Pub Date : 2024-08-13DOI: 10.1134/S0016793224600012
I. A. Ryakhovsky, Y. V. Poklad, B. G. Gavrilov
The results of measuring VLF signal parameters propagating in the Earth-D-region of the ionosphere waveguide to assess changes in the state of the lower ionosphere as a result of the impact of X-ray radiation of solar flares make it possible to obtain qualitative data on the nature and magnitude of the impact. Obtaining accurate data on the relationship between changes in electron concentration and flare parameters and reliable prediction of the conditions of LF radio signal propagation during strong geophysical disturbances is complicated by the lack of complete information on the frequency spectrum of X-ray radiation for a particular flare and data on the ionization rate of the ionosphere for flares of different classes. The technique of determining the X-ray spectrum in a wide range of wavelengths and calculating the ionization coefficients of the lower ionosphere as a function of the ionizing radiation parameters of flares, presented by Ryakhovsky et al. (2023), makes it possible to improve the accuracy in estimating variations in the parameters of the lower ionosphere. The present paper is devoted to verifying the performance of the developed empirical model of lower ionization of the lower ionosphere at the solar flare front and comparing the results with experimental data on the variation of VLF radio parameters.
摘要通过测量在电离层波导的地球-D 区域传播的甚低频信号参数,评估太阳耀斑的 X 射线辐射影响下电离层状态的变化,从而有可能获得关于影响性质和程度的定性数据。由于缺乏特定耀斑 X 射线辐射频谱的完整信息和不同等级耀斑电离层电离率的数 据,获取电子浓度变化与耀斑参数之间关系的准确数据以及可靠预测强地球物理扰动 期间低频无线电信号传播条件的工作变得复杂。Ryakhovsky 等人(2023 年)提出的确定宽波长范围内的 X 射线频谱和计算作为耀斑电离辐射参数函数的下电离层电离系数的技术,使得提高估计下电离层参数变化的准确性成为可能。本文致力于验证所开发的太阳耀斑前沿下电离层低电离经验模型的性能,并将结果与甚低频无线电参数变化的实验数据进行比较。
{"title":"Verification of the Empirical Model of Ionization of the Lower Ionosphere during Solar Flares of Different Classes","authors":"I. A. Ryakhovsky, Y. V. Poklad, B. G. Gavrilov","doi":"10.1134/S0016793224600012","DOIUrl":"10.1134/S0016793224600012","url":null,"abstract":"<p>The results of measuring VLF signal parameters propagating in the Earth-D-region of the ionosphere waveguide to assess changes in the state of the lower ionosphere as a result of the impact of X-ray radiation of solar flares make it possible to obtain qualitative data on the nature and magnitude of the impact. Obtaining accurate data on the relationship between changes in electron concentration and flare parameters and reliable prediction of the conditions of LF radio signal propagation during strong geophysical disturbances is complicated by the lack of complete information on the frequency spectrum of X-ray radiation for a particular flare and data on the ionization rate of the ionosphere for flares of different classes. The technique of determining the X-ray spectrum in a wide range of wavelengths and calculating the ionization coefficients of the lower ionosphere as a function of the ionizing radiation parameters of flares, presented by Ryakhovsky et al. (2023), makes it possible to improve the accuracy in estimating variations in the parameters of the lower ionosphere. The present paper is devoted to verifying the performance of the developed empirical model of lower ionization of the lower ionosphere at the solar flare front and comparing the results with experimental data on the variation of VLF radio parameters.</p>","PeriodicalId":55597,"journal":{"name":"Geomagnetism and Aeronomy","volume":"64 4","pages":"521 - 526"},"PeriodicalIF":0.7,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142218565","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-13DOI: 10.1134/S0016793224600310
N. G. Kleimenova, L. I. Gromova, S. V. Gromov, L. M. Malysheva, I. V. Despirak
We analyzed 214 events of ‘polar’ substorms on the Scandinavian meridian IMAGE, i.e., substorms recorded by magnetometers located at geomagnetic latitudes above ~70° MLAT at 1900−0200 MLT during a magnetically quiet time in the absence of negative magnetic bays at lower latitudes. The Harang discontinuity, which separates the westward and eastward electrojets by latitude, is a typical structure for the indicated MLT sector of the high-latitude ionosphere. The global distribution of ionospheric electrojets and the location of the Harang discontinuity during development of ‘polar’ substorms were studied using the maps compiled from the results of spherical harmonic analysis of magnetic measurements on 66 simultaneous ionospheric communications