Pub Date : 2024-10-18DOI: 10.1016/j.automatica.2024.111982
Yimeng Li , Jun Yang , Jinhao Liu , Xinming Wang , Shihua Li
This paper investigates the stability issues of model predictive control (MPC) for discrete-time linear systems with state and finite control set (FCS) constraints subject to time-varying disturbances. A new FCS-MPC design and analysis framework is developed using the disturbance estimation approaches and the tool of robust positive invariant (RPI) set sequence. It encompasses a discrete-time exogenous signal observer that helps characterize the estimated dynamics within well-defined bounds and a quantized control law that adheres to both state and input constraints. The practical asymptotical stability of the resulting closed-loop system is shown to be guaranteed, and the tracking error remains uniformly bounded. Finally, simulation results of a numerical example validate the effectiveness of the proposed method.
{"title":"On stability of model predictive control with finite-control-set constraints and disturbances","authors":"Yimeng Li , Jun Yang , Jinhao Liu , Xinming Wang , Shihua Li","doi":"10.1016/j.automatica.2024.111982","DOIUrl":"10.1016/j.automatica.2024.111982","url":null,"abstract":"<div><div>This paper investigates the stability issues of model predictive control (MPC) for discrete-time linear systems with state and finite control set (FCS) constraints subject to time-varying disturbances. A new FCS-MPC design and analysis framework is developed using the disturbance estimation approaches and the tool of robust positive invariant (RPI) set sequence. It encompasses a discrete-time exogenous signal observer that helps characterize the estimated dynamics within well-defined bounds and a quantized control law that adheres to both state and input constraints. The practical asymptotical stability of the resulting closed-loop system is shown to be guaranteed, and the tracking error remains uniformly bounded. Finally, simulation results of a numerical example validate the effectiveness of the proposed method.</div></div>","PeriodicalId":55413,"journal":{"name":"Automatica","volume":"171 ","pages":"Article 111982"},"PeriodicalIF":4.8,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142526132","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-16DOI: 10.1016/j.automatica.2024.111986
Iasson Karafyllis , Miroslav Krstic , Alexandros Aslanidis
In this paper we extend our recently proposed Deadzone-Adapted Disturbance Suppression (DADS) Control approach from systems with matched uncertainties to general systems in parametric strict feedback form. The DADS approach prevents gain and state drift regardless of the size of the disturbance and unknown parameter and achieves an attenuation of the plant output to an assignable small level, despite the presence of persistent disturbances and unknown parameters of arbitrary and unknown bounds. The controller is designed by means of a step-by-step backstepping procedure which can be applied in an algorithmic fashion. Examples are provided which illustrate the efficiency of the DADS controller compared to existing adaptive control schemes.
{"title":"Deadzone-Adapted Disturbance Suppression Control for strict-feedback systems","authors":"Iasson Karafyllis , Miroslav Krstic , Alexandros Aslanidis","doi":"10.1016/j.automatica.2024.111986","DOIUrl":"10.1016/j.automatica.2024.111986","url":null,"abstract":"<div><div>In this paper we extend our recently proposed Deadzone-Adapted Disturbance Suppression (DADS) Control approach from systems with matched uncertainties to general systems in parametric strict feedback form. The DADS approach prevents gain and state drift regardless of the size of the disturbance and unknown parameter and achieves an attenuation of the plant output to an assignable small level, despite the presence of persistent disturbances and unknown parameters of arbitrary and unknown bounds. The controller is designed by means of a step-by-step backstepping procedure which can be applied in an algorithmic fashion. Examples are provided which illustrate the efficiency of the DADS controller compared to existing adaptive control schemes.</div></div>","PeriodicalId":55413,"journal":{"name":"Automatica","volume":"171 ","pages":"Article 111986"},"PeriodicalIF":4.8,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142441427","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-16DOI: 10.1016/j.automatica.2024.111985
Weiran Yao , Haoyu Tian , Jianxing Liu , Ligang Wu , Yu Sun
Plan-based coordination, which can fill the vacancy of control during the communication silent periods, improves the ability of agents’ independence and reduces the requirement of communication resources. This paper presents a generalized form of plan-based coordination, namely the time-extended consensus problem, which is applicable to multi-agent systems entering non-interaction state. Conditions for achieving time-extended consensus are described for systems subject to the Lipschitz condition. A control protocol for time-extended consensus is constructed using linear superposition of drag vector fields. The convergence process of time-extended states based on the proposed control protocol is investigated in terms of the speed of approaching consensus. Simulation results demonstrate the advantages and limitations of the proposed method for time-extended consensus and how it compares to conventional multi-agent state synchronization.
