Pub Date : 2023-01-01DOI: 10.3389/fnint.2023.1127310
Maren Schmidt-Kassow, Jochen Kaiser
During the last 30 years, a large number of behavioral studies have investigated the effect of simultaneous exercise on cognitive functions. The heterogeneity of the results has been attributed to different parameters, such as intensity or modality of physical activity, and the investigated cognitive processes. More recent methodological improvements have enabled to record electroencephalography (EEG) during physical exercise. EEG studies combining cognitive tasks with exercise have described predominantly detrimental effects on cognitive processes and EEG parameters. However, differences in the underlying rationale and the design of EEG versus behavioral studies make direct comparisons between both types of studies difficult. In this narrative review of dual-task experiments we evaluated behavioral and EEG studies and discuss possible explanations for the heterogeneity of results and for the discrepancy between behavioral and EEG studies. Furthermore, we provide a proposal for future EEG studies on simultaneous motion to be a useful complement to behavioral studies. A crucial factor might be to find for each cognitive function the motor activity that matches this function in terms of attentional focus. This hypothesis should be investigated systematically in future studies.
{"title":"The brain in motion-cognitive effects of simultaneous motor activity.","authors":"Maren Schmidt-Kassow, Jochen Kaiser","doi":"10.3389/fnint.2023.1127310","DOIUrl":"https://doi.org/10.3389/fnint.2023.1127310","url":null,"abstract":"<p><p>During the last 30 years, a large number of behavioral studies have investigated the effect of simultaneous exercise on cognitive functions. The heterogeneity of the results has been attributed to different parameters, such as intensity or modality of physical activity, and the investigated cognitive processes. More recent methodological improvements have enabled to record electroencephalography (EEG) during physical exercise. EEG studies combining cognitive tasks with exercise have described predominantly detrimental effects on cognitive processes and EEG parameters. However, differences in the underlying rationale and the design of EEG versus behavioral studies make direct comparisons between both types of studies difficult. In this narrative review of dual-task experiments we evaluated behavioral and EEG studies and discuss possible explanations for the heterogeneity of results and for the discrepancy between behavioral and EEG studies. Furthermore, we provide a proposal for future EEG studies on simultaneous motion to be a useful complement to behavioral studies. A crucial factor might be to find for each cognitive function the motor activity that matches this function in terms of attentional focus. This hypothesis should be investigated systematically in future studies.</p>","PeriodicalId":56016,"journal":{"name":"Frontiers in Integrative Neuroscience","volume":"17 ","pages":"1127310"},"PeriodicalIF":3.5,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10248180/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9674178","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.3389/fnint.2023.1161860
Enrique Soto, Adriana Pliego, Rosario Vega
Balance disorders are highly prevalent worldwide, causing substantial disability with high personal and socioeconomic impact. The prognosis in many of these patients is poor, and rehabilitation programs provide little help in many cases. This medical problem can be addressed using microelectronics by combining the highly successful cochlear implant experience to produce a vestibular prosthesis, using the technical advances in micro gyroscopes and micro accelerometers, which are the electronic equivalents of the semicircular canals (SCC) and the otolithic organs. Reaching this technological milestone fostered the possibility of using these electronic devices to substitute the vestibular function, mainly for visual stability and posture, in case of damage to the vestibular endorgans. The development of implantable and non-implantable devices showed diverse outcomes when considering the integrity of the vestibular pathways, the device parameters (current intensity, impedance, and waveform), and the targeted physiological function (balance and gaze). In this review, we will examine the development and testing of various prototypes of the vestibular implant (VI). The insight raised by examining the state-of-the-art vestibular prosthesis will facilitate the development of new device-development strategies and discuss the feasibility of complex combinations of implantable devices for disorders that directly affect balance and motor performance.
