming approach by designing a concise engineering model of the small target motion detector (STMD) neurons found in insect lobula complexes. The STMD neuron model identifies the bearing angle at which peak optic flow magnitude occurs, and this angle is used to design an output feedback switched control system. A theoretical stability analysis provides bi-agent stability and state boundedness in group contexts. The approach is simulated and implemented on ground vehicles for validation and behavioral studies. The results indicate despite having the lowest connectivity of contemporary approaches (each agent instantaneously regards only a single neighbor), STMR achieves collective group motion. STMR group level metric analysis also highlights continuously varying polarization and decreasing heading variance.

尽管在为单个昆虫开发与实验一致的飞行中传感和反馈模型方面取得了进展,但对由此产生的生物启发传感和反馈方法的多昆虫和群体性能缺乏系统的了解,仍然是实现机器人蜂群的一个障碍。本研究通过设计昆虫小叶复合体中的小目标运动检测器(STMD)神经元的简明工程模型,介绍了小目标运动反应(STMR)蜂群方法。STMD 神经元模型确定了出现峰值光流幅度的方位角,并利用该角度设计了一个输出反馈开关控制系统。理论稳定性分析提供了双代理稳定性和群组情况下的状态约束性。该方法在地面车辆上进行了模拟和实施,以进行验证和行为研究。结果表明,尽管该方法的连通性在同类方法中最低(每个代理仅能瞬时看到单个邻居),但仍能实现群体集体运动。STMR 群体级度量分析还凸显了持续变化的极化和不断减小的航向方差。
{"title":"Visually guided swarm motion coordination via insect-inspired small target motion reactions.","authors":"Md Arif Billah, Imraan A Faruque","doi":"10.1088/1748-3190/ad6726","DOIUrl":"10.1088/1748-3190/ad6726","url":null,"abstract":"<p><p>Despite progress developing experimentally-consistent models of insect in-flight sensing and feedback for individual agents, a lack of systematic understanding of the multi-agent and group performance of the resulting bio-inspired sensing and feedback approaches remains a barrier to robotic swarm implementations. This study introduces the small-target motion reactive (STMR) swarming approach by designing a concise engineering model of the small target motion detector (STMD) neurons found in insect lobula complexes. The STMD neuron model identifies the bearing angle at which peak optic flow magnitude occurs, and this angle is used to design an output feedback switched control system. A theoretical stability analysis provides bi-agent stability and state boundedness in group contexts. The approach is simulated and implemented on ground vehicles for validation and behavioral studies. The results indicate despite having the lowest connectivity of contemporary approaches (each agent instantaneously regards only a single neighbor), STMR achieves collective group motion. STMR group level metric analysis also highlights continuously varying polarization and decreasing heading variance.</p>","PeriodicalId":55377,"journal":{"name":"Bioinspiration & Biomimetics","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141762847","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design of a bipedal robot for water running based on a six-linkage mechanism inspired by basilisk lizards. 基于受玄武蜥启发的六连杆机构,设计用于水中奔跑的双足机器人。
IF 3.1 3区 计算机科学 Q1 ENGINEERING, MULTIDISCIPLINARY Pub Date : 2024-08-05 DOI: 10.1088/1748-3190/ad63ea
Jingfu Zhao, Jiaxu Han, Wenjie Ju, Wenjie Zhang, Zhenmin Hou, Chenya Bian, Rongjie Kang, Jiansheng Dai, Zhibin Song

Legged robots have received widespread attention in academia and engineering owing to their excellent terrain adaptability. However, most legged robots can only adapt to high-hardness environments instead of flexible environments. Expanding the motion range of legged robots to water is a promising but challenging work. Inspired by basilisk lizards which can run on water surfaces by feet, this paper proposes a bipedal robot for water running by hydrodynamics instead of buoyancy. According to the motion parameters of the basilisk lizard during water running, a single-degree of freedom bipedal mechanism is proposed to reproduce the motion trajectory of the feet of the basilisk lizard. Scale optimization is conducted by a particle swarm optimization algorithm to determine the geometrical parameters of the mechanism. The effects of motion frequency and foot area on mechanism performance are studied and the optimal solutions are determined by the maximum single-cycle lift impulse through numerical calculations. A bipedal water running robot prototype was fabricated, and the experimental results show that the prototype can generate enough support for the robot running on the water by providing a maximum lift of 2.4 times its weight (160 g) and reaching a horizontal forward speed range of 0.3-0.8 m s-1, compared with the basilisk lizard weighs 2-200 g, generates a lift impulse that is 111%-225% of its body weight, and moves at a speed of 1.3 ± 0.1 m s-1.

由于具有出色的地形适应能力,腿式机器人受到学术界和工程界的广泛关注。然而,大多数有腿机器人只能适应高硬度环境,而不能适应柔性环境。将腿式机器人的运动范围扩大到水中是一项前景广阔但极具挑战性的工作。巴斯里斯克蜥蜴可以用脚在水面上奔跑,受此启发,本文提出了一种利用流体力学而非浮力在水中奔跑的双足机器人。根据巴斯里斯克蜥蜴在水中奔跑时的运动参数,提出了一种单DoF双足机构,以再现巴斯里斯克蜥蜴脚的运动轨迹。通过粒子群优化算法进行尺度优化,以确定机构的几何参数。研究了运动频率和脚部面积对机构性能的影响,并确定了最优解。制作了双足水上奔跑机器人原型,实验结果表明,该原型能为机器人在水上奔跑提供足够的支撑,最大升力为其重量的 2.4 倍,水平前进速度范围为 0.3-0.8 m/s。
{"title":"Design of a bipedal robot for water running based on a six-linkage mechanism inspired by basilisk lizards.","authors":"Jingfu Zhao, Jiaxu Han, Wenjie Ju, Wenjie Zhang, Zhenmin Hou, Chenya Bian, Rongjie Kang, Jiansheng Dai, Zhibin Song","doi":"10.1088/1748-3190/ad63ea","DOIUrl":"10.1088/1748-3190/ad63ea","url":null,"abstract":"<p><p>Legged robots have received widespread attention in academia and engineering owing to their excellent terrain adaptability. However, most legged robots can only adapt to high-hardness environments instead of flexible environments. Expanding the motion range of legged robots to water is a promising but challenging work. Inspired by basilisk lizards which can run on water surfaces by feet, this paper proposes a bipedal robot for water running by hydrodynamics instead of buoyancy. According to the motion parameters of the basilisk lizard during water running, a single-degree of freedom bipedal mechanism is proposed to reproduce the motion trajectory of the feet of the basilisk lizard. Scale optimization is conducted by a particle swarm optimization algorithm to determine the geometrical parameters of the mechanism. The effects of motion frequency and foot area on mechanism performance are studied and the optimal solutions are determined by the maximum single-cycle lift impulse through numerical calculations. A bipedal water running robot prototype was fabricated, and the experimental results show that the prototype can generate enough support for the robot running on the water by providing a maximum lift of 2.4 times its weight (160 g) and reaching a horizontal forward speed range of 0.3-0.8 m s<sup>-1</sup>, compared with the basilisk lizard weighs 2-200 g, generates a lift impulse that is 111%-225% of its body weight, and moves at a speed of 1.3 ± 0.1 m s<sup>-1</sup>.</p>","PeriodicalId":55377,"journal":{"name":"Bioinspiration & Biomimetics","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141629335","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigation of the tradeoffs between tracking performance and energetics in heterogeneous variable recruitment fluidic artificial muscle bundles. 研究异质可变募集流体人工肌肉束在追踪性能和能量之间的权衡。
IF 3.1 3区 计算机科学 Q1 ENGINEERING, MULTIDISCIPLINARY Pub Date : 2024-07-29 DOI: 10.1088/1748-3190/ad649d
Nicholas Mazzoleni, Matthew Bryant

In traditional hydraulic robotics, actuators must be sized for the highest possible load, resulting in significant energy losses when operating in lower force regimes. Variable recruitment fluidic artificial muscle (FAM) bundles offer a novel bio-inspired solution to this problem. Divided into individual MUs, each with its own control valve, a variable recruitment FAM bundle uses a switching control scheme to selectively bring MUs online according to load demand. To date, every dynamic variable recruitment study in the literature has considered homogeneous bundles containing MUs of equal size. However, natural mammalian muscle MUs are heterogeneous and primarily operate based on Henneman's size principle, which states that MUs are recruited from smallest to largest for a given task. Is it better for a FAM variable recruitment bundle to operate according to this principle, or are there other recruitment orders that result in better performance? What are the appropriate criteria for switching between recruitment states for these different recruitment orders? This paper seeks to answer these questions by performing two case studies exploring different bundle MU size distributions, analyzing the tradeoffs between tracking performance and energetics, and determining how these tradeoffs are affected by different MU recruitment order and recruitment state transition thresholds. The only difference between the two test cases is the overall force capacity (i.e. total size) of the bundle. For each test case, a Pareto frontier for different MU size distributions, recruitment orders, and recruitment state transition thresholds is constructed. The results show that there is a complex relationship between overall bundle size, MU size distributions, recruitment orders, and recruitment state transition thresholds corresponding to the best tradeoffs change along the Pareto frontier. Overall, these two case studies validate the use of Henneman's Size Principle as a variable recruitment strategy, but also demonstrate that it should not be the only variable recruitment method considered. They also motivate the need for a more complex variable recruitment scheme that dynamically changes the recruitment state transition threshold and recruitment order based on loading conditions and known system states, along with a co-design problem that optimizes total bundle size and MU size distribution.

在传统的液压机器人技术中,执行器的大小必须满足尽可能高的负载要求,这就导致在低力状态下工作时能量损失巨大。可变募集流体人工肌肉(FAM)束为这一问题提供了一种新颖的生物启发式解决方案。可变募集流体人工肌肉束分为单个人工肌肉单元,每个单元都有自己的控制阀,它采用开关控制方案,根据负载需求选择性地将人工肌肉单元联机。迄今为止,文献中的所有动态可变招募研究都考虑了包含相同大小 MU 的同质束。然而,自然哺乳动物的肌肉单元是异质的,主要根据海尼曼的大小原则运行,即从最小到最大招募肌肉单元。FAM 可变招募束是根据这一原则运行更好,还是有其他招募顺序能带来更好的性能?对于这些不同的招募顺序,在招募状态之间切换的适当标准是什么?本章试图通过两个案例研究来回答这些问题,这两个案例研究探索了不同的束 MU 大小分布,分析了跟踪性能和能量学之间的权衡,并确定了不同的 MU 招募顺序和招募状态转换阈值对这些权衡的影响。两个测试案例之间的唯一区别在于束的总体受力能力(即总大小)。针对每种测试案例,我们都构建了不同 MU 大小分布、招募顺序和招募状态转换阈值的帕累托前沿。结果表明,总体捆绑规模、MU 规模分布、招募顺序和招募状态转换阈值之间存在复杂的关系,对应于帕累托前沿的最佳折衷变化。总之,这两个案例研究验证了亨尼曼大小原则作为可变招募策略的有效性,但也表明它不应该是唯一可以考虑的方法。
{"title":"Investigation of the tradeoffs between tracking performance and energetics in heterogeneous variable recruitment fluidic artificial muscle bundles.","authors":"Nicholas Mazzoleni, Matthew Bryant","doi":"10.1088/1748-3190/ad649d","DOIUrl":"10.1088/1748-3190/ad649d","url":null,"abstract":"<p><p>In traditional hydraulic robotics, actuators must be sized for the highest possible load, resulting in significant energy losses when operating in lower force regimes. Variable recruitment fluidic artificial muscle (FAM) bundles offer a novel bio-inspired solution to this problem. Divided into individual MUs, each with its own control valve, a variable recruitment FAM bundle uses a switching control scheme to selectively bring MUs online according to load demand. To date, every dynamic variable recruitment study in the literature has considered homogeneous bundles containing MUs of equal size. However, natural mammalian muscle MUs are heterogeneous and primarily operate based on Henneman's size principle, which states that MUs are recruited from smallest to largest for a given task. Is it better for a FAM variable recruitment bundle to operate according to this principle, or are there other recruitment orders that result in better performance? What are the appropriate criteria for switching between recruitment states for these different recruitment orders? This paper seeks to answer these questions by performing two case studies exploring different bundle MU size distributions, analyzing the tradeoffs between tracking performance and energetics, and determining how these tradeoffs are affected by different MU recruitment order and recruitment state transition thresholds. The only difference between the two test cases is the overall force capacity (i.e. total size) of the bundle. For each test case, a Pareto frontier for different MU size distributions, recruitment orders, and recruitment state transition thresholds is constructed. The results show that there is a complex relationship between overall bundle size, MU size distributions, recruitment orders, and recruitment state transition thresholds corresponding to the best tradeoffs change along the Pareto frontier. Overall, these two case studies validate the use of Henneman's Size Principle as a variable recruitment strategy, but also demonstrate that it should not be the only variable recruitment method considered. They also motivate the need for a more complex variable recruitment scheme that dynamically changes the recruitment state transition threshold and recruitment order based on loading conditions and known system states, along with a co-design problem that optimizes total bundle size and MU size distribution.</p>","PeriodicalId":55377,"journal":{"name":"Bioinspiration & Biomimetics","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141635871","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A tactile sensing system capable of recognizing objects based on bioinspired self-sensing soft pneumatic actuator. 基于生物启发的自感应软气动致动器,能够识别物体的触觉传感系统。
IF 3.1 3区 计算机科学 Q1 ENGINEERING, MULTIDISCIPLINARY Pub Date : 2024-07-24 DOI: 10.1088/1748-3190/ad61a8
Meng Yu, Xiang Cheng, Shigang Peng, Liangyu Zhao, Pengfei Wang

Tactile sensors play an important role when robots perform contact tasks, such as physical information collection, force or displacement control to avoid collision. For these manipulations, excessive contact may cause damage while poor contact cause information loss between the robotic end-effector and the objects. Inspired by skin structure and signal transmission method, this paper proposes a tactile sensing system based on the self-sensing soft pneumatic actuator (S-SPA) capable of providing tactile sensing capability for robots. Based on the adjustable height and compliance characteristics of the S-SPA, the contact process is safe and more tactile information can be collected. And to demonstrate the feasibility and advantage of this system, a robotic hand with S-SPAs could recognize different textures and stiffness of the objects by touching and pinching behaviours to collect physical information of the various objects under the positive work states of the S-SPA. The result shows the recognition accuracy of the fifteen texture plates reaches 99.4%, and the recognition accuracy of the four stiffness cuboids reaches 100%by training a KNN model. This safe and simple tactile sensing system with high recognition accuracies based on S-SPA shows great potential in robotic manipulations and is beneficial to applications in domestic and industrial fields.

在机器人执行物理信息收集、力或位移控制以避免碰撞等接触任务时,触觉传感器发挥着重要作用。在这些操作中,过度接触可能会造成损坏,而接触不良则会导致机器人末端执行器与物体之间的信息丢失。受皮肤结构和信号传输方法的启发,本文提出了一种基于自感应软气动执行器(S-SPA)的触觉传感系统,能够为机器人提供触觉传感功能。基于 S-SPA 的可调高度和顺应性特性,可以安全地进行接触并收集准确的触觉信息。为了证明该系统的可行性和优势,装有 S-SPA 的机械手可以在 S-SPA 的正工作状态下,通过触摸和捏合行为识别不同质地和硬度的物体,收集各种物体的物理信息。结果表明,通过训练 KNN 模型,15 块纹理板的识别准确率达到 99.4%,4 个硬度立方体的识别准确率达到 100%。这种基于 S-SPA 的安全、简单且识别准确率高的触觉传感系统在机器人操纵方面具有巨大潜力,有利于在家庭和工业领域的应用。
{"title":"A tactile sensing system capable of recognizing objects based on bioinspired self-sensing soft pneumatic actuator.","authors":"Meng Yu, Xiang Cheng, Shigang Peng, Liangyu Zhao, Pengfei Wang","doi":"10.1088/1748-3190/ad61a8","DOIUrl":"10.1088/1748-3190/ad61a8","url":null,"abstract":"<p><p>Tactile sensors play an important role when robots perform contact tasks, such as physical information collection, force or displacement control to avoid collision. For these manipulations, excessive contact may cause damage while poor contact cause information loss between the robotic end-effector and the objects. Inspired by skin structure and signal transmission method, this paper proposes a tactile sensing system based on the self-sensing soft pneumatic actuator (S-SPA) capable of providing tactile sensing capability for robots. Based on the adjustable height and compliance characteristics of the S-SPA, the contact process is safe and more tactile information can be collected. And to demonstrate the feasibility and advantage of this system, a robotic hand with S-SPAs could recognize different textures and stiffness of the objects by touching and pinching behaviours to collect physical information of the various objects under the positive work states of the S-SPA. The result shows the recognition accuracy of the fifteen texture plates reaches 99.4%, and the recognition accuracy of the four stiffness cuboids reaches 100%by training a KNN model. This safe and simple tactile sensing system with high recognition accuracies based on S-SPA shows great potential in robotic manipulations and is beneficial to applications in domestic and industrial fields.</p>","PeriodicalId":55377,"journal":{"name":"Bioinspiration & Biomimetics","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141581615","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A review of bioinspired dry adhesives: from achieving strong adhesion to realizing switchable adhesion. 生物启发干粘合剂综述:从实现强粘合力到实现可切换粘合力。
IF 3.1 3区 计算机科学 Q1 ENGINEERING, MULTIDISCIPLINARY Pub Date : 2024-07-23 DOI: 10.1088/1748-3190/ad62cf
Jinsheng Zhao, Neng Xia, Li Zhang

In the early twenty-first century, extensive research has been conducted on geckos' ability to climb vertical walls with the advancement of microscopy technology. Unprecedented studies and developments have focused on the adhesion mechanism, structural design, preparation methods, and applications of bioinspired dry adhesives. Notably, strong adhesion that adheres to both the principles of contact splitting and stress uniform distribution has been discovered and proposed. The increasing popularity of flexible electronic skins, soft crawling robots, and smart assembly systems has made switchable adhesion properties essential for smart adhesives. These adhesives are designed to be programmable and switchable in response to external stimuli such as magnetic fields, thermal changes, electrical signals, light exposure as well as mechanical processes. This paper provides a comprehensive review of the development history of bioinspired dry adhesives from achieving strong adhesion to realizing switchable adhesion.

二十一世纪初,随着显微镜技术的发展,人们对壁虎攀爬垂直墙壁的能力进行了广泛的研究。前所未有的研究和发展集中于生物启发干粘合剂的粘合机制、结构设计、制备方法和应用。值得注意的是,人们发现并提出了同时遵循接触分裂和应力均匀分布原理的强粘附性。随着柔性电子皮肤、软爬行机器人和智能装配系统的日益普及,智能粘合剂必须具备可切换的粘合特性。这些粘合剂可根据磁场、热变化、电信号、光照射以及机械过程等外部刺激进行编程和切换。本文全面回顾了生物启发干粘合剂从实现强粘合力到实现可切换粘合力的发展历程。
{"title":"A review of bioinspired dry adhesives: from achieving strong adhesion to realizing switchable adhesion.","authors":"Jinsheng Zhao, Neng Xia, Li Zhang","doi":"10.1088/1748-3190/ad62cf","DOIUrl":"10.1088/1748-3190/ad62cf","url":null,"abstract":"<p><p>In the early twenty-first century, extensive research has been conducted on geckos' ability to climb vertical walls with the advancement of microscopy technology. Unprecedented studies and developments have focused on the adhesion mechanism, structural design, preparation methods, and applications of bioinspired dry adhesives. Notably, strong adhesion that adheres to both the principles of contact splitting and stress uniform distribution has been discovered and proposed. The increasing popularity of flexible electronic skins, soft crawling robots, and smart assembly systems has made switchable adhesion properties essential for smart adhesives. These adhesives are designed to be programmable and switchable in response to external stimuli such as magnetic fields, thermal changes, electrical signals, light exposure as well as mechanical processes. This paper provides a comprehensive review of the development history of bioinspired dry adhesives from achieving strong adhesion to realizing switchable adhesion.</p>","PeriodicalId":55377,"journal":{"name":"Bioinspiration & Biomimetics","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141602209","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Propulsion mechanism of artificial flagellated micro-swimmers actuated by acoustic waves-theory and experimental verification. 声波驱动人工鞭毛虫微型游泳器的推进机制--理论与实验验证。
IF 3.1 3区 计算机科学 Q1 ENGINEERING, MULTIDISCIPLINARY Pub Date : 2024-07-23 DOI: 10.1088/1748-3190/ad622d
Jinan Liu, Yiqiang Fu, Yifei Wu, Haihui Ruan

This work examines the acoustically actuated motions of artificial flagellated micro-swimmers (AFMSs) and compares the motility of these micro-swimmers with the predictions based on the corrected resistive force theory (RFT) and the bar-joint model proposed in our previous work. The key ingredient in the theory is the introduction of a correction factorKin drag coefficients to correct the conventional RFT so that the dynamics of an acoustically actuated AFMS with rectangular cross-sections can be accurately modeled. Experimentally, such AFMSs can be easily manufactured based on digital light processing of ultra-violet (UV)-curable resins. We first determined the viscoelastic properties of a UV-cured resin through dynamic mechanical analysis. In particular, the high-frequency storage moduli and loss factors were obtained based on the assumption of time-temperature superposition (TTS), which were then applied in theoretical calculations. Though the extrapolation based on the TTS implied the uncertainty of high-frequency material response and there is limited accuracy in determining head oscillation amplitude, the differences between the measured terminal velocities of the AFMSs and the predicted ones are less than 50%, which, to us, is well acceptable. These results indicate that the motions of acoustic AFMS can be predicted, and thus, designed, which pave the way for their long-awaited applications in targeted therapy.

这项研究考察了人工鞭毛虫微型游泳器(AFMSs)的声驱动运动,并将这些微型游泳器的运动与我们之前工作中提出的基于校正阻力理论(CRFT)和条形关节模型的预测进行了比较。该理论的关键要素是引入一个校正因子Kin阻力系数,以校正传统的阻力理论,从而准确模拟矩形横截面声学驱动 AFMS 的动力学。在实验中,这种 AFMS 可以通过紫外光固化树脂的数字光处理(DLP)轻松制造。我们首先通过动态机械分析(DMA)确定了 UV 固化树脂的粘弹性能。特别是根据时间-温度叠加(TTS)假设获得了高频存储模量和损耗因子,并将其应用于理论计算。虽然基于 TTS 的推断意味着高频材料响应的不确定性,而且在确定头部振荡幅度时精度有限,但 AFMS 测量的终端速度与预测的终端速度之间的差异小于 50%,这对我们来说是完全可以接受的。这些结果表明,声学 AFMS 的运动是可以预测的,因此也是可以设计的,这为它们在靶向治疗中期待已久的应用铺平了道路。
{"title":"Propulsion mechanism of artificial flagellated micro-swimmers actuated by acoustic waves-theory and experimental verification.","authors":"Jinan Liu, Yiqiang Fu, Yifei Wu, Haihui Ruan","doi":"10.1088/1748-3190/ad622d","DOIUrl":"10.1088/1748-3190/ad622d","url":null,"abstract":"<p><p>This work examines the acoustically actuated motions of artificial flagellated micro-swimmers (AFMSs) and compares the motility of these micro-swimmers with the predictions based on the corrected resistive force theory (RFT) and the bar-joint model proposed in our previous work. The key ingredient in the theory is the introduction of a correction factor<i>K</i>in drag coefficients to correct the conventional RFT so that the dynamics of an acoustically actuated AFMS with rectangular cross-sections can be accurately modeled. Experimentally, such AFMSs can be easily manufactured based on digital light processing of ultra-violet (UV)-curable resins. We first determined the viscoelastic properties of a UV-cured resin through dynamic mechanical analysis. In particular, the high-frequency storage moduli and loss factors were obtained based on the assumption of time-temperature superposition (TTS), which were then applied in theoretical calculations. Though the extrapolation based on the TTS implied the uncertainty of high-frequency material response and there is limited accuracy in determining head oscillation amplitude, the differences between the measured terminal velocities of the AFMSs and the predicted ones are less than 50%, which, to us, is well acceptable. These results indicate that the motions of acoustic AFMS can be predicted, and thus, designed, which pave the way for their long-awaited applications in targeted therapy.</p>","PeriodicalId":55377,"journal":{"name":"Bioinspiration & Biomimetics","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141592150","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Direction-dependent bending resistance of 3D printed bio-inspired composites with asymmetric 3D articulated tiles. 具有非对称三维铰接瓦片的三维打印生物启发复合材料的抗弯曲性与方向有关。
IF 3.1 3区 计算机科学 Q1 ENGINEERING, MULTIDISCIPLINARY Pub Date : 2024-07-15 DOI: 10.1088/1748-3190/ad5ee7
Richard J Nash, Yaning Li

Inspired by the protective armors in nature, composites with asymmetric 3D articulated tiles attached to a soft layer are designed and fabricated via a multi-material 3D printer. The bending resistance of the new designs are characterized via three-point bending experiments. Bending rigidity, strength, and final deflection of the designs are quantified and compared when loaded in two different in-plane and two different out-of-plane directions. It is found that in general, the designs with articulated tiles show direction-dependent bending behaviors with significantly increased bending rigidity, strength, and deflection to final failure in certain loading directions, as is attributed to the asymmetric tile articulation (asymmetric about the mid-plane of tiles) and an interesting sliding-induced auxetic effect. Analytical, numerical, and experimental analyses are conducted to unveil the underlying mechanisms.

受自然界防护盔甲的启发,我们设计并通过多材料三维打印机制造了软层上附有非对称三维铰接瓦片的复合材料。新设计的抗弯性通过三点弯曲实验进行了表征。在两个不同的平面内和两个不同的平面外方向加载时,对设计的弯曲刚度、强度和最终挠度进行量化和比较。研究发现,一般来说,带有铰接瓦片的设计会表现出与方向相关的弯曲行为,在某些加载方向上,弯曲刚度、强度和最终破坏时的挠度都会显著增加,这归因于非对称瓦片铰接(瓦片中平面的非对称)和有趣的滑动诱导辅助效应。通过分析、数值和实验分析,揭示了其中的内在机理。
{"title":"Direction-dependent bending resistance of 3D printed bio-inspired composites with asymmetric 3D articulated tiles.","authors":"Richard J Nash, Yaning Li","doi":"10.1088/1748-3190/ad5ee7","DOIUrl":"10.1088/1748-3190/ad5ee7","url":null,"abstract":"<p><p>Inspired by the protective armors in nature, composites with asymmetric 3D articulated tiles attached to a soft layer are designed and fabricated via a multi-material 3D printer. The bending resistance of the new designs are characterized via three-point bending experiments. Bending rigidity, strength, and final deflection of the designs are quantified and compared when loaded in two different in-plane and two different out-of-plane directions. It is found that in general, the designs with articulated tiles show direction-dependent bending behaviors with significantly increased bending rigidity, strength, and deflection to final failure in certain loading directions, as is attributed to the asymmetric tile articulation (asymmetric about the mid-plane of tiles) and an interesting sliding-induced auxetic effect. Analytical, numerical, and experimental analyses are conducted to unveil the underlying mechanisms.</p>","PeriodicalId":55377,"journal":{"name":"Bioinspiration & Biomimetics","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141499698","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Characterization of shark skin properties and biomimetic replication. 鲨鱼皮的特性和生物仿真复制。
IF 3.1 3区 计算机科学 Q1 ENGINEERING, MULTIDISCIPLINARY Pub Date : 2024-07-15 DOI: 10.1088/1748-3190/ad5c25
Stan R R Baeten, Ana Kochovski, Jovana Jovanova, Aimée Sakes

This review explores the present knowledge of the unique properties of shark skin and possible applications of its functionalities, including drag reduction and swimming efficiency. Tooth-like denticles, with varied morphologies, sizes, and densities across the shark's body, significantly influence the flow and interaction of fluids. Examining dermal denticle morphology, this study unveils the functional properties of real shark skin, including mechanical properties such as stiffness, stress-strain characteristics, and denticle density's impact on tensile properties. The adaptive capabilities of the Mako shark scales, especially in high-speed swimming, are explored, emphasizing their passive flow-actuated dynamic micro-roughness. This research contains an overview of various studies on real shark skin, categorizing them into skin properties, morphology, and hydrodynamics. The paper extends exploration into industrial applications, detailing fabrication techniques and potential uses in vessels, aircraft, and water pipes for friction reduction. Three manufacturing approaches, bio-replicated forming, direct fabrication, and indirect manufacturing, are examined, with 3D printing and photoconfiguration technology emerging as promising alternatives. Investigations into the mechanical properties of shark skin fabrics reveal the impact of denticle size on tensile strength, stress, and strain. Beyond drag reduction, the study highlights the shark skin's role in enhancing thrust and lift during locomotion. The paper identifies future research directions, emphasizing live shark testing and developing synthetic skin with the help of 3D printing incorporating the bristling effect.

这篇综述探讨了目前对鲨鱼皮肤独特性质的了解,以及鲨鱼皮肤功能的可能应用,包括减少阻力和提高游泳效率。鲨鱼全身不同形态、大小和密度的齿状小齿对流体的流动和相互作用有重大影响。这项研究通过考察真皮层的齿状突起形态,揭示了真正鲨鱼皮肤的功能特性,包括机械特性,如硬度、应力应变特性以及齿状突起密度对拉伸特性的影响。研究还探讨了鲭鲨鳞片的适应能力,尤其是在高速游泳时的适应能力,强调了其被动流动的动态微粗糙度。本研究概述了对真实鲨鱼皮肤的各种研究,并将其分为皮肤特性、形态和流体力学三类。论文将探索延伸到工业应用领域,介绍了制造技术以及在船舶、飞机和水管中减少摩擦的潜在用途。论文对生物复制成型、直接制造和间接制造三种制造方法进行了研究,并将三维打印和光子成型技术作为有前途的替代技术。对鲨鱼皮织物机械性能的研究揭示了齿粒大小对拉伸强度、应力和应变的影响。除了减少阻力,研究还强调了鲨鱼皮在运动过程中增强推力和升力的作用。论文指出了未来的研究方向,强调对鲨鱼进行活体测试,并借助三维打印技术开发出具有刚毛效应的合成皮肤。
{"title":"Characterization of shark skin properties and biomimetic replication.","authors":"Stan R R Baeten, Ana Kochovski, Jovana Jovanova, Aimée Sakes","doi":"10.1088/1748-3190/ad5c25","DOIUrl":"10.1088/1748-3190/ad5c25","url":null,"abstract":"<p><p>This review explores the present knowledge of the unique properties of shark skin and possible applications of its functionalities, including drag reduction and swimming efficiency. Tooth-like denticles, with varied morphologies, sizes, and densities across the shark's body, significantly influence the flow and interaction of fluids. Examining dermal denticle morphology, this study unveils the functional properties of real shark skin, including mechanical properties such as stiffness, stress-strain characteristics, and denticle density's impact on tensile properties. The adaptive capabilities of the Mako shark scales, especially in high-speed swimming, are explored, emphasizing their passive flow-actuated dynamic micro-roughness. This research contains an overview of various studies on real shark skin, categorizing them into skin properties, morphology, and hydrodynamics. The paper extends exploration into industrial applications, detailing fabrication techniques and potential uses in vessels, aircraft, and water pipes for friction reduction. Three manufacturing approaches, bio-replicated forming, direct fabrication, and indirect manufacturing, are examined, with 3D printing and photoconfiguration technology emerging as promising alternatives. Investigations into the mechanical properties of shark skin fabrics reveal the impact of denticle size on tensile strength, stress, and strain. Beyond drag reduction, the study highlights the shark skin's role in enhancing thrust and lift during locomotion. The paper identifies future research directions, emphasizing live shark testing and developing synthetic skin with the help of 3D printing incorporating the bristling effect.</p>","PeriodicalId":55377,"journal":{"name":"Bioinspiration & Biomimetics","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141460889","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Bioinspiration & Biomimetics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1