satellites of the AMPERE project. Based on analysis of these maps, it is shown that the instantaneous location of the equatorial boundary of the ionospheric current of a ‘polar’ substorm determines the instantaneous location of the polar boundary of the Harang discontinuity, and the polar boundary of the eastward electrojet determines its equatorial boundary. It has been established that the appearance of 90% of ‘polar’ substorms is observed simultaneously with increasing planetary substorm activity according to the AL-index and development of a magnetospheric substorm in the postmidnight sector. At the same time, the development of evening ‘polar’ substorms is associated with the formation of near-midnight magnetic vortices at geomagnetic latitudes of ~70° MLAT (near the “nose” of the Harang discontinuity), indicating a sharp local enhancement of the field-aligned currents. This leads to the formation of a new substorm in the evening sector of near-polar latitudes, called a ‘polar’ substorm with typical features of the onset of a substorm (Pi2 geomagnetic pulsation bursts, sudden onset of the substorm close to the equatorial boundary of the contracted oval (the development of a “substorm current wedge”, etc.)
{"title":"‘Polar’ Substorms and the Harang Discontinuity","authors":"N. G. Kleimenova, L. I. Gromova, S. V. Gromov, L. M. Malysheva, I. V. Despirak","doi":"10.1134/S0016793224600310","DOIUrl":"10.1134/S0016793224600310","url":null,"abstract":"<p>We analyzed 214 events of ‘polar’ substorms on the Scandinavian meridian IMAGE, i.e., substorms recorded by magnetometers located at geomagnetic latitudes above ~70° MLAT at 1900−0200 MLT during a magnetically quiet time in the absence of negative magnetic bays at lower latitudes. The Harang discontinuity, which separates the westward and eastward electrojets by latitude, is a typical structure for the indicated MLT sector of the high-latitude ionosphere. The global distribution of ionospheric electrojets and the location of the Harang discontinuity during development of ‘polar’ substorms were studied using the maps compiled from the results of spherical harmonic analysis of magnetic measurements on 66 simultaneous ionospheric communications satellites of the AMPERE project. Based on analysis of these maps, it is shown that the instantaneous location of the equatorial boundary of the ionospheric current of a ‘polar’ substorm determines the instantaneous location of the polar boundary of the Harang discontinuity, and the polar boundary of the eastward electrojet determines its equatorial boundary. It has been established that the appearance of 90% of ‘polar’ substorms is observed simultaneously with increasing planetary substorm activity according to the <i>AL</i>-index and development of a magnetospheric substorm in the postmidnight sector. At the same time, the development of evening ‘polar’ substorms is associated with the formation of near-midnight magnetic vortices at geomagnetic latitudes of ~70° MLAT (near the “nose” of the Harang discontinuity), indicating a sharp local enhancement of the field-aligned currents. This leads to the formation of a new substorm in the evening sector of near-polar latitudes, called a ‘polar’ substorm with typical features of the onset of a substorm (<i>Pi</i>2 geomagnetic pulsation bursts, sudden onset of the substorm close to the equatorial boundary of the contracted oval (the development of a “substorm current wedge”, etc.)</p>","PeriodicalId":55597,"journal":{"name":"Geomagnetism and Aeronomy","volume":"64 4","pages":"490 - 499"},"PeriodicalIF":0.7,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142218418","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-13DOI: 10.1134/S0016793224600279
B. P. Filippov
Flare ribbons formed in solar two-ribbon flares after eruptions of prominences diverge in opposite directions from the polarity inversion line of the photospheric longitudinal magnetic field, sharply slowing down with time and distance from this line. Examples of such events are given, and the kinematics of flare ribbons is demonstrated. A comparison of the position of the ribbons with the distribution of the photospheric magnetic field shows that the separation of the ribbons slows down when they enter a region of a strong longitudinal field. A simple model of prominence eruption illustrates the kinematic features of the motion of the ribbons and the relation to the sources of the coronal magnetic field in the photosphere.