{"title":"Vestibular prosthesis: from basic research to clinics.","authors":"Enrique Soto, Adriana Pliego, Rosario Vega","doi":"10.3389/fnint.2023.1161860","DOIUrl":"https://doi.org/10.3389/fnint.2023.1161860","url":null,"abstract":"<p><p>Balance disorders are highly prevalent worldwide, causing substantial disability with high personal and socioeconomic impact. The prognosis in many of these patients is poor, and rehabilitation programs provide little help in many cases. This medical problem can be addressed using microelectronics by combining the highly successful cochlear implant experience to produce a vestibular prosthesis, using the technical advances in micro gyroscopes and micro accelerometers, which are the electronic equivalents of the semicircular canals (SCC) and the otolithic organs. Reaching this technological milestone fostered the possibility of using these electronic devices to substitute the vestibular function, mainly for visual stability and posture, in case of damage to the vestibular endorgans. The development of implantable and non-implantable devices showed diverse outcomes when considering the integrity of the vestibular pathways, the device parameters (current intensity, impedance, and waveform), and the targeted physiological function (balance and gaze). In this review, we will examine the development and testing of various prototypes of the vestibular implant (VI). The insight raised by examining the state-of-the-art vestibular prosthesis will facilitate the development of new device-development strategies and discuss the feasibility of complex combinations of implantable devices for disorders that directly affect balance and motor performance.</p>","PeriodicalId":56016,"journal":{"name":"Frontiers in Integrative Neuroscience","volume":"17 ","pages":"1161860"},"PeriodicalIF":3.5,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10230114/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9923194","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.3389/fnint.2023.1229110
Elizabeth B Torres, Goldie Twerski, Hannah Varkey, Richa Rai, Mona Elsayed, Miriam Tirtza Katz, Jillian Tarlowe
Introduction: Recent changes in diagnostics criteria have contributed to the broadening of the autism spectrum disorders and left clinicians ill-equipped to treat the highly heterogeneous spectrum that now includes toddlers and children with sensory and motor issues.
Methods: To uncover the clinicians' critical needs in the autism space, we conducted surveys designed collaboratively with the clinicians themselves. Board Certified Behavioral Analysts (BCBAs) and developmental model (DM) clinicians obtained permission from their accrediting boards and designed surveys to assess needs and preferences in their corresponding fields.
Results: 92.6% of BCBAs are open to diversified treatment combining aspects of multiple disciplines; 82.7% of DMs also favor this diversification with 21.8% valuing BCBA-input and 40.6% neurologists-input; 85.9% of BCBAs and 85.3% of DMs advocate the use of wearables to objectively track nuanced behaviors in social exchange; 76.9% of BCBAs and 57.0% DMs feel they would benefit from augmenting their knowledge about the nervous systems of Autism (neuroscience research) to enhance treatment and planning programs; 50.0% of BCBAs feel they can benefit for more training to teach parents.
Discussion: Two complementary philosophies are converging to a more collaborative, integrative approach favoring scalable digital technologies and neuroscience. Autism practitioners seem ready to embrace the Digital-Neuroscience Revolutions under a new cooperative model.
{"title":"The time is ripe for the renaissance of autism treatments: evidence from clinical practitioners.","authors":"Elizabeth B Torres, Goldie Twerski, Hannah Varkey, Richa Rai, Mona Elsayed, Miriam Tirtza Katz, Jillian Tarlowe","doi":"10.3389/fnint.2023.1229110","DOIUrl":"https://doi.org/10.3389/fnint.2023.1229110","url":null,"abstract":"<p><strong>Introduction: </strong>Recent changes in diagnostics criteria have contributed to the broadening of the autism spectrum disorders and left clinicians ill-equipped to treat the highly heterogeneous spectrum that now includes toddlers and children with sensory and motor issues.</p><p><strong>Methods: </strong>To uncover the clinicians' critical needs in the autism space, we conducted surveys designed collaboratively with the clinicians themselves. Board Certified Behavioral Analysts (BCBAs) and developmental model (DM) clinicians obtained permission from their accrediting boards and designed surveys to assess needs and preferences in their corresponding fields.</p><p><strong>Results: </strong>92.6% of BCBAs are open to diversified treatment combining aspects of multiple disciplines; 82.7% of DMs also favor this diversification with 21.8% valuing BCBA-input and 40.6% neurologists-input; 85.9% of BCBAs and 85.3% of DMs advocate the use of wearables to objectively track nuanced behaviors in social exchange; 76.9% of BCBAs and 57.0% DMs feel they would benefit from augmenting their knowledge about the nervous systems of Autism (neuroscience research) to enhance treatment and planning programs; 50.0% of BCBAs feel they can benefit for more training to teach parents.</p><p><strong>Discussion: </strong>Two complementary philosophies are converging to a more collaborative, integrative approach favoring scalable digital technologies and neuroscience. Autism practitioners seem ready to embrace the Digital-Neuroscience Revolutions under a new cooperative model.</p>","PeriodicalId":56016,"journal":{"name":"Frontiers in Integrative Neuroscience","volume":"17 ","pages":"1229110"},"PeriodicalIF":3.5,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10437220/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10105517","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.3389/fnint.2023.1087976
