首页 > 最新文献

Astronomische Nachrichten最新文献

英文 中文
Spin period evolution of Vela pulsar based on the wind emission: Application to the long period radio pulsars GPM J1839-10 (P = 21 min) and GLEAM-X J1627 (P = 18 min) 基于风发射的 Vela 脉冲星自旋周期演变:对长周期射电脉冲星 GPM J1839-10(P = 21 分钟)和 GLEAM-X J1627(P = 18 分钟)的应用
IF 0.9 4区 物理与天体物理 Q3 ASTRONOMY & ASTROPHYSICS Pub Date : 2024-02-20 DOI: 10.1002/asna.20230176
Yi-Hong Sun, De-Hua Wang, Cheng-Min Zhang, Xiang-Han Cui, Jian-Wei Zhang, Jing Yu, Yun-Gang Zhou, Zi-Yi You

The Vela pulsar is a young neutron star with spin period of P = 89 ms and a measured low braking index (˜1.4) that is much less than the standard value of 3 predicted by the magnetic dipole radiation (MDR) model; however, its spin period evolution has been a mystery. In this article, we assume that the spin-down of the Vela pulsar is attributed to both MDR and wind flow (hereafter MDRW), and find that the ratio of wind flow to the magnetic dipole radiation is about 80%, which is higher than that of the Crab pulsar (25%). In other words, the spin-down torque of the Vela pulsar is dominated by the wind flow. The spin period (P) evolution of the Vela pulsar depends on its real age, where its supernova remnant age is assumed to be an indicator of its true age, estimated from 10 to 20 kyr, and then we obtain their initial spin periods of ˜53.89 and ˜20.90 ms, respectively, which are consistent with the observed initial spin period ranges of young pulsars. Furthermore, we find that the Vela-like pulsar by MDRW can evolve to the long spin period of a thousand of seconds in less than million years, which can conveniently help the astronomers understand the recently observed ultra-long period radio pulsars like GPM J1839-10 (P = 21 min), GLEAM-X J1627 (P = 18 min), as well as PSR J0901+4046 (P = 76 s).