{"title":"Kinematics of Flare Ribbons during Eruption of Solar Prominences","authors":"B. P. Filippov","doi":"10.1134/S0016793224600279","DOIUrl":"10.1134/S0016793224600279","url":null,"abstract":"<p>Flare ribbons formed in solar two-ribbon flares after eruptions of prominences diverge in opposite directions from the polarity inversion line of the photospheric longitudinal magnetic field, sharply slowing down with time and distance from this line. Examples of such events are given, and the kinematics of flare ribbons is demonstrated. A comparison of the position of the ribbons with the distribution of the photospheric magnetic field shows that the separation of the ribbons slows down when they enter a region of a strong longitudinal field. A simple model of prominence eruption illustrates the kinematic features of the motion of the ribbons and the relation to the sources of the coronal magnetic field in the photosphere.</p>","PeriodicalId":55597,"journal":{"name":"Geomagnetism and Aeronomy","volume":"64 4","pages":"449 - 456"},"PeriodicalIF":0.7,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142218557","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-13DOI: 10.1134/S0016793224600334
V. H. Depuev, M. G. Deminov, G. F. Deminova, A. H. Depueva
Based on the data of 17 mid-latitude ionospheric stations for 1958–1988, the study analyzes seasonal features of the F2 layer peak concentration (NmF2) at different longitudes with enhanced (48 > ap(τ) > 27) geomagnetic activity, where ap(τ) is the weighted average (with a characteristic time of 14 h) ap-index of this activity. As the characteristics of the NmF2 variability, the standard deviation σ of NmF2 fluctuations relative to quiet level and the average shift of these fluctuations xave during daytime (1100–1300 LT) and nighttime (2300–0100 LT) were used. It was found that at all analyzed stations, the dispersion σ2 for enhanced geomagnetic activity is greater than for quiet conditions, and, other things being equal, it is maximum in winter at night. For enhanced geomagnetic activity in all seasons, the difference in xave values between the analyzed stations is quite large. One of the reasons for this difference is associated with the dependence of xave on geomagnetic latitudes. To select these latitudes, approximations of the geomagnetic field with tilted dipole (TD), eccentric dipole (ED), or with corrected geomagnetic (CGM) coordinates were used. It was found that the xave dependence on the ED latitude is more accurate in comparison to the xave dependence on the TD latitude or CGM latitude during all seasons at night, and during equinoxes and winter, in the daytime. In summer, in the daytime hours, the xave dependences on ED latitude and CGM latitude are comparable in accuracy, and they are more accurate compared to the xave dependence on TD latitude. Consequently, ED latitudes are optimal for taking into account the effects of storms in the F2 layer peak concentration at mid-latitudes during all seasons. This conclusion has apparently been made for the first time.