{"title":"Time-extended consensus for multi-agent non-interactive collaboration","authors":"Weiran Yao , Haoyu Tian , Jianxing Liu , Ligang Wu , Yu Sun","doi":"10.1016/j.automatica.2024.111985","DOIUrl":"10.1016/j.automatica.2024.111985","url":null,"abstract":"<div><div>Plan-based coordination, which can fill the vacancy of control during the communication silent periods, improves the ability of agents’ independence and reduces the requirement of communication resources. This paper presents a generalized form of plan-based coordination, namely the time-extended consensus problem, which is applicable to multi-agent systems entering non-interaction state. Conditions for achieving time-extended consensus are described for systems subject to the Lipschitz condition. A control protocol for time-extended consensus is constructed using linear superposition of drag vector fields. The convergence process of time-extended states based on the proposed control protocol is investigated in terms of the speed of approaching consensus. Simulation results demonstrate the advantages and limitations of the proposed method for time-extended consensus and how it compares to conventional multi-agent state synchronization.</div></div>","PeriodicalId":55413,"journal":{"name":"Automatica","volume":"171 ","pages":"Article 111985"},"PeriodicalIF":4.8,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142441428","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-11DOI: 10.1016/j.automatica.2024.111974
Mattia Bianchi , Sergio Grammatico , Jorge Cortés
We consider the design of state feedback control laws for both the switching signal and the continuous input of an unknown switched linear system, given past noisy input-state trajectories measurements. Based on Lyapunov–Metzler inequalities and on a matrix S-lemma, we derive data-dependent bilinear programs, whose solution directly returns a provably stabilizing controller and ensures or performance. We further present relaxations that considerably reduce the computational cost, still without requiring stabilizability of any of the switching modes. Finally, we showcase the flexibility of our approach on the constrained stabilization problem for an unknown perturbed linear system. We validate our theoretical findings numerically, demonstrating the favorable trade-off between conservatism and tractability achieved by the proposed relaxations.
我们考虑的是在给定过去噪声输入-状态轨迹测量值的情况下,为未知开关线性系统的开关信号和连续输入设计状态反馈控制律。基于 Lyapunov-Metzler 不等式和矩阵 S 困境,我们得出了与数据相关的双线性程序,其解直接返回可证明的稳定控制器,并确保 H2 或 H∞ 性能。我们还进一步提出了可大大降低计算成本的松弛方法,但仍不要求任何切换模式具有稳定性。最后,我们展示了在未知扰动线性系统的受限稳定问题上我们方法的灵活性。我们通过数值验证了我们的理论发现,证明了所提出的松弛方法在保守性和可操作性之间实现了有利的权衡。
{"title":"Data-driven stabilization of switched and constrained linear systems","authors":"Mattia Bianchi , Sergio Grammatico , Jorge Cortés","doi":"10.1016/j.automatica.2024.111974","DOIUrl":"10.1016/j.automatica.2024.111974","url":null,"abstract":"<div><div>We consider the design of state feedback control laws for both the switching signal and the continuous input of an unknown switched linear system, given past noisy input-state trajectories measurements. Based on Lyapunov–Metzler inequalities and on a matrix S-lemma, we derive data-dependent bilinear programs, whose solution directly returns a provably stabilizing controller and ensures <span><math><msub><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> or <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>∞</mi></mrow></msub></math></span> performance. We further present relaxations that considerably reduce the computational cost, still without requiring stabilizability of any of the switching modes. Finally, we showcase the flexibility of our approach on the constrained stabilization problem for an unknown perturbed linear system. We validate our theoretical findings numerically, demonstrating the favorable trade-off between conservatism and tractability achieved by the proposed relaxations.</div></div>","PeriodicalId":55413,"journal":{"name":"Automatica","volume":"171 ","pages":"Article 111974"},"PeriodicalIF":4.8,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142421292","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-11DOI: 10.1016/j.automatica.2024.111926
Chengrui Wang, Houde Liu, Sanchuan Chen, Feng Xu
Optimizing a parameterized zonotope or ellipsoid is a common task in robust state estimation, fault diagnosis and reachability analysis. Recent studies have unified ellipsoids and zonotopes into basic ellipsotopes, which support precise representation for more nonlinear boundaries and constraints in practical applications. However, there are currently no available optimality criteria and optimization techniques for general basic ellipsotopes. In this paper, we introduce a novel optimality criterion called Schatten-p radius for basic ellipsotopes. Based on this criterion, we develop a set of methods to minimize the Schatten-p radius under convex constraints for arbitrary p , which also implies new available tools for minimizing zonotopes and ellipsoids. The effectiveness of the Schatten-p radius optimization is demonstrated on several numerical examples.