Ceon Ramon, Uwe Graichen, Paolo Gargiulo, Frank Zanow, Thomas R Knösche, Jens Haueisen
Phase slips arise from state transitions of the coordinated activity of cortical neurons which can be extracted from the EEG data. The phase slip rates (PSRs) were studied from the high-density (256 channel) EEG data, sampled at 16.384 kHz, of five adult subjects during covert visual object naming tasks. Artifact-free data from 29 trials were averaged for each subject. The analysis was performed to look for phase slips in the theta (4-7 Hz), alpha (7-12 Hz), beta (12-30 Hz), and low gamma (30-49 Hz) bands. The phase was calculated with the Hilbert transform, then unwrapped and detrended to look for phase slip rates in a 1.0 ms wide stepping window with a step size of 0.06 ms. The spatiotemporal plots of the PSRs were made by using a montage layout of 256 equidistant electrode positions. The spatiotemporal profiles of EEG and PSRs during the stimulus and the first second of the post-stimulus period were examined in detail to study the visual evoked potentials and different stages of visual object recognition in the visual, language, and memory areas. It was found that the activity areas of PSRs were different as compared with EEG activity areas during the stimulus and post-stimulus periods. Different stages of the insight moments during the covert object naming tasks were examined from PSRs and it was found to be about 512 ± 21 ms for the 'Eureka' moment. Overall, these results indicate that information about the cortical phase transitions can be derived from the measured EEG data and can be used in a complementary fashion to study the cognitive behavior of the brain.
{"title":"Spatiotemporal phase slip patterns for visual evoked potentials, covert object naming tasks, and insight moments extracted from 256 channel EEG recordings.","authors":"Ceon Ramon, Uwe Graichen, Paolo Gargiulo, Frank Zanow, Thomas R Knösche, Jens Haueisen","doi":"10.3389/fnint.2023.1087976","DOIUrl":"https://doi.org/10.3389/fnint.2023.1087976","url":null,"abstract":"<p><p>Phase slips arise from state transitions of the coordinated activity of cortical neurons which can be extracted from the EEG data. The phase slip rates (PSRs) were studied from the high-density (256 channel) EEG data, sampled at 16.384 kHz, of five adult subjects during covert visual object naming tasks. Artifact-free data from 29 trials were averaged for each subject. The analysis was performed to look for phase slips in the theta (4-7 Hz), alpha (7-12 Hz), beta (12-30 Hz), and low gamma (30-49 Hz) bands. The phase was calculated with the Hilbert transform, then unwrapped and detrended to look for phase slip rates in a 1.0 ms wide stepping window with a step size of 0.06 ms. The spatiotemporal plots of the PSRs were made by using a montage layout of 256 equidistant electrode positions. The spatiotemporal profiles of EEG and PSRs during the stimulus and the first second of the post-stimulus period were examined in detail to study the visual evoked potentials and different stages of visual object recognition in the visual, language, and memory areas. It was found that the activity areas of PSRs were different as compared with EEG activity areas during the stimulus and post-stimulus periods. Different stages of the insight moments during the covert object naming tasks were examined from PSRs and it was found to be about 512 ± 21 ms for the 'Eureka' moment. Overall, these results indicate that information about the cortical phase transitions can be derived from the measured EEG data and can be used in a complementary fashion to study the cognitive behavior of the brain.</p>","PeriodicalId":56016,"journal":{"name":"Frontiers in Integrative Neuroscience","volume":"17 ","pages":"1087976"},"PeriodicalIF":3.5,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10293627/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9740411","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.3389/fnint.2023.1108271
Gerald E Loeb
Recent research has illuminated the complexity and importance of the thalamocortical system but it has been difficult to identify what computational functions it performs. Meanwhile, deep-learning artificial neural networks (ANNs) based on bio-inspired models of purely cortical circuits have achieved surprising success solving sophisticated cognitive problems associated historically with human intelligence. Nevertheless, the limitations and shortcomings of artificial intelligence (AI) based on such ANNs are becoming increasingly clear. This review considers how the addition of thalamocortical connectivity and its putative functions related to cortical attention might address some of those shortcomings. Such bio-inspired models are now providing both testable theories of biological cognition and improved AI technology, much of which is happening outside the usual academic venues.