维拉脉冲星是一颗年轻的中子星,自旋周期为 P = 89 ms,测量到的制动指数较低(˜1.4),远小于磁偶极辐射(MDR)模型预测的标准值 3;然而,它的自旋周期演变一直是个谜。本文假设维拉脉冲星的自旋下降同时归因于 MDR 和风流(以下简称 MDRW),并发现风流与磁偶极辐射的比例约为 80%,高于蟹状脉冲星的比例(25%)。换句话说,维拉脉冲星的自旋下降力矩是由风流主导的。Vela 脉冲星的自旋周期(P)演变取决于其真实年龄,假定其超新星残余年龄是其真实年龄的指标,估计为 10 到 20 kyr,然后我们得到它们的初始自旋周期分别为 ˜53.89 和 ˜20.90 ms,这与观测到的年轻脉冲星的初始自旋周期范围一致。此外,我们还发现 MDRW 的 Vela 类脉冲星可以在不到百万年的时间内演化到上千秒的长自旋周期,这可以方便地帮助天文学家理解最近观测到的超长周期射电脉冲星,如 GPM J1839-10(P = 21 分钟)、GLEAM-X J1627(P = 18 分钟)以及 PSR J0901+4046 (P = 76 秒)。
{"title":"Spin period evolution of Vela pulsar based on the wind emission: Application to the long period radio pulsars GPM J1839-10 (P = 21 min) and GLEAM-X J1627 (P = 18 min)","authors":"Yi-Hong Sun,&nbsp;De-Hua Wang,&nbsp;Cheng-Min Zhang,&nbsp;Xiang-Han Cui,&nbsp;Jian-Wei Zhang,&nbsp;Jing Yu,&nbsp;Yun-Gang Zhou,&nbsp;Zi-Yi You","doi":"10.1002/asna.20230176","DOIUrl":"10.1002/asna.20230176","url":null,"abstract":"<p>The Vela pulsar is a young neutron star with spin period of <i>P</i> = 89 ms and a measured low braking index (˜1.4) that is much less than the standard value of 3 predicted by the magnetic dipole radiation (MDR) model; however, its spin period evolution has been a mystery. In this article, we assume that the spin-down of the Vela pulsar is attributed to both MDR and wind flow (hereafter MDRW), and find that the ratio of wind flow to the magnetic dipole radiation is about 80%, which is higher than that of the Crab pulsar (25%). In other words, the spin-down torque of the Vela pulsar is dominated by the wind flow. The spin period (<i>P</i>) evolution of the Vela pulsar depends on its real age, where its supernova remnant age is assumed to be an indicator of its true age, estimated from 10 to 20 kyr, and then we obtain their initial spin periods of ˜53.89 and ˜20.90 ms, respectively, which are consistent with the observed initial spin period ranges of young pulsars. Furthermore, we find that the Vela-like pulsar by MDRW can evolve to the long spin period of a thousand of seconds in less than million years, which can conveniently help the astronomers understand the recently observed ultra-long period radio pulsars like GPM J1839-10 (<i>P</i> = 21 min), GLEAM-X J1627 (<i>P</i> = 18 min), as well as PSR J0901+4046 (<i>P</i> = 76 s).</p>","PeriodicalId":55442,"journal":{"name":"Astronomische Nachrichten","volume":"345 5","pages":""},"PeriodicalIF":0.9,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139927574","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Simple calculation of the Moon apsides motion 月球背面运动的简单计算
IF 0.9 4区 物理与天体物理 Q3 ASTRONOMY & ASTROPHYSICS Pub Date : 2024-02-20 DOI: 10.1002/asna.20230143
V. V. Nesterenko
<p>A simple and clear method to calculate the averaged motion of the apsis line in the Moon orbit is proposed. The obtained result is <span></span><math> <semantics> <mrow> <mn>3</mn> <mo>°</mo> <msup> <mn>1</mn> <mo>′</mo> </msup> <mn>1</mn> <msup> <mn>2</mn> <mo>′′</mo> </msup> </mrow> <annotation>$$ {3}^{{}^{circ}}{1}^{prime }1{2}^{prime prime } $$</annotation> </semantics></math> for the starry period of the Moon revolution around the Earth or <span></span><math> <semantics> <mrow> <mn>40</mn> <mo>°</mo> <mn>2</mn> <msup> <mn>2</mn> <mo>′</mo> </msup> <mn>4</mn> <msup> <mn>8</mn> <mo>′′</mo> </msup> </mrow> <annotation>$$ {40}^{{}^{circ}}2{2}^{prime }4{8}^{prime prime } $$</annotation> </semantics></math> per year. The modern observed value of the latter quantity is <span></span><math> <semantics> <mrow> <mn>40</mn> <mo>°</mo> <mn>4</mn> <msup> <mn>1</mn> <mo>′</mo> </msup> </mrow> <annotation>$$ {40}^{{}^{circ}}4{1}^{prime } $$</annotation> </semantics></math> per year. In “Principia” Newton derived <span></span><math> <semantics> <mrow> <mn>1</mn> <mo>°</mo> <mn>3</mn> <msup> <mn>1</mn> <mo>′</mo> </msup> <mn>2</mn> <msup> <mn>8</mn> <mo>′′</mo> </msup> </mrow> <annotation>$$ {1}^{{}^{circ}}3{1}^{prime }2{8}^{prime prime } $$</annotation> </semantics></math> for the Moon month and <span></span><math> <semantics> <mrow> <mn>20</mn> <mo>°</mo> <mn>1</mn> <msup> <mn>2</mn> <mo>′′</mo> </msup> </mrow> <annotation>$$ {20}^{{}^{circ}}1{2}^{prime prime } $$</annotation> </semantics></math> per year, that is approximately two times less than the observed values. Contrary to the Newton approach, we use a simple and obvious averaging of the Sun disturbing force for the starry period of the Moon revol
本文提出了一种简单明了的方法来计算月球轨道中远地点线的平均运动。得到的结果是月球绕地球公转的星周期或年周期。后者的现代观测值是每年。牛顿在 "原理 "中得出的月和年的数值比观测值少约两倍。与牛顿的方法相反,我们使用了一个简单而明显的太阳扰动力平均值来计算月球绕地球旋转的星空周期。我们论证了所得公式对其他行星卫星和行星本身的适用性。通过比较牛顿的计算和我们的方法,我们揭示了导致牛顿得出不精确结果的令人信服的原因。
{"title":"Simple calculation of the Moon apsides motion","authors":"V. V. Nesterenko","doi":"10.1002/asna.20230143","DOIUrl":"10.1002/asna.20230143","url":null,"abstract":"&lt;p&gt;A simple and clear method to calculate the averaged motion of the apsis line in the Moon orbit is proposed. The obtained result is &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mn&gt;3&lt;/mn&gt;\u0000 &lt;mo&gt;°&lt;/mo&gt;\u0000 &lt;msup&gt;\u0000 &lt;mn&gt;1&lt;/mn&gt;\u0000 &lt;mo&gt;′&lt;/mo&gt;\u0000 &lt;/msup&gt;\u0000 &lt;mn&gt;1&lt;/mn&gt;\u0000 &lt;msup&gt;\u0000 &lt;mn&gt;2&lt;/mn&gt;\u0000 &lt;mo&gt;′′&lt;/mo&gt;\u0000 &lt;/msup&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$$ {3}^{{}^{circ}}{1}^{prime }1{2}^{prime prime } $$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; for the starry period of the Moon revolution around the Earth or &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mn&gt;40&lt;/mn&gt;\u0000 &lt;mo&gt;°&lt;/mo&gt;\u0000 &lt;mn&gt;2&lt;/mn&gt;\u0000 &lt;msup&gt;\u0000 &lt;mn&gt;2&lt;/mn&gt;\u0000 &lt;mo&gt;′&lt;/mo&gt;\u0000 &lt;/msup&gt;\u0000 &lt;mn&gt;4&lt;/mn&gt;\u0000 &lt;msup&gt;\u0000 &lt;mn&gt;8&lt;/mn&gt;\u0000 &lt;mo&gt;′′&lt;/mo&gt;\u0000 &lt;/msup&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$$ {40}^{{}^{circ}}2{2}^{prime }4{8}^{prime prime } $$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; per year. The modern observed value of the latter quantity is &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mn&gt;40&lt;/mn&gt;\u0000 &lt;mo&gt;°&lt;/mo&gt;\u0000 &lt;mn&gt;4&lt;/mn&gt;\u0000 &lt;msup&gt;\u0000 &lt;mn&gt;1&lt;/mn&gt;\u0000 &lt;mo&gt;′&lt;/mo&gt;\u0000 &lt;/msup&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$$ {40}^{{}^{circ}}4{1}^{prime } $$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; per year. In “Principia” Newton derived &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mn&gt;1&lt;/mn&gt;\u0000 &lt;mo&gt;°&lt;/mo&gt;\u0000 &lt;mn&gt;3&lt;/mn&gt;\u0000 &lt;msup&gt;\u0000 &lt;mn&gt;1&lt;/mn&gt;\u0000 &lt;mo&gt;′&lt;/mo&gt;\u0000 &lt;/msup&gt;\u0000 &lt;mn&gt;2&lt;/mn&gt;\u0000 &lt;msup&gt;\u0000 &lt;mn&gt;8&lt;/mn&gt;\u0000 &lt;mo&gt;′′&lt;/mo&gt;\u0000 &lt;/msup&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$$ {1}^{{}^{circ}}3{1}^{prime }2{8}^{prime prime } $$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; for the Moon month and &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mn&gt;20&lt;/mn&gt;\u0000 &lt;mo&gt;°&lt;/mo&gt;\u0000 &lt;mn&gt;1&lt;/mn&gt;\u0000 &lt;msup&gt;\u0000 &lt;mn&gt;2&lt;/mn&gt;\u0000 &lt;mo&gt;′′&lt;/mo&gt;\u0000 &lt;/msup&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$$ {20}^{{}^{circ}}1{2}^{prime prime } $$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; per year, that is approximately two times less than the observed values. Contrary to the Newton approach, we use a simple and obvious averaging of the Sun disturbing force for the starry period of the Moon revol","PeriodicalId":55442,"journal":{"name":"Astronomische Nachrichten","volume":"345 4","pages":""},"PeriodicalIF":0.9,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139952223","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dirac spinor scattering states with positive-energy in rotating spheroid models 旋转球面模型中具有正能量的狄拉克自旋体散射态
IF 0.9 4区 物理与天体物理 Q3 ASTRONOMY & ASTROPHYSICS Pub Date : 2024-02-17 DOI: 10.1002/asna.20240012
Zhi-Fu Gao, Ci-Xing Chen, Na Wang, Xin-Jun Zhao, Zhao-Jun Wang
<p>There are many rotating spheroids in the universe, and many astronomers and physicists have used theoretical methods to study the characteristics of stellar gravity since Newton's time. This paper derives the solutions of eight scattering states <math> <semantics> <mrow> <mo>(</mo> <msup> <mi>ϕ</mi> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> </msup> <mo>,</mo> <msup> <mi>χ</mi> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> </msup> <mo>,</mo> <msup> <mi>ϕ</mi> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </msup> <mo>,</mo> <msup> <mi>χ</mi> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </msup> <mo>,</mo> <msup> <mi>ϕ</mi> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </msup> </mrow> <annotation>$$ Big({phi}^{(0)},{chi}^{(0)},{phi}^{(1)},{chi}^{(1)},{phi}^{(2)} $$</annotation> </semantics></math>,<math> <semantics> <mrow> <msup> <mi>χ</mi> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </msup> <mo>,</mo> <msup> <mi>ϕ</mi> <mrow> <mo>(</mo> <mn>3</mn> <mo>)</mo> </mrow> </msup> </mrow> <annotation>$$ {chi}^{(2)},{phi}^{(3)} $$</annotation> </semantics></math>, and<math> <semantics> <mrow> <msup> <mi>χ</mi> <mrow> <mo>(</mo> <mn>3</mn> <mo>)</mo> </mrow> </msup> <mo>)</mo> </mrow> <annotation>$$ {chi}^{(3)}Big) $$</annotation> </semantics></math> for the Dirac equa
宇宙中有许多旋转球体,自牛顿时代以来,许多天文学家和物理学家都用理论方法来研究恒星引力的特性。本文推导了八种散射态(ϕ(0),χ(0),ϕ(1),χ(1),ϕ(2)$$ Big({phi}^{(0)}、{chi}^{(0)},{phi}^{(1)},{chi}^{(1)},{phi}^{(2)} $$,χ(2),ϕ(3)$$ {chi}^{(2)},{phi}^{(3)} $$,andχ(3))$$ {chi}^{(3)}Big) $$ 为正能量 E=im$$ E= im $$ 的狄拉克方程,并建立了微分散射截面 σi(p,θ,φ)$$ {sigma}_ileft(p,theta, varphi right) $$ 与恒星密度 μ$$ mu $$ 之间的关系。结果发现(1) 对于八种散射态,它们的平均散射截面 σi‾$$ overline{sigma_i} $$ 与 μ$$ {mu}^2 $$ 成正比、恒星密度 μ$$ mu $$ 越高,σi‾$$ overline{sigma i} $$ 对 μ$$ mu $$ 变化的敏感性就越大;(2) 对于四个散射态 χ(i),i=0,1,2,3$$ {chi}^{(i)},i=0,1,2,3 $$,其平均散射振幅 f‾(p、θ)$$ overline{f}left(p,theta right) $$ 和 σ‾(p,θ)$$ overline{sigma}left(p,theta right) $$ 取决于粒子的质量 m$$ m$ ;而对于其他四种散射态 j(i)$$ {phi}^{(i)} $$, i=0,1,2,3$$ i=0,1,2,3 $$, 则 f‾$ overline{f} $$ 和 σ‾$ overline{sigma} $$ 与 m$$ m$ 无关。该研究将恒星的引力特性与散射截面联系起来,创建了一种研究引力特性的新方法,有助于揭示旋转椭球体恒星引力的奥秘。
{"title":"Dirac spinor scattering states with positive-energy in rotating spheroid models","authors":"Zhi-Fu Gao,&nbsp;Ci-Xing Chen,&nbsp;Na Wang,&nbsp;Xin-Jun Zhao,&nbsp;Zhao-Jun Wang","doi":"10.1002/asna.20240012","DOIUrl":"10.1002/asna.20240012","url":null,"abstract":"&lt;p&gt;There are many rotating spheroids in the universe, and many astronomers and physicists have used theoretical methods to study the characteristics of stellar gravity since Newton's time. This paper derives the solutions of eight scattering states &lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;msup&gt;\u0000 &lt;mi&gt;ϕ&lt;/mi&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;mn&gt;0&lt;/mn&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/msup&gt;\u0000 &lt;mo&gt;,&lt;/mo&gt;\u0000 &lt;msup&gt;\u0000 &lt;mi&gt;χ&lt;/mi&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;mn&gt;0&lt;/mn&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/msup&gt;\u0000 &lt;mo&gt;,&lt;/mo&gt;\u0000 &lt;msup&gt;\u0000 &lt;mi&gt;ϕ&lt;/mi&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;mn&gt;1&lt;/mn&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/msup&gt;\u0000 &lt;mo&gt;,&lt;/mo&gt;\u0000 &lt;msup&gt;\u0000 &lt;mi&gt;χ&lt;/mi&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;mn&gt;1&lt;/mn&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/msup&gt;\u0000 &lt;mo&gt;,&lt;/mo&gt;\u0000 &lt;msup&gt;\u0000 &lt;mi&gt;ϕ&lt;/mi&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;mn&gt;2&lt;/mn&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/msup&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$$ Big({phi}^{(0)},{chi}^{(0)},{phi}^{(1)},{chi}^{(1)},{phi}^{(2)} $$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;,&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;msup&gt;\u0000 &lt;mi&gt;χ&lt;/mi&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;mn&gt;2&lt;/mn&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/msup&gt;\u0000 &lt;mo&gt;,&lt;/mo&gt;\u0000 &lt;msup&gt;\u0000 &lt;mi&gt;ϕ&lt;/mi&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;mn&gt;3&lt;/mn&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/msup&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$$ {chi}^{(2)},{phi}^{(3)} $$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;, and&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;msup&gt;\u0000 &lt;mi&gt;χ&lt;/mi&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;mn&gt;3&lt;/mn&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/msup&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$$ {chi}^{(3)}Big) $$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; for the Dirac equa","PeriodicalId":55442,"journal":{"name":"Astronomische Nachrichten","volume":"345 2-3","pages":""},"PeriodicalIF":0.9,"publicationDate":"2024-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139927572","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Orbit of the visual binary star 61 Cyg 可视双星 61 Cyg 的轨道
IF 0.9 4区 物理与天体物理 Q3 ASTRONOMY & ASTROPHYSICS Pub Date : 2024-02-13 DOI: 10.1002/asna.20230004
I. S. Izmailov, A. A. Apetyan