{"title":"Seasonal Features of the NmF2 Variability for Different Longitudes of the Middle Latitudes during Enhanced Geomagnetic Activity","authors":"V. H. Depuev, M. G. Deminov, G. F. Deminova, A. H. Depueva","doi":"10.1134/S0016793224600334","DOIUrl":"10.1134/S0016793224600334","url":null,"abstract":"<p>Based on the data of 17 mid-latitude ionospheric stations for 1958–1988, the study analyzes seasonal features of the <i>F</i>2 layer peak concentration (<i>NmF</i>2) at different longitudes with enhanced (48 > <i>ap</i>(τ) > 27) geomagnetic activity, where <i>ap</i>(τ) is the weighted average (with a characteristic time of 14 h) <i>ap</i>-index of this activity. As the characteristics of the <i>NmF</i>2 variability, the standard deviation σ of <i>NmF</i>2 fluctuations relative to quiet level and the average shift of these fluctuations <i>x</i><sub>ave</sub> during daytime (1100–1300 LT) and nighttime (2300–0100 LT) were used. It was found that at all analyzed stations, the dispersion σ<sup>2</sup> for enhanced geomagnetic activity is greater than for quiet conditions, and, other things being equal, it is maximum in winter at night. For enhanced geomagnetic activity in all seasons, the difference in <i>x</i><sub>ave</sub> values between the analyzed stations is quite large. One of the reasons for this difference is associated with the dependence of <i>x</i><sub>ave</sub> on geomagnetic latitudes. To select these latitudes, approximations of the geomagnetic field with tilted dipole (TD), eccentric dipole (ED), or with corrected geomagnetic (CGM) coordinates were used. It was found that the <i>x</i><sub>ave</sub> dependence on the ED latitude is more accurate in comparison to the <i>x</i><sub>ave</sub> dependence on the TD latitude or CGM latitude during all seasons at night, and during equinoxes and winter, in the daytime. In summer, in the daytime hours, the <i>x</i><sub>ave</sub> dependences on ED latitude and CGM latitude are comparable in accuracy, and they are more accurate compared to the <i>x</i><sub>ave</sub> dependence on TD latitude. Consequently, ED latitudes are optimal for taking into account the effects of storms in the <i>F</i>2 layer peak concentration at mid-latitudes during all seasons. This conclusion has apparently been made for the first time.</p>","PeriodicalId":55597,"journal":{"name":"Geomagnetism and Aeronomy","volume":"64 4","pages":"512 - 520"},"PeriodicalIF":0.7,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142218563","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-13DOI: 10.1134/S0016793224600346
A. N. Belyaev, S. Sh. Nikolaishvili, A. N. Omel’chenko, A. Yu. Repin, M. A. Poluarshinov, Yu. V. Smirnov, A. V. Strakhov, A. G. Batishchev, V. I. Stasevich, Yu. V. Platov
The results of the “Terminator” space experiment on board the International Space Station are presented. Images of Earth’s atmosphere are obtained in the near IR spectral range with the limb geometry of observations under a full moon. The calculated vertical profiles of volume emission/scattering rate point that the aerosol layer occurs within the height region of 80–100 km in Earth’s atmosphere. It is proposed that this layer is meteoric in origin. Estimates show that the size spectrum of aerosol particles lies within the 1–100 nm range.
{"title":"Aerosol Layer of the Lower Thermosphere: II. Observation during a Full Moon","authors":"A. N. Belyaev, S. Sh. Nikolaishvili, A. N. Omel’chenko, A. Yu. Repin, M. A. Poluarshinov, Yu. V. Smirnov, A. V. Strakhov, A. G. Batishchev, V. I. Stasevich, Yu. V. Platov","doi":"10.1134/S0016793224600346","DOIUrl":"10.1134/S0016793224600346","url":null,"abstract":"<p>The results of the “Terminator” space experiment on board the International Space Station are presented. Images of Earth’s atmosphere are obtained in the near IR spectral range with the limb geometry of observations under a full moon. The calculated vertical profiles of volume emission/scattering rate point that the aerosol layer occurs within the height region of 80–100 km in Earth’s atmosphere. It is proposed that this layer is meteoric in origin. Estimates show that the size spectrum of aerosol particles lies within the 1–100 nm range.</p>","PeriodicalId":55597,"journal":{"name":"Geomagnetism and Aeronomy","volume":"64 4","pages":"527 - 536"},"PeriodicalIF":0.7,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142218566","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-13DOI: 10.1134/S0016793224600280
N. S. Shlyk, A. V. Belov, M. A. Abunina, S. M. Belov, A. A. Abunin, V. A. Oleneva, V. G. Yanke
The updated database of Forbush effects and interplanetary disturbances (https://tools.izmiran.ru/feid) is used for an extensive analysis of various characteristics of events caused by the influence of interacting solar wind disturbances on the near-Earth space. In particular, the cases of different combinations of the pair interaction of high-speed streams from coronal holes and coronal mass ejections over the long period from 1995 to 2022 are considered. Variations in the flux of galactic cosmic rays (with a rigidity of 10 GV) and changes in the parameters of the interplanetary medium and geomagnetic activity are described. It is shown that the degree of mutual influence depends on the time between the detection of neighboring events; with the most pronounced changes in various parameters for events whose interaction occurred before reaching Earth’s orbit. It is also established that in interacting solar wind disturbances not only the extremes of the parameters of cosmic rays, interplanetary medium, and geomagnetic activity but also their time profiles are subject to changes.