{"title":"Remembrance of things perceived: Adding thalamocortical function to artificial neural networks.","authors":"Gerald E Loeb","doi":"10.3389/fnint.2023.1108271","DOIUrl":"https://doi.org/10.3389/fnint.2023.1108271","url":null,"abstract":"<p><p>Recent research has illuminated the complexity and importance of the thalamocortical system but it has been difficult to identify what computational functions it performs. Meanwhile, deep-learning artificial neural networks (ANNs) based on bio-inspired models of purely cortical circuits have achieved surprising success solving sophisticated cognitive problems associated historically with human intelligence. Nevertheless, the limitations and shortcomings of artificial intelligence (AI) based on such ANNs are becoming increasingly clear. This review considers how the addition of thalamocortical connectivity and its putative functions related to cortical attention might address some of those shortcomings. Such bio-inspired models are now providing both testable theories of biological cognition and improved AI technology, much of which is happening outside the usual academic venues.</p>","PeriodicalId":56016,"journal":{"name":"Frontiers in Integrative Neuroscience","volume":"17 ","pages":"1108271"},"PeriodicalIF":3.5,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10027940/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9180379","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.3389/fnint.2023.1146687
Prangya Parimita Sahu, Philip Tseng
Neural oscillations have been categorized into various frequency bands that are mechanistically associated with different cognitive functions. Specifically, the gamma band frequency is widely implicated to be involved in a wide range of cognitive processes. As such, decreased gamma oscillation has been associated with cognitive declines in neurological diseases, such as memory dysfunction in Alzheimer's disease (AD). Recently, studies have attempted to artificially induce gamma oscillations by using 40 Hz sensory entrainment stimulation. These studies reported attenuation of amyloid load, hyper-phosphorylation of tau protein, and improvement in overall cognition in both AD patients and mouse models. In this review, we discuss the advancements in the use of sensory stimulation in animal models of AD and as a therapeutic strategy in AD patients. We also discuss future opportunities, as well as challenges, for using such strategies in other neurodegenerative and neuropsychiatric diseases.
{"title":"Gamma sensory entrainment for cognitive improvement in neurodegenerative diseases: opportunities and challenges ahead.","authors":"Prangya Parimita Sahu, Philip Tseng","doi":"10.3389/fnint.2023.1146687","DOIUrl":"https://doi.org/10.3389/fnint.2023.1146687","url":null,"abstract":"<p><p>Neural oscillations have been categorized into various frequency bands that are mechanistically associated with different cognitive functions. Specifically, the gamma band frequency is widely implicated to be involved in a wide range of cognitive processes. As such, decreased gamma oscillation has been associated with cognitive declines in neurological diseases, such as memory dysfunction in Alzheimer's disease (AD). Recently, studies have attempted to artificially induce gamma oscillations by using 40 Hz sensory entrainment stimulation. These studies reported attenuation of amyloid load, hyper-phosphorylation of tau protein, and improvement in overall cognition in both AD patients and mouse models. In this review, we discuss the advancements in the use of sensory stimulation in animal models of AD and as a therapeutic strategy in AD patients. We also discuss future opportunities, as well as challenges, for using such strategies in other neurodegenerative and neuropsychiatric diseases.</p>","PeriodicalId":56016,"journal":{"name":"Frontiers in Integrative Neuroscience","volume":"17 ","pages":"1146687"},"PeriodicalIF":3.5,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10149720/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9779275","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.3389/fnint.2023.1145744
Baqir Lalani, Steven Gray, Tora Mitra-Ganguli
Systems Thinking (ST) can be defined as a mental construct that recognises patterns and connections in a particular complex system to make the "best decision" possible. In the field of sustainable agriculture and climate change, higher degrees of ST are assumed to be associated with more successful adaptation strategies under changing conditions, and "better" environmental decision making in a number of environmental and cultural settings. Future climate change scenarios highlight the negative effects on agricultural productivity worldwide, particularly in low-income countries (LICs) situated in the Global South. Alongside this, current measures of ST are limited by their reliance on recall, and are prone to possible measurement errors. Using Climate-Smart Agriculture (CSA), as an example case study, in this article we explore: (i) ST from a social science perspective; (ii) cognitive neuroscience tools that could be used to explore ST abilities in the context of LICs; (iii) an exploration of the possible correlates of systems thinking: observational learning, prospective thinking/memory and the theory of planned behaviour and (iv) a proposed theory of change highlighting the integration of social science