{"title":"Schatten-p radius: Optimality criterion and optimization for basic ellipsotopes with application to zonotopes and ellipsoids","authors":"Chengrui Wang, Houde Liu, Sanchuan Chen, Feng Xu","doi":"10.1016/j.automatica.2024.111926","DOIUrl":"10.1016/j.automatica.2024.111926","url":null,"abstract":"<div><div>Optimizing a parameterized zonotope or ellipsoid is a common task in robust state estimation, fault diagnosis and reachability analysis. Recent studies have unified ellipsoids and zonotopes into <em>basic ellipsotopes</em>, which support precise representation for more nonlinear boundaries and constraints in practical applications. However, there are currently no available optimality criteria and optimization techniques for general basic ellipsotopes. In this paper, we introduce a novel optimality criterion called <em>Schatten-p radius</em> for basic ellipsotopes. Based on this criterion, we develop a set of methods to minimize the Schatten-<em>p</em> radius under convex constraints for arbitrary <span><math><mrow><mn>0</mn><mo><</mo></mrow></math></span> <em>p</em> <span><math><mrow><mo><</mo><mi>∞</mi></mrow></math></span>, which also implies new available tools for minimizing zonotopes and ellipsoids. The effectiveness of the Schatten-<em>p</em> radius optimization is demonstrated on several numerical examples.</div></div>","PeriodicalId":55413,"journal":{"name":"Automatica","volume":"171 ","pages":"Article 111926"},"PeriodicalIF":4.8,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142421950","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-09DOI: 10.1016/j.automatica.2024.111984
Ege Can Kaya , Michael Hibbard , Takashi Tanaka , Ufuk Topcu , Abolfazl Hashemi
We study a pair of budget- and performance-constrained weak submodular maximization problems. For computational efficiency, we explore the use of stochastic greedy algorithms which limit the search space via random sampling instead of the standard greedy procedure which explores the entire feasible search space. We propose a pair of stochastic greedy algorithms, namely, Modified Randomized Greedy (MRG) and Dual Randomized Greedy (DRG) to approximately solve the budget- and performance-constrained problems, respectively. For both algorithms, we derive approximation guarantees that hold with high probability. We then examine the use of DRG in robust optimization problems wherein the objective is to maximize the worst-case of a number of weak submodular objectives and propose the Randomized Weak Submodular Saturation Algorithm (Random-WSSA). We further derive a high-probability guarantee for when Random-WSSA successfully constructs a robust solution. Finally, we showcase the effectiveness of these algorithms in a variety of relevant uses within the context of Earth-observing LEO constellations which estimate atmospheric weather conditions and provide Earth coverage.
{"title":"Randomized greedy methods for weak submodular sensor selection with robustness considerations","authors":"Ege Can Kaya , Michael Hibbard , Takashi Tanaka , Ufuk Topcu , Abolfazl Hashemi","doi":"10.1016/j.automatica.2024.111984","DOIUrl":"10.1016/j.automatica.2024.111984","url":null,"abstract":"<div><div>We study a pair of budget- and performance-constrained weak submodular maximization problems. For computational efficiency, we explore the use of stochastic greedy algorithms which limit the search space via random sampling instead of the standard greedy procedure which explores the entire feasible search space. We propose a pair of stochastic greedy algorithms, namely, <span>Modified Randomized Greedy (MRG)</span> and <span>Dual Randomized Greedy (DRG)</span> to approximately solve the budget- and performance-constrained problems, respectively. For both algorithms, we derive approximation guarantees that hold with high probability. We then examine the use of DRG in robust optimization problems wherein the objective is to maximize the worst-case of a number of weak submodular objectives and propose the <span>Randomized Weak Submodular Saturation Algorithm (Random-WSSA)</span>. We further derive a high-probability guarantee for when <span>Random-WSSA</span> successfully constructs a robust solution. Finally, we showcase the effectiveness of these algorithms in a variety of relevant uses within the context of Earth-observing LEO constellations which estimate atmospheric weather conditions and provide Earth coverage.</div></div>","PeriodicalId":55413,"journal":{"name":"Automatica","volume":"171 ","pages":"Article 111984"},"PeriodicalIF":4.8,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142421290","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
For “Timed Event Graphs”, linear equations can be written in the max-plus algebra that describe the firing dynamics. In some cases, independent events/inputs can be used to influence the system dynamics in order to achieve a desired specification. In this setting, significant attention has been devoted to the mathematical development of controllers that achieve these desired specifications. In this article, a methodology is provided for solving a max-plus linear control problem as an extension of the result in Gonçalves et al. (2017). A condition is provided that induces into the system a periodic behavior in steady state and also shapes the response to comply with the specifications. Furthermore, the controller’s causality is addressed.