{"title":"Some Features of Interacting Solar Wind Disturbances","authors":"N. S. Shlyk, A. V. Belov, M. A. Abunina, S. M. Belov, A. A. Abunin, V. A. Oleneva, V. G. Yanke","doi":"10.1134/S0016793224600280","DOIUrl":"10.1134/S0016793224600280","url":null,"abstract":"<p>The updated database of Forbush effects and interplanetary disturbances (https://tools.izmiran.ru/feid) is used for an extensive analysis of various characteristics of events caused by the influence of interacting solar wind disturbances on the near-Earth space. In particular, the cases of different combinations of the pair interaction of high-speed streams from coronal holes and coronal mass ejections over the long period from 1995 to 2022 are considered. Variations in the flux of galactic cosmic rays (with a rigidity of 10 GV) and changes in the parameters of the interplanetary medium and geomagnetic activity are described. It is shown that the degree of mutual influence depends on the time between the detection of neighboring events; with the most pronounced changes in various parameters for events whose interaction occurred before reaching Earth’s orbit. It is also established that in interacting solar wind disturbances not only the extremes of the parameters of cosmic rays, interplanetary medium, and geomagnetic activity but also their time profiles are subject to changes.</p>","PeriodicalId":55597,"journal":{"name":"Geomagnetism and Aeronomy","volume":"64 4","pages":"457 - 467"},"PeriodicalIF":0.7,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142218558","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-13DOI: 10.1134/S0016793224600358
O. P. Borchevkina, F. S. Bessarab, A. V. Timchenko, I. V. Karpov
The effect of a meteorological storm in October 2018 in the Baltic Sea on the state of the mesosphere and lower thermosphere is investigated. The wave activity of internal gravity waves from TIMED/SABER satellite data is analyzed, and the effects of the meteorological storm at heights of 80–100 km are determined. A method based on mode decomposition from SABER data is adapted to calculate the gravity wave potential energy density (GWPED) and to isolate the temperature perturbations caused by their propagation at lower thermospheric heights. Wavelet analysis of the temperature perturbations revealed two ranges of vertical wavelengths, 5–8 km and 14–18 km. In the area of a meteorological storm, the amplitude of internal gravity waves with vertical wavelengths of 5–8 km increases, and the area of their maximum expands and shifts upward to heights of ~90 km, while on meteorologically quiet days these waves are observed at heights of 65–70 km and with smaller amplitudes. Above the area of a meteorological storm at heights of 90–100 km, the values of the gravity wave potential energy density increase significantly compared to quiet days before and after the storm, and the spatial extent of the perturbation area increases.
{"title":"Wave Activity of Gravity Waves in the Mesosphere and Lower Thermosphere during a Meteorological Storm","authors":"O. P. Borchevkina, F. S. Bessarab, A. V. Timchenko, I. V. Karpov","doi":"10.1134/S0016793224600358","DOIUrl":"10.1134/S0016793224600358","url":null,"abstract":"<p>The effect of a meteorological storm in October 2018 in the Baltic Sea on the state of the mesosphere and lower thermosphere is investigated. The wave activity of internal gravity waves from TIMED/SABER satellite data is analyzed, and the effects of the meteorological storm at heights of 80–100 km are determined. A method based on mode decomposition from SABER data is adapted to calculate the gravity wave potential energy density (GWPED) and to isolate the temperature perturbations caused by their propagation at lower thermospheric heights. Wavelet analysis of the temperature perturbations revealed two ranges of vertical wavelengths, 5–8 km and 14–18 km. In the area of a meteorological storm, the amplitude of internal gravity waves with vertical wavelengths of 5–8 km increases, and the area of their maximum expands and shifts upward to heights of ~90 km, while on meteorologically quiet days these waves are observed at heights of 65–70 km and with smaller amplitudes. Above the area of a meteorological storm at heights of 90–100 km, the values of the gravity wave potential energy density increase significantly compared to quiet days before and after the storm, and the spatial extent of the perturbation area increases.</p>","PeriodicalId":55597,"journal":{"name":"Geomagnetism and Aeronomy","volume":"64 4","pages":"537 - 545"},"PeriodicalIF":0.7,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142218567","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-13DOI: 10.1134/S001679322460036X
A. A. Soloviev, I. O. Belov, A. V. Vorobev, V. N. Sergeev
In this study, we consider historical geomagnetic satellite data obtained during a strong magnetic storm on March 8−9, 1970. In addition to the data of the Soviet satellite Kosmos-321, data from the American satellite OGO-6, which performed geomagnetic measurements at the same time, were used. We analyzed time variations of external magnetic fields recorded in satellite and ground-based observations of the magnetic field. The research also gave impetus to the creation of the improved software implementation of the auroral oval model APM, which enables reconstruction of its position and precipitation intensity in both the past and near real time. The magnetic variations originating in the near-Earth space from various sources were identified. In particular, we revealed the signatures of the storm-time ring current and equatorial and auroral electrojects. The paper highlights the enduring value of historical data of magnetic field observations stored in data centers and continuously digitized by their staff.