frameworks and a cognitive neuroscience perspective. We find, recent advancements in the field of cognitive neuroscience such as Near-Infrared Spectroscopy (NIRS) provide exciting potential to explore previously hidden forms of cognition, especially in a low-income country/field setting; improving our understanding of environmental decision-making and the ability to more accurately test more complex hypotheses where access to laboratory studies is severely limited. We highlight that ST may correlate with other key aspects involved in environmental decision-making and posit motivating farmers via specific brain networks would: (a) enhance understanding of CSA practices (e.g., via the frontoparietal network extending from the dorsolateral prefrontal cortex (DLPFC) to the parietal cortex (PC) a control hub involved in ST and observational learning) such as tailoring training towards developing improved ST abilities among farmers and involving observational learning more explicitly and (b) motivate farmers to use such practices [e.g., via the network between the DLPFC and nucleus accumbens (NAc)] which mediates reward processing and motivation by focussing on a reward/emotion to engage farmers. Finally, our proposed interdisciplinary theory of change can be used as a starting point to encourage discussion and guide future research in this space.
{"title":"Systems Thinking in an era of climate change: Does cognitive neuroscience hold the key to improving environmental decision making? A perspective on Climate-Smart Agriculture.","authors":"Baqir Lalani, Steven Gray, Tora Mitra-Ganguli","doi":"10.3389/fnint.2023.1145744","DOIUrl":"https://doi.org/10.3389/fnint.2023.1145744","url":null,"abstract":"<p><p>Systems Thinking (ST) can be defined as a mental construct that recognises patterns and connections in a particular complex system to make the \"best decision\" possible. In the field of sustainable agriculture and climate change, higher degrees of ST are assumed to be associated with more successful adaptation strategies under changing conditions, and \"better\" environmental decision making in a number of environmental and cultural settings. Future climate change scenarios highlight the negative effects on agricultural productivity worldwide, particularly in low-income countries (LICs) situated in the Global South. Alongside this, current measures of ST are limited by their reliance on recall, and are prone to possible measurement errors. Using Climate-Smart Agriculture (CSA), as an example case study, in this article we explore: (i) ST from a social science perspective; (ii) cognitive neuroscience tools that could be used to explore ST abilities in the context of LICs; (iii) an exploration of the possible correlates of systems thinking: observational learning, prospective thinking/memory and the theory of planned behaviour and (iv) a proposed theory of change highlighting the integration of social science frameworks and a cognitive neuroscience perspective. We find, recent advancements in the field of cognitive neuroscience such as Near-Infrared Spectroscopy (NIRS) provide exciting potential to explore previously hidden forms of cognition, especially in a low-income country/field setting; improving our understanding of environmental decision-making and the ability to more accurately test more complex hypotheses where access to laboratory studies is severely limited. We highlight that ST may correlate with other key aspects involved in environmental decision-making and posit motivating farmers <i>via</i> specific brain networks would: (a) enhance understanding of CSA practices (e.g., <i>via</i> the frontoparietal network extending from the dorsolateral prefrontal cortex (DLPFC) to the parietal cortex (PC) a control hub involved in ST and observational learning) such as tailoring training towards developing improved ST abilities among farmers and involving observational learning more explicitly and (b) motivate farmers to use such practices [e.g., <i>via</i> the network between the DLPFC and nucleus accumbens (NAc)] which mediates reward processing and motivation by focussing on a reward/emotion to engage farmers. Finally, our proposed interdisciplinary theory of change can be used as a starting point to encourage discussion and guide future research in this space.</p>","PeriodicalId":56016,"journal":{"name":"Frontiers in Integrative Neuroscience","volume":"17 ","pages":"1145744"},"PeriodicalIF":3.5,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10174047/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9469585","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.3389/fnint.2023.1207666
Carlos Gevers-Montoro, Mariana Puente-Tobares, Aléxiane Monréal, Francisco Miguel Conesa-Buendía, Mathieu Piché, Arantxa Ortega-De Mues
Introduction: Over two thirds of individuals with low back pain (LBP) may experience recurrent or persistent symptoms in the long term. Yet, current data do not allow to predict who will develop chronic low back pain and who will recover from an acute episode. Elevated serum levels of the proinflammatory cytokine tumor necrosis factor-α (TNF-α) have been associated with poor recovery and persistent pain following an acute episode of LBP. Inflammatory cytokines may also mediate mechanisms involved in nociplastic pain, and thus, have significant implications in chronic primary low back pain (CPLBP).