We present the orbit and the mass estimates for the components of the visual binary star 61 Cyg obtained with the positional observations, including the high-precision Gaia data, and the measurements of differences in the radial velocities and the radial accelerations of the components. Since the orbital period of this star significantly exceeds the period of observations, using the radial velocities and the radial accelerations allows us to reduce uncertainty in the determination of the orbital elements and the total mass of the system.

我们介绍了通过定位观测(包括高精度盖亚数据)以及对各组成部分的径向速度和径向加速度差异的测量所获得的可视双星61 Cyg各组成部分的轨道和质量估计值。由于这颗恒星的轨道周期大大超过了观测周期,利用径向速度和径向加速度可以减少在确定轨道元素和系统总质量方面的不确定性。
{"title":"Orbit of the visual binary star 61 Cyg","authors":"I. S. Izmailov,&nbsp;A. A. Apetyan","doi":"10.1002/asna.20230004","DOIUrl":"10.1002/asna.20230004","url":null,"abstract":"<p>We present the orbit and the mass estimates for the components of the visual binary star 61 Cyg obtained with the positional observations, including the high-precision Gaia data, and the measurements of differences in the radial velocities and the radial accelerations of the components. Since the orbital period of this star significantly exceeds the period of observations, using the radial velocities and the radial accelerations allows us to reduce uncertainty in the determination of the orbital elements and the total mass of the system.</p>","PeriodicalId":55442,"journal":{"name":"Astronomische Nachrichten","volume":"345 1","pages":""},"PeriodicalIF":0.9,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139773292","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of a generalized uncertainty principle on the MIT bag model equation of state 广义不确定性原理对 MIT 袋模型状态方程的影响
IF 0.9 4区 物理与天体物理 Q3 ASTRONOMY & ASTROPHYSICS Pub Date : 2024-02-08 DOI: 10.1002/asna.20240016
Marcelo Netz-Marzola, César A. Zen Vasconcellos, Dimiter Hadjimichef

The Generalized Uncertainty Principle (GUP) is motivated by the premise that spacetime fluctuations near the Planck scale impose a lower bound on the achievable resolution of distances, leading to a minimum length. Inspired by a semiclassical method that integrates the GUP into the partition function by deforming its phase space, we induce a modification on the thermodynamic quantities of the MIT bag model that we propose serves as an effective semiclassical description of deconfined quark matter in a space with minimal length. We investigate the consequences of this deformation on the zero-temperature limit, revealing a saturation limit for the energy density, pressure, and baryon number density and an overall decrease of the thermodynamic quantities which suggests an enhanced stability against gravitational collapse. These findings extend existing research on GUP-deformed Fermi gases. Ultimately, our description introduces the effects of quantum gravity in the equations of state for compact stars in a mathematically simple manner, suggesting the potential for extension to more complex systems.

广义不确定性原理(GUP)的前提是普朗克尺度附近的时空波动对可实现的距离分辨率施加了下限,从而导致了最小长度。我们受到一种半经典方法的启发,这种方法通过对相空间的变形将 GUP 整合到分区函数中,从而对麻省理工包模型的热力学量进行了修改,我们提出这种修改可以作为对最小长度空间中去封闭夸克物质的有效半经典描述。我们研究了这种变形对零温极限的影响,揭示了能量密度、压力和重子数密度的饱和极限,以及热力学量的整体下降,这表明对引力坍缩的稳定性增强了。这些发现扩展了现有的关于 GUP 变形费米气体的研究。最终,我们的描述以数学上简单的方式在紧凑恒星的状态方程中引入了量子引力的效应,这表明它有可能扩展到更复杂的系统。
{"title":"Effects of a generalized uncertainty principle on the MIT bag model equation of state","authors":"Marcelo Netz-Marzola,&nbsp;César A. Zen Vasconcellos,&nbsp;Dimiter Hadjimichef","doi":"10.1002/asna.20240016","DOIUrl":"10.1002/asna.20240016","url":null,"abstract":"<p>The Generalized Uncertainty Principle (GUP) is motivated by the premise that spacetime fluctuations near the Planck scale impose a lower bound on the achievable resolution of distances, leading to a minimum length. Inspired by a semiclassical method that integrates the GUP into the partition function by deforming its phase space, we induce a modification on the thermodynamic quantities of the MIT bag model that we propose serves as an effective semiclassical description of deconfined quark matter in a space with minimal length. We investigate the consequences of this deformation on the zero-temperature limit, revealing a saturation limit for the energy density, pressure, and baryon number density and an overall decrease of the thermodynamic quantities which suggests an enhanced stability against gravitational collapse. These findings extend existing research on GUP-deformed Fermi gases. Ultimately, our description introduces the effects of quantum gravity in the equations of state for compact stars in a mathematically simple manner, suggesting the potential for extension to more complex systems.</p>","PeriodicalId":55442,"journal":{"name":"Astronomische Nachrichten","volume":"345 2-3","pages":""},"PeriodicalIF":0.9,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139771914","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An alternative, versatile, high-tolerance design of a modified Richter–Slevogt camera, using standard glasses 使用标准眼镜的改良型里克特-斯来伏特照相机的替代性、多功能、高公差设计
IF 0.9 4区 物理与天体物理 Q3 ASTRONOMY & ASTROPHYSICS Pub Date : 2024-02-06 DOI: 10.1002/asna.20220065
Nishant Neeraj Gadey

Prime-focus catadioptric astrographs have been used for a long time in various astronomical applications. The prime advantage offered by them is the capability to produce remarkably wide fields of view, and hence generate a huge amount of data in relatively less observation time. An emerging application of such wide-field astrographs is in the form of telescope arrays. While this has been implemented mostly, using commercial refractive lenses, low-cost catadioptric objectives can be used as an alternative for wide-field or high-contrast array applications. Commercial catadioptric systems are generally available as modifications of Schmidt and Maksutov systems, that too, mostly in the Cassegrain configuration. Here, we present a low-cost alternative prime focus camera design of Richter–Slevogt configuration, which is in turn an extension of the Houghton correctors. The Richter–Slevogt design has the potential for a very high performance due to several degrees of freedom. The presented one is a 150 mm aperture, f/3$$ f/3 $$ system, providing 3.5° (circular) diffraction-limited FOV (strehl 0.85$$ ge 0.85 $$), using only standard glasses, N-BK7 and F2. We present the performance analysis, tolerance sensitivity, and statistical (Monte-Carlo) analysis for this design. Potential applications of the system, other than as an array are also briefly discussed.