{"title":"Identification of Geomagnetic Disturbances in Near-Earth Space from Satellite Observations during the Magnetic Storm on March 8–9, 1970","authors":"A. A. Soloviev, I. O. Belov, A. V. Vorobev, V. N. Sergeev","doi":"10.1134/S001679322460036X","DOIUrl":"10.1134/S001679322460036X","url":null,"abstract":"<p>In this study, we consider historical geomagnetic satellite data obtained during a strong magnetic storm on March 8−9, 1970. In addition to the data of the Soviet satellite Kosmos-321, data from the American satellite OGO-6, which performed geomagnetic measurements at the same time, were used. We analyzed time variations of external magnetic fields recorded in satellite and ground-based observations of the magnetic field. The research also gave impetus to the creation of the improved software implementation of the auroral oval model APM, which enables reconstruction of its position and precipitation intensity in both the past and near real time. The magnetic variations originating in the near-Earth space from various sources were identified. In particular, we revealed the signatures of the storm-time ring current and equatorial and auroral electrojects. The paper highlights the enduring value of historical data of magnetic field observations stored in data centers and continuously digitized by their staff.</p>","PeriodicalId":55597,"journal":{"name":"Geomagnetism and Aeronomy","volume":"64 4","pages":"546 - 557"},"PeriodicalIF":0.7,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142218568","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-13DOI: 10.1134/S0016793224600383
I. G. Shibaev
When analyzing a narrowband signal, the Hilbert transform is often used, which makes it possible to describe the process through slowly changing functions: the envelope (amplitude) and, weakly dependent on time, the characteristic signal frequency—the “instantaneous” frequency. Based on the smoothness of these characteristics, one can evaluate the process and compare it at different periods. This approach was used to analyze the spectral components of a series of average monthly Wolf numbers. This description of the main and second harmonics, supplemented by the properties of the long-period component, gives a fairly complete picture of the entire series of monthly averages. The work examines the correspondence of the characteristics of reliable data, with this approach, to the accepted description in terms of the parameters of cycles (maximum of the cycle, duration of the cycle, and its growth branches) and constructs an “envelope” of the maxima of the cycles. The time dynamics of the instantaneous frequencies of the fundamental and second harmonics of the entire series are also presented, and significant differences in their behavior are noted in the intervals corresponding to the reconstructed and reliable parts.