{"title":"Control of max-plus linear systems using feedback cycle shaping","authors":"Vinicius Mariano Gonçalves , Prashanth Krishnamurthy , Anthony Tzes , Farshad Khorrami","doi":"10.1016/j.automatica.2024.111980","DOIUrl":"10.1016/j.automatica.2024.111980","url":null,"abstract":"<div><div>For “Timed Event Graphs”, linear equations can be written in the max-plus algebra that describe the firing dynamics. In some cases, independent events/inputs can be used to influence the system dynamics in order to achieve a desired specification. In this setting, significant attention has been devoted to the mathematical development of controllers that achieve these desired specifications. In this article, a methodology is provided for solving a max-plus linear control problem as an extension of the result in Gonçalves et al. (2017). A condition is provided that induces into the system a periodic behavior in steady state and also shapes the response to comply with the specifications. Furthermore, the controller’s causality is addressed.</div></div>","PeriodicalId":55413,"journal":{"name":"Automatica","volume":"171 ","pages":"Article 111980"},"PeriodicalIF":4.8,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142421967","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-09DOI: 10.1016/j.automatica.2024.111953
Mario Sassano , Thulasi Mylvaganam , Alessandro Astolfi
Linear Quadratic differential games and their Open-Loop Nash Equilibrium (OL-NE) strategies are studied with a threefold objective. First, it is shown that the state/costate lifted system (arising from the application of Pontryagin’s Minimum Principle) is such that its behaviour restricted to the equilibrium subspace can be interpreted as the (non-power-preserving) interconnection of two cyclo-passive Port-Controlled Hamiltonian systems. Such PCH systems constitute the best response generators for each player, thus mimicking and extending the corresponding interpretation of (single-player) optimal control problems. Second, by realizing that the behaviour of the lifted dynamics off the equilibrium subspace is “irrelevant” for generating the equilibrium strategies, it is shown that such an invariant subspace can be rendered, via a suitably constructed virtual input, externally asymptotically stable while preserving the OL-NE. Finally, based on these premises we provide a closed-form gradient-descent method to solve the asymmetric coupled Riccati equations characterizing the OL-NE strategies.
{"title":"OL-NE for LQ differential games: A Port-Controlled Hamiltonian system perspective and some computational strategies","authors":"Mario Sassano , Thulasi Mylvaganam , Alessandro Astolfi","doi":"10.1016/j.automatica.2024.111953","DOIUrl":"10.1016/j.automatica.2024.111953","url":null,"abstract":"<div><div>Linear Quadratic differential games and their Open-Loop Nash Equilibrium (OL-NE) strategies are studied with a threefold objective. First, it is shown that the state/costate lifted system (arising from the application of Pontryagin’s Minimum Principle) is such that its behaviour restricted to the <em>equilibrium subspace</em> can be interpreted as the (non-power-preserving) interconnection of two cyclo-passive Port-Controlled Hamiltonian systems. Such PCH systems constitute the <em>best response</em> generators for each player, thus mimicking and extending the corresponding interpretation of (single-player) optimal control problems. Second, by realizing that the behaviour of the lifted dynamics <em>off</em> the equilibrium subspace is “irrelevant” for generating the equilibrium strategies, it is shown that such an invariant subspace can be rendered, via a suitably constructed virtual input, externally asymptotically stable while preserving the OL-NE. Finally, based on these premises we provide a closed-form gradient-descent method to solve the asymmetric coupled Riccati equations characterizing the OL-NE strategies.</div></div>","PeriodicalId":55413,"journal":{"name":"Automatica","volume":"171 ","pages":"Article 111953"},"PeriodicalIF":4.8,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142421277","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-09DOI: 10.1016/j.automatica.2024.111972
Wei-Wei Che , Lili Zhang , Chao Deng , Zheng-Guang Wu
This paper proposes a hierarchical control approach to solve the prescribed performance lane-changing control problem for nonlinear vehicle platoons. By incorporating the collision avoidance and comfort assurance conditions specifically tailored for vehicle platoons, the value range of the safe lane-changing completion time (LCCT) can be calculated. Based on which, the longitudinal and lateral reference displacements are determined for the leader vehicle, respectively. Further, to safely achieve the prescribed performance lane changing in the operational layer, a class of more practical performance functions is designed based on the calculated LCCT as the key technology for proposing the neural network longitudinal and lateral control protocols. The developed lane-changing control strategies guarantee that the vehicle platoon can track the obtained reference trajectory while avoiding inter-platoon and intra-platoon collisions. Furthermore, the safe lane-changing maneuver can be achieved within the predefined LCCT with the preset accuracy. Finally, the availability of the proposed hierarchical algorithm is checked through two simulation examples with comparisons.