初焦折射式天文望远镜在各种天文应用中使用已久。它们的主要优势是能够产生非常宽的视场,从而在相对较短的观测时间内生成大量数据。这种宽视场天文望远镜的一个新兴应用是以望远镜阵列的形式出现。虽然这主要是利用商业折射透镜实现的,但低成本的双曲面物镜也可作为宽视场或高对比度阵列应用的替代品。商用双曲面系统一般都是由施密特和马克苏托夫系统改装而成,而且大多采用卡塞格伦配置。在这里,我们介绍一种低成本的里克特-斯莱沃特配置原焦相机设计,它是霍顿校正器的延伸。由于具有多个自由度,里克特-斯莱沃特设计具有非常高的性能潜力。本文介绍的是一个 150 毫米孔径、f/3$$ f/3 $$的系统,提供 3.5°(圆形)衍射限制 FOV(strehl ≥0.85$$ ge 0.85$$),仅使用标准玻璃 N-BK7 和 F2。我们介绍了这一设计的性能分析、容限灵敏度和统计(Monte-Carlo)分析。此外,我们还简要讨论了除阵列外该系统的潜在应用。
{"title":"An alternative, versatile, high-tolerance design of a modified Richter–Slevogt camera, using standard glasses","authors":"Nishant Neeraj Gadey","doi":"10.1002/asna.20220065","DOIUrl":"10.1002/asna.20220065","url":null,"abstract":"<p>Prime-focus catadioptric astrographs have been used for a long time in various astronomical applications. The prime advantage offered by them is the capability to produce remarkably wide fields of view, and hence generate a huge amount of data in relatively less observation time. An emerging application of such wide-field astrographs is in the form of telescope arrays. While this has been implemented mostly, using commercial refractive lenses, low-cost catadioptric objectives can be used as an alternative for wide-field or high-contrast array applications. Commercial catadioptric systems are generally available as modifications of Schmidt and Maksutov systems, that too, mostly in the Cassegrain configuration. Here, we present a low-cost alternative prime focus camera design of Richter–Slevogt configuration, which is in turn an extension of the Houghton correctors. The Richter–Slevogt design has the potential for a very high performance due to several degrees of freedom. The presented one is a 150 mm aperture, <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>f</mi>\u0000 <mo>/</mo>\u0000 <mn>3</mn>\u0000 </mrow>\u0000 <annotation>$$ f/3 $$</annotation>\u0000 </semantics></math> system, providing 3.5° (circular) diffraction-limited FOV (strehl <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mo>≥</mo>\u0000 <mn>0.85</mn>\u0000 </mrow>\u0000 <annotation>$$ ge 0.85 $$</annotation>\u0000 </semantics></math>), using only standard glasses, N-BK7 and F2. We present the performance analysis, tolerance sensitivity, and statistical (Monte-Carlo) analysis for this design. Potential applications of the system, other than as an array are also briefly discussed.</p>","PeriodicalId":55442,"journal":{"name":"Astronomische Nachrichten","volume":"345 4","pages":""},"PeriodicalIF":0.9,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139771929","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the chemical abundance differences between the solar twin visual binary system 16 Cygni A and B 关于太阳双视觉双星系统 16 Cygni A 和 B 之间的化学丰度差异
IF 0.9 4区 物理与天体物理 Q3 ASTRONOMY & ASTROPHYSICS Pub Date : 2024-02-06 DOI: 10.1002/asna.20230174
Yoichi Takeda

The visual binary system 16 Cyg A+B consists of similar solar twins, but a planetary companion is detected only in B. An intensive spectroscopic differential analysis is carried out to the Sun, 16 Cyg A, and 16 Cyg B, with particular attention being paid to (i) precisely establishing the differential atmospheric parameters/metallicity between A and B, and (ii) determining the important CNO abundances based on the lines of CH, NH, and OH molecules. The following results are obtained. (1) The Fe abundances (relative to the Sun) are [Fe/H]A = +0.09 and [Fe/H]B = +0.06 (i.e., A is slightly metal-rich than B by +0.03 dex). This lends support to the consequences of recently published papers, while the conclusion once derived by the author (almost the same metallicity for A and B) is acknowledged to be incorrect. (2) The differential abundances (Δ$$ Delta $$[X/H]) of volatile CNO with low Tc$$ {T}_{mathrm{c}} $$ (condensation temperature) are apparently lower than those of refractory Fe group elements of higher Tc$$ {T}_{mathrm{c}} $$, leading to a positive gradient in the Δ$$ Delta $$[X/H] versus Tc$$ {T}_{mathrm{c}} $$ relation being more conspicuous for A than B. This is qualitatively consistent with previous studies, though the derived slope is quantitatively somewhat steeper than that reported by other authors.