{"title":"Hilbert Transformation and Properties of Solar Cycles in Envelope−Instantaneous Frequency Variables","authors":"I. G. Shibaev","doi":"10.1134/S0016793224600383","DOIUrl":"10.1134/S0016793224600383","url":null,"abstract":"<p>When analyzing a narrowband signal, the Hilbert transform is often used, which makes it possible to describe the process through slowly changing functions: the envelope (amplitude) and, weakly dependent on time, the characteristic signal frequency—the “instantaneous” frequency. Based on the smoothness of these characteristics, one can evaluate the process and compare it at different periods. This approach was used to analyze the spectral components of a series of average monthly Wolf numbers. This description of the main and second harmonics, supplemented by the properties of the long-period component, gives a fairly complete picture of the entire series of monthly averages. The work examines the correspondence of the characteristics of reliable data, with this approach, to the accepted description in terms of the parameters of cycles (maximum of the cycle, duration of the cycle, and its growth branches) and constructs an “envelope” of the maxima of the cycles. The time dynamics of the instantaneous frequencies of the fundamental and second harmonics of the entire series are also presented, and significant differences in their behavior are noted in the intervals corresponding to the reconstructed and reliable parts.</p>","PeriodicalId":55597,"journal":{"name":"Geomagnetism and Aeronomy","volume":"64 4","pages":"597 - 601"},"PeriodicalIF":0.7,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142218422","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-13DOI: 10.1134/S0016793223600613
Ahmad Muhammad, Fatih Külahcı, Salim Jibrin Danbatta
The presence of ions within the atmospheric region near the soil surface has considerable implications for enhancing our understanding of Earth’s complex systems. This study delves into the intricate relationship between the atmospheric electric field in the boundary layer and lithosphere. The focus was specifically on investigating how soil radon and its progeny influence the production rate of ions in both the soil and the atmosphere. To achieve this, we combined the radon transport equation with advanced machine learning techniques. Using a well-suited machine learning model, we effectively modeled the responses of soil radon and seamlessly integrated them into the radon transport equation. The resulting insights were used to predict the rates at which radon-induced ion pairs were produced. A particularly important parameter is the surface-ion production rate, which is crucial for estimating the amplitude of the near-surface electric field. This methodology was applied to analyze data from two radon monitoring stations in Turkey: Erzincan, located along the North Anatolian Fault (NAF), and Malatya, situated close to the East Anatolian Fault regions. The significance of this estimation approach resonates within the field of lithospheric–atmospheric studies. This innovative methodology holds promise as a valuable tool for future investigations in the domains of lithosphere–atmosphere–ionosphere coupling (LAIC), global electric circuits (GEC), and seismo-ionospheric coupling. Ultimately, this study underscores the importance of carefully considering the intricate interconnections that exist among different components of Earth’s intricate system. This advocates the adoption of novel methods to shed light on these complex interactions.
{"title":"Ion Transport from Soil to Air and Electric Field Amplitude of the Boundary Layer","authors":"Ahmad Muhammad, Fatih Külahcı, Salim Jibrin Danbatta","doi":"10.1134/S0016793223600613","DOIUrl":"10.1134/S0016793223600613","url":null,"abstract":"<p>The presence of ions within the atmospheric region near the soil surface has considerable implications for enhancing our understanding of Earth’s complex systems. This study delves into the intricate relationship between the atmospheric electric field in the boundary layer and lithosphere. The focus was specifically on investigating how soil radon and its progeny influence the production rate of ions in both the soil and the atmosphere. To achieve this, we combined the radon transport equation with advanced machine learning techniques. Using a well-suited machine learning model, we effectively modeled the responses of soil radon and seamlessly integrated them into the radon transport equation. The resulting insights were used to predict the rates at which radon-induced ion pairs were produced. A particularly important parameter is the surface-ion production rate, which is crucial for estimating the amplitude of the near-surface electric field. This methodology was applied to analyze data from two radon monitoring stations in Turkey: Erzincan, located along the North Anatolian Fault (NAF), and Malatya, situated close to the East Anatolian Fault regions. The significance of this estimation approach resonates within the field of lithospheric–atmospheric studies. This innovative methodology holds promise as a valuable tool for future investigations in the domains of lithosphere–atmosphere–ionosphere coupling (LAIC), global electric circuits (GEC), and seismo-ionospheric coupling. Ultimately, this study underscores the importance of carefully considering the intricate interconnections that exist among different components of Earth’s intricate system. This advocates the adoption of novel methods to shed light on these complex interactions.</p>","PeriodicalId":55597,"journal":{"name":"Geomagnetism and Aeronomy","volume":"64 4","pages":"581 - 591"},"PeriodicalIF":0.7,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142218470","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}