首页 