Methods: This study aimed to investigate the potential of urinary TNF-α levels for predicting outcomes and characterizing clinical features of CPLBP patients. Twenty-four patients with CPLBP and 24 sex- and age-matched asymptomatic controls were recruited. Urinary TNF-α concentrations were measured at baseline and after 4 weeks, during which CPLBP patients underwent spinal manipulative therapy (SMT).
Results: Concentrations of TNF-α were found to be elevated in baseline urine samples of CPLBP patients compared to asymptomatic controls. Moreover, these values differed among patients depending on their pain trajectory. Patients with persistent pain showed higher levels of TNF-α, when compared to those with episodic CPLBP. Furthermore, baseline TNF-α concentrations and their changes after 4 weeks predicted alterations in pain intensity and disability following SMT in patients with CPLBP.
Discussion: These findings warrant further research on the potential use of urinary TNF-α concentrations as a prognostic biomarker for CPLBP.
{"title":"Urinary TNF-α as a potential biomarker for chronic primary low back pain.","authors":"Carlos Gevers-Montoro, Mariana Puente-Tobares, Aléxiane Monréal, Francisco Miguel Conesa-Buendía, Mathieu Piché, Arantxa Ortega-De Mues","doi":"10.3389/fnint.2023.1207666","DOIUrl":"https://doi.org/10.3389/fnint.2023.1207666","url":null,"abstract":"<p><strong>Introduction: </strong>Over two thirds of individuals with low back pain (LBP) may experience recurrent or persistent symptoms in the long term. Yet, current data do not allow to predict who will develop chronic low back pain and who will recover from an acute episode. Elevated serum levels of the proinflammatory cytokine tumor necrosis factor-α (TNF-α) have been associated with poor recovery and persistent pain following an acute episode of LBP. Inflammatory cytokines may also mediate mechanisms involved in nociplastic pain, and thus, have significant implications in chronic primary low back pain (CPLBP).</p><p><strong>Methods: </strong>This study aimed to investigate the potential of urinary TNF-α levels for predicting outcomes and characterizing clinical features of CPLBP patients. Twenty-four patients with CPLBP and 24 sex- and age-matched asymptomatic controls were recruited. Urinary TNF-α concentrations were measured at baseline and after 4 weeks, during which CPLBP patients underwent spinal manipulative therapy (SMT).</p><p><strong>Results: </strong>Concentrations of TNF-α were found to be elevated in baseline urine samples of CPLBP patients compared to asymptomatic controls. Moreover, these values differed among patients depending on their pain trajectory. Patients with persistent pain showed higher levels of TNF-α, when compared to those with episodic CPLBP. Furthermore, baseline TNF-α concentrations and their changes after 4 weeks predicted alterations in pain intensity and disability following SMT in patients with CPLBP.</p><p><strong>Discussion: </strong>These findings warrant further research on the potential use of urinary TNF-α concentrations as a prognostic biomarker for CPLBP.</p>","PeriodicalId":56016,"journal":{"name":"Frontiers in Integrative Neuroscience","volume":"17 ","pages":"1207666"},"PeriodicalIF":3.5,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10336221/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10199053","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}