Nuclear reactions are complex, with a large number of possible channels. Understanding how different channels contribute to a given reaction is investigated by perturbing the continuous spectrum. Tools are developed to investigate reaction mechanisms by identifying the contributions from each reaction channel. Cluster decomposition methods, along with the spectral theory of proper subsystem problems, is used to identify the part of the nuclear Hamiltonian responsible for scattering into each channel. The result is an expression of the nuclear Hamiltonian as a sum over all scattering channels of channel Hamiltonians. Each channel Hamiltonian is constructed from solutions of proper subsystem problems. Retaining any subset of channel Hamiltonians results in a truncated Hamiltonian where the scattering wave functions for the retained channels differ from the wave functions of the full Hamiltonian by N-body correlations. The scattering operator for the truncated Hamiltonian satisfies an optical theorem in the retained channels. Because different channel Hamiltonians do not commute, how they interact determines their contribution to the full dynamics.