The Eurasian steppes are among the largest and most threatened biomes on Earth. During cold periods of the Pleistocene, the zonal Eurasian steppes had a much larger extent as compared to interglacial periods, and repeatedly expanded into large areas of present-day forested temperate Europe. Conversely, during warm periods, forest expansion recurrently forced Eurasian steppe biota into disjunct and small warm-stage refugia, i.e. today's extrazonal steppes. The rare, threatened and disjunctly distributed northwestern African and European members of Astragalus sect. Caprini constitute an ideal model for gaining insights into the evolutionary dynamics of typical steppe biota. Here, we reconstructed the spatiotemporal diversification of northwestern African and European members of Astragalus sect. Caprini based on a combination of RADseq data, single gene markers (internal transcribed spacer, plastid ycf1), genome size measurements and multivariate morphometrics. We outline an evolutionary scenario in which the group originated in the Irano-Turanian region and started to diversify shortly after the Mid-Pleistocene-Transition (ca. 0.5 to 0.7 Ma). While lineages occurring in (sub-)mediterranean mountain ranges diverged early, lineages occurring in northern lowland steppes are much younger (ca. 0.2 to 0.3 Ma), emphasizing the importance of southern European mountain ranges as long-term refugia. Recurrent colonization of the western Mediterranean region by eastern Mediterranean lineages and secondary contacts of currently spatially isolated lineages have significantly (co-)shaped the genetic structure within the group; we assume that these events may be a consequence of cold-stage range expansions. Based on combined genetic and morphometric data, we suggest treating the ten lineages introduced in this study as independent species, contrasting previous taxonomic treatments.
Phylogenetic analyses increasingly rely on genomic and transcriptomic data to produce better supported inferences on the evolutionary relationships among microbial eukaryotes. Such phylogenomic analyses, however, require robust workflows, bioinformatic expertise and computational power. Microbial eukaryotes pose additional challenges given the complexity of their genomes and the presence of non-target sequences (e.g., symbionts, prey) in data obtained from single cells of uncultivable lineages. To address these challenges, we developed a phylogenomic workflow based on single-cell RNA sequencing, integrating all essential steps from cell isolation to data curation and species tree inference. We assessed our workflow by using publicly available and newly generated transcriptomes (11 and 28, respectively) from the Oligotrichea, a diverse group of marine planktonic ciliates. This group's phylogenetic relationships have been relatively well-studied based on ribosomal RNA gene markers, which we reconstructed by read mapping of transcriptome sequences and compared to our phylogenomic inferences. We also compared phylogenomic analyses based on single-copy protein-coding genes (well-curated orthologs) and multi-copy genes (including paralogs) by sequence concatenation and a coalescence approach (Asteroid), respectively. Finally, using subsets of up to 1,014 gene families (GFs), we assessed the influence of missing data in our phylogenomic inferences. All our analyses yielded similar results, and most inferred relationships were consistent and well-supported. Overall, we found that Asteroid provides robust support for species tree inferences, while simplifying curation steps, minimizing the effects of missing data and maximizing the number of GFs represented in the analyses. Our workflow can be adapted for phylogenomic analyses based on single-cell RNA sequencing of other uncultivable microbial eukaryotes.