对太阳、16 Cyg A 和 16 Cyg B 进行了深入的光谱差异分析,尤其关注(i)精确确定 A 和 B 之间不同的大气参数/金属度,以及(ii)根据 CH、NH 和 OH 分子线确定重要的 CNO 丰度。结果如下(1) 铁丰度(相对于太阳)为[Fe/H]A = +0.09,[Fe/H]B = +0.06(即 A 的金属丰度略高于 B +0.03 dex)。这支持了最近发表的论文的结果,而作者曾经得出的结论(A 和 B 的金属性几乎相同)被认为是不正确的。(2) 低 Tc$$ {T}_{mathrm{c}}$ (冷凝温度)的挥发性 CNO 的差异丰度 (Δ$$ Delta $$[X/H])元(凝结温度)显然低于 Tc$$ {T}_{mathrm{c}} 较高的难熔铁族元素的 Tc$$ {T}_{mathrm{c}} 元。$ 导致 Δ$$ Delta $$[X/H] 与 Tc$$ {T}_{mathrm{c}} 的正梯度关系更加明显。这与之前的研究在质量上是一致的,尽管得出的斜率在数量上比其他作者报告的要陡峭一些。
{"title":"On the chemical abundance differences between the solar twin visual binary system 16 Cygni A and B","authors":"Yoichi Takeda","doi":"10.1002/asna.20230174","DOIUrl":"10.1002/asna.20230174","url":null,"abstract":"<p>The visual binary system 16 Cyg A+B consists of similar solar twins, but a planetary companion is detected only in B. An intensive spectroscopic differential analysis is carried out to the Sun, 16 Cyg A, and 16 Cyg B, with particular attention being paid to (i) precisely establishing the differential atmospheric parameters/metallicity between A and B, and (ii) determining the important CNO abundances based on the lines of CH, NH, and OH molecules. The following results are obtained. (1) The Fe abundances (relative to the Sun) are [Fe/H]<sup>A</sup> = +0.09 and [Fe/H]<sup>B</sup> = +0.06 (i.e., A is slightly metal-rich than B by +0.03 dex). This lends support to the consequences of recently published papers, while the conclusion once derived by the author (almost the same metallicity for A and B) is acknowledged to be incorrect. (2) The differential abundances (<span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>Δ</mi>\u0000 </mrow>\u0000 <annotation>$$ Delta $$</annotation>\u0000 </semantics></math>[X/H]) of volatile CNO with low <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msub>\u0000 <mi>T</mi>\u0000 <mi>c</mi>\u0000 </msub>\u0000 </mrow>\u0000 <annotation>$$ {T}_{mathrm{c}} $$</annotation>\u0000 </semantics></math> (condensation temperature) are apparently lower than those of refractory Fe group elements of higher <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msub>\u0000 <mi>T</mi>\u0000 <mi>c</mi>\u0000 </msub>\u0000 </mrow>\u0000 <annotation>$$ {T}_{mathrm{c}} $$</annotation>\u0000 </semantics></math>, leading to a positive gradient in the <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>Δ</mi>\u0000 </mrow>\u0000 <annotation>$$ Delta $$</annotation>\u0000 </semantics></math>[X/H] versus <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msub>\u0000 <mi>T</mi>\u0000 <mi>c</mi>\u0000 </msub>\u0000 </mrow>\u0000 <annotation>$$ {T}_{mathrm{c}} $$</annotation>\u0000 </semantics></math> relation being more conspicuous for A than B. This is qualitatively consistent with previous studies, though the derived slope is quantitatively somewhat steeper than that reported by other authors.</p>","PeriodicalId":55442,"journal":{"name":"Astronomische Nachrichten","volume":"345 4","pages":""},"PeriodicalIF":0.9,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139771915","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Astrophysical approach to search for heavy neutrino decay 寻找重中微子衰变的天体物理学方法
IF 0.9 4区 物理与天体物理 Q3 ASTRONOMY & ASTROPHYSICS Pub Date : 2024-02-01 DOI: 10.1002/asna.20240005
Vera G. Sinitsyna, Vera Y. Sinitsyna

Cosmic rays are a very valuable tool of multi-messenger astrophysics, as they provide a very different picture of the sky. During the past decades, a large number of active astrophysical objects in our Galaxy and beyond have been discovered through the detection of gamma-rays with Cherenkov telescopes. Cosmic rays, neutrinos have been successfully supplementing the astronomical view. Also, cosmic rays may offer to investigation of the elementary particle properties. Neutrino telescope detects the Cherenkov radiation generated in water or ice by the passage of relativistic charged particles produced by neutrino collisions with nucleons in the detector volume. Some alternative approaches have been proposed. One of them is using earth matter or mountains as a target volume for the conversion of neutrinos to leptons which then initiate extensive air showers (EAS) in the atmosphere, then showers can be detected by the Cherenkov telescope. Investigations with SHALON Cherenkov telescope have included observations of EAS from the sub-horizontal direction Θ=97°$$ Theta ={97}^{{}^{circ}} $$. Five EAS of ∼10 TeV energies were detected with SHALON from the sub-horizontal directions in the conditions with the zero expected number of showers. These events may be caused by the decay of a long-lived penetrating particle entering the atmosphere from the ground and decaying in front of the telescope. As a possible explanation, two scenarios with an unstable neutrino of mass m0.5$$ mapprox 0.5 $$ GeV and cτ30$$ ctau approx 30 $$ m is discussed. Remarkably, one of these models has been proposed to explain an excess of electron-like neutrino events at MiniBooNE.

宇宙射线是多信使天体物理学的一个非常有价值的工具,因为它们提供了一幅非常不同的天空图景。在过去的几十年里,通过切伦科夫望远镜对伽马射线的探测,发现了银河系内外大量活跃的天体。宇宙射线和中微子成功地补充了天文观测的不足。此外,宇宙射线还可用于研究基本粒子的特性。中微子望远镜探测中微子与探测器体积内的核子碰撞产生的相对论带电粒子通过水或冰产生的切伦科夫辐射。已经提出了一些替代方法。其中一种方法是利用地球物质或山脉作为中微子转化为轻子的目标体积,然后在大气中引发大范围的空气阵列(EAS),然后阵列可以被切伦科夫望远镜探测到。利用 SHALON 切伦科夫望远镜进行的研究包括观测来自次水平方向 Θ=97°$$ Theta ={97}^{{}^{circ}} 的 EAS。$$.在预期阵列数量为零的条件下,SHALON从次水平方向探测到了5个能量为10 TeV的EAS。这些事件可能是由从地面进入大气层并在望远镜前衰变的长寿命穿透粒子引起的。作为一种可能的解释,我们讨论了质量为 m≈0.5$ mapprox 0.5$ GeV 和 cτ≈30$ capprox 30$ m 的不稳定中微子的两种情况。值得注意的是,其中一个模型已经被提出来解释在MiniBooNE发生的过量的类电子中微子事件。
{"title":"Astrophysical approach to search for heavy neutrino decay","authors":"Vera G. Sinitsyna,&nbsp;Vera Y. Sinitsyna","doi":"10.1002/asna.20240005","DOIUrl":"10.1002/asna.20240005","url":null,"abstract":"<p>Cosmic rays are a very valuable tool of multi-messenger astrophysics, as they provide a very different picture of the sky. During the past decades, a large number of active astrophysical objects in our Galaxy and beyond have been discovered through the detection of gamma-rays with Cherenkov telescopes. Cosmic rays, neutrinos have been successfully supplementing the astronomical view. Also, cosmic rays may offer to investigation of the elementary particle properties. Neutrino telescope detects the Cherenkov radiation generated in water or ice by the passage of relativistic charged particles produced by neutrino collisions with nucleons in the detector volume. Some alternative approaches have been proposed. One of them is using earth matter or mountains as a target volume for the conversion of neutrinos to leptons which then initiate extensive air showers (EAS) in the atmosphere, then showers can be detected by the Cherenkov telescope. Investigations with SHALON Cherenkov telescope have included observations of EAS from the sub-horizontal direction <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>Θ</mi>\u0000 <mo>=</mo>\u0000 <mn>97</mn>\u0000 <mo>°</mo>\u0000 </mrow>\u0000 <annotation>$$ Theta ={97}^{{}^{circ}} $$</annotation>\u0000 </semantics></math>. Five EAS of ∼10 TeV energies were detected with SHALON from the sub-horizontal directions in the conditions with the zero expected number of showers. These events may be caused by the decay of a long-lived penetrating particle entering the atmosphere from the ground and decaying in front of the telescope. As a possible explanation, two scenarios with an unstable neutrino of mass <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>m</mi>\u0000 <mo>≈</mo>\u0000 <mn>0.5</mn>\u0000 </mrow>\u0000 <annotation>$$ mapprox 0.5 $$</annotation>\u0000 </semantics></math> GeV and <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mrow>\u0000 <mi>c</mi>\u0000 <mi>τ</mi>\u0000 </mrow>\u0000 <mo>≈</mo>\u0000 <mn>30</mn>\u0000 </mrow>\u0000 <annotation>$$ ctau approx 30 $$</annotation>\u0000 </semantics></math> m is discussed. Remarkably, one of these models has been proposed to explain an excess of electron-like neutrino events at MiniBooNE.</p>","PeriodicalId":55442,"journal":{"name":"Astronomische Nachrichten","volume":"345 2-3","pages":""},"PeriodicalIF":0.9,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139679765","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Particle acceleration test with Cas A multiwavelength emission 利用 Cas A 多波长发射进行粒子加速试验
IF 0.9 4区 物理与天体物理 Q3 ASTRONOMY & ASTROPHYSICS Pub Date : 2024-02-01 DOI: 10.1002/asna.20240006
Vera G. Sinitsyna, Vera Y. Sinitsyna

The investigation of supernova remnants (SNRs) across the electromagnetic spectrum from radio up to very high energy gamma-rays can serve as a test of the particle acceleration and touches on one of the unresolved problems of modern astrophysics, namely the origin of cosmic rays and the Galaxy's contribution to the overall cosmic ray spectrum. The multiwavelength observations of Cas A SNR demonstrated that structure and spectral features have clear signs of young SNRs and its overall properties make this object the best target to test a hypothesis of cosmic ray origin in SNRs. Studies of Cas A at very high energies by SHALON telescope showed the location of TeV gamma-ray emission region relative to the position of reveres shock. Also, the spectral energy distribution was obtained at high and very high energies. To describe the spectral and structural features of this SNR viewed in non-thermal emission, two approaches involving reverse and also both reverse and forward shocks to the mechanism of diffusive shock acceleration of cosmic rays in Cas A were applied. It is demonstrated that the observational properties of Cas A are well reproduced by the hadronic model with significant contribution of both the forward and reverse shocks in the generation of broadband emission. Calculation results suggest that the very high efficiency of particle acceleration in Cas A, which value is up to 25% of the supernova explosion energy with energy of accelerated particles not exceeding of 10141015$$ {10}^{14}-{10}^{15} $$ eV. Whereas, the forward shock model predicts the spectral characteristics of the TeV-gamma-emission corresponding to ones detected at 800 GeV–40 TeV that are the evidence of acceleration of the hadronic cosmic rays in shells of SNRs up to 1017$$ {10}^{17} $$ eV

对从射电到高能伽马射线的整个电磁波谱中的超新星残余(SNR)的研究可以作为对粒子加速的测试,并触及现代天体物理学的一个悬而未决的问题,即宇宙射线的起源和银河系对整个宇宙射线谱的贡献。对 Cas A SNR 的多波长观测表明,该天体的结构和光谱特征具有年轻 SNR 的明显特征,其整体特性使其成为测试 SNR 中宇宙射线起源假说的最佳目标。利用 SHALON 望远镜对 Cas A 进行的高能量研究显示了 TeV 伽玛射线发射区相对于反冲的位置。此外,还获得了高能和极高能的光谱能量分布。为了描述这个非热辐射 SNR 的光谱和结构特征,对 Cas A 中宇宙射线的扩散性冲击加速机制采用了两种方法,一种是反向冲击,另一种是反向和正向冲击。结果表明,强子模型很好地再现了 Cas A 的观测特性,正向和反向冲击对宽带辐射的产生都有重大贡献。计算结果表明,Cas A 的粒子加速效率非常高,高达超新星爆炸能量的 25%,加速粒子的能量不超过 1014-1015$$ {10}^{14}-{10}^{15}.$$ eV。而正向冲击模型则预测了TeV-伽马射线发射的光谱特征,它与在800 GeV-40 TeV探测到的伽马射线发射的光谱特征相对应,是强子宇宙射线在SNR外壳中加速到1017$$ {10}^{17} $$ eV的证据。eV
{"title":"Particle acceleration test with Cas A multiwavelength emission","authors":"Vera G. Sinitsyna,&nbsp;Vera Y. Sinitsyna","doi":"10.1002/asna.20240006","DOIUrl":"10.1002/asna.20240006","url":null,"abstract":"<p>The investigation of supernova remnants (SNRs) across the electromagnetic spectrum from radio up to very high energy gamma-rays can serve as a test of the particle acceleration and touches on one of the unresolved problems of modern astrophysics, namely the origin of cosmic rays and the Galaxy's contribution to the overall cosmic ray spectrum. The multiwavelength observations of Cas A SNR demonstrated that structure and spectral features have clear signs of young SNRs and its overall properties make this object the best target to test a hypothesis of cosmic ray origin in SNRs. Studies of Cas A at very high energies by SHALON telescope showed the location of TeV gamma-ray emission region relative to the position of reveres shock. Also, the spectral energy distribution was obtained at high and very high energies. To describe the spectral and structural features of this SNR viewed in non-thermal emission, two approaches involving reverse and also both reverse and forward shocks to the mechanism of diffusive shock acceleration of cosmic rays in Cas A were applied. It is demonstrated that the observational properties of Cas A are well reproduced by the hadronic model with significant contribution of both the forward and reverse shocks in the generation of broadband emission. Calculation results suggest that the very high efficiency of particle acceleration in Cas A, which value is up to 25% of the supernova explosion energy with energy of accelerated particles not exceeding of <math>\u0000 <semantics>\u0000 <mrow>\u0000 <msup>\u0000 <mn>10</mn>\u0000 <mn>14</mn>\u0000 </msup>\u0000 <mo>−</mo>\u0000 <msup>\u0000 <mn>10</mn>\u0000 <mn>15</mn>\u0000 </msup>\u0000 </mrow>\u0000 <annotation>$$ {10}^{14}-{10}^{15} $$</annotation>\u0000 </semantics></math> eV. Whereas, the forward shock model predicts the spectral characteristics of the TeV-gamma-emission corresponding to ones detected at 800 GeV–40 TeV that are the evidence of acceleration of the hadronic cosmic rays in shells of SNRs up to <math>\u0000 <semantics>\u0000 <mrow>\u0000 <msup>\u0000 <mn>10</mn>\u0000 <mn>17</mn>\u0000 </msup>\u0000 </mrow>\u0000 <annotation>$$ {10}^{17} $$</annotation>\u0000 </semantics></math> eV</p>","PeriodicalId":55442,"journal":{"name":"Astronomische Nachrichten","volume":"345 2-3","pages":""},"PeriodicalIF":0.9,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139679653","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
γCygni SNR morphology viewed in the electromagnetic spectrum 从电磁波谱看 γCygni SNR 形态
IF 0.9 4区 物理与天体物理 Q3 ASTRONOMY & ASTROPHYSICS Pub Date : 2024-02-01 DOI: 10.1002/asna.20240008
Vera G. Sinitsyna, Vera Y. Sinitsyna, K. A. Balygin, S. S. Borisov, A. I. Klimov, R. M. Mirzafatikhov, N. I. Moseiko

The investigation of very high energy gamma-ray sources touches on the problem of the cosmic ray origin and the role of the Galaxy in their generation. The SHALON observations have yielded the results on γ$$ gamma $$Cygni SNR Galactic supernova remnant. The observation results are presented with spectral energy distribution and emission map by SHALON in comparison with other experiment data obtained by ROSAT in x-ray energy range, radio-data by CGPS, and also observations of GeV–TeV gamma-rays by Fermi LAT. The overall γ$$ gamma $$Cygni SNR characteristics detected in radio, x-rays, and GeV–TeV gamma-rays can be a result of the shocks at the interaction of the supernova ejecta and the surrounding medium. The collected experimental data help to make clear the origin of TeV γ$$ gamma $$-ray emission in the γ$$ gamma $$Cygni SNR. The density of target material in the SNR surroundings is enough to produce the observable TeV gamma-ray flux via the shock acceleration of hadrons in the detected regions. The detection of gamma-ray emission at 0.8–60 TeV from the North-West and South-East shells of γ$$ gamma $$Cygni SNR by SHALON would favor the hadronic origin of the gamma-rays in this supernova remnant.

对高能伽马射线源的研究涉及宇宙射线的起源和银河系在其产生中的作用。SHALON 观测获得了有关 Cygni SNR 银河系超新星残余的结果。观测结果包括 SHALON 的光谱能量分布和发射图,并与 ROSAT 在 X 射线能量范围内获得的其他实验数据、CGPS 的无线电数据以及 Fermi LAT 的 GeV-TeV 伽马射线观测数据进行了比较。在射电、X 射线和 GeV-TeV 伽马射线中探测到的 Cygni SNR 整体特征可能是超新星喷出物和周围介质相互作用产生的冲击的结果。所收集到的实验数据有助于明确 Cygni SNR 中 TeV 射线发射的起源。SNR周围的目标物质密度足以在探测到的区域通过强子的冲击加速产生可观测到的TeV伽马射线通量。SHALON探测到的来自赛格尼SNR西北壳和东南壳的0.8-60 TeV伽马射线发射将有利于证明该超新星残余中伽马射线的强子起源。
{"title":"γCygni SNR morphology viewed in the electromagnetic spectrum","authors":"Vera G. Sinitsyna,&nbsp;Vera Y. Sinitsyna,&nbsp;K. A. Balygin,&nbsp;S. S. Borisov,&nbsp;A. I. Klimov,&nbsp;R. M. Mirzafatikhov,&nbsp;N. I. Moseiko","doi":"10.1002/asna.20240008","DOIUrl":"10.1002/asna.20240008","url":null,"abstract":"<p>The investigation of very high energy gamma-ray sources touches on the problem of the cosmic ray origin and the role of the Galaxy in their generation. The SHALON observations have yielded the results on <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>γ</mi>\u0000 </mrow>\u0000 <annotation>$$ gamma $$</annotation>\u0000 </semantics></math>Cygni SNR Galactic supernova remnant. The observation results are presented with spectral energy distribution and emission map by SHALON in comparison with other experiment data obtained by ROSAT in x-ray energy range, radio-data by CGPS, and also observations of GeV–TeV gamma-rays by Fermi LAT. The overall <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>γ</mi>\u0000 </mrow>\u0000 <annotation>$$ gamma $$</annotation>\u0000 </semantics></math>Cygni SNR characteristics detected in radio, x-rays, and GeV–TeV gamma-rays can be a result of the shocks at the interaction of the supernova ejecta and the surrounding medium. The collected experimental data help to make clear the origin of TeV <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>γ</mi>\u0000 </mrow>\u0000 <annotation>$$ gamma $$</annotation>\u0000 </semantics></math>-ray emission in the <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>γ</mi>\u0000 </mrow>\u0000 <annotation>$$ gamma $$</annotation>\u0000 </semantics></math>Cygni SNR. The density of target material in the SNR surroundings is enough to produce the observable TeV gamma-ray flux via the shock acceleration of hadrons in the detected regions. The detection of gamma-ray emission at 0.8–60 TeV from the North-West and South-East shells of <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>γ</mi>\u0000 </mrow>\u0000 <annotation>$$ gamma $$</annotation>\u0000 </semantics></math>Cygni SNR by SHALON would favor the hadronic origin of the gamma-rays in this supernova remnant.</p>","PeriodicalId":55442,"journal":{"name":"Astronomische Nachrichten","volume":"345 2-3","pages":""},"PeriodicalIF":0.9,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139687392","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Astronomische Nachrichten
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1