{"title":"Hierarchical lane-changing control for vehicle platoons in prescribed performance","authors":"Wei-Wei Che , Lili Zhang , Chao Deng , Zheng-Guang Wu","doi":"10.1016/j.automatica.2024.111972","DOIUrl":"10.1016/j.automatica.2024.111972","url":null,"abstract":"<div><div>This paper proposes a hierarchical control approach to solve the prescribed performance lane-changing control problem for nonlinear vehicle platoons. By incorporating the collision avoidance and comfort assurance conditions specifically tailored for vehicle platoons, the value range of the safe lane-changing completion time (LCCT) can be calculated. Based on which, the longitudinal and lateral reference displacements are determined for the leader vehicle, respectively. Further, to safely achieve the prescribed performance lane changing in the operational layer, a class of more practical performance functions is designed based on the calculated LCCT as the key technology for proposing the neural network longitudinal and lateral control protocols. The developed lane-changing control strategies guarantee that the vehicle platoon can track the obtained reference trajectory while avoiding inter-platoon and intra-platoon collisions. Furthermore, the safe lane-changing maneuver can be achieved within the predefined LCCT with the preset accuracy. Finally, the availability of the proposed hierarchical algorithm is checked through two simulation examples with comparisons.</div></div>","PeriodicalId":55413,"journal":{"name":"Automatica","volume":"171 ","pages":"Article 111972"},"PeriodicalIF":4.8,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142421291","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-09DOI: 10.1016/j.automatica.2024.111979
Xiaoqiang Ji , Shaoqin Zhu , Yangsheng Xu , Richard W. Longman
The feedforward control strategy exhibits substantial capability and high-precision control for output tracking tasks. However, the feedforward control action obtained through solving the inverse problem is unstable for non-minimum phase systems. In this paper, a novel stable inversion method is presented, termed lifted time stable inversion. Compared to the existing method, the proposed method does not necessitate infinite window to accomplish the tracking tasks. A comprehensive analysis of the developed method is provided, focusing on analysis of finite time stability and input–output finite time stability, aspects that have garnered limited attention in the literature on feedforward control. Furthermore, the relationship with existing stable inversion method is illustrated by constructing a linear transformation of the initial conditions for both inversions. Simulation results substantiate the validity of the finite time bounds and demonstrate the superior tracking advantage of the proposed method relative to the existing method. The performance of the proposed method is further displayed experimentally on a piezoelectric ceramic positioning platform.
{"title":"Lifted time stable inversion based feedforward control for linear non-minimum phase systems","authors":"Xiaoqiang Ji , Shaoqin Zhu , Yangsheng Xu , Richard W. Longman","doi":"10.1016/j.automatica.2024.111979","DOIUrl":"10.1016/j.automatica.2024.111979","url":null,"abstract":"<div><div>The feedforward control strategy exhibits substantial capability and high-precision control for output tracking tasks. However, the feedforward control action obtained through solving the inverse problem is unstable for non-minimum phase systems. In this paper, a novel stable inversion method is presented, termed lifted time stable inversion. Compared to the existing method, the proposed method does not necessitate infinite window to accomplish the tracking tasks. A comprehensive analysis of the developed method is provided, focusing on analysis of finite time stability and input–output finite time stability, aspects that have garnered limited attention in the literature on feedforward control. Furthermore, the relationship with existing stable inversion method is illustrated by constructing a linear transformation of the initial conditions for both inversions. Simulation results substantiate the validity of the finite time bounds and demonstrate the superior tracking advantage of the proposed method relative to the existing method. The performance of the proposed method is further displayed experimentally on a piezoelectric ceramic positioning platform.</div></div>","PeriodicalId":55413,"journal":{"name":"Automatica","volume":"171 ","pages":"Article 111979"},"PeriodicalIF":4.8,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142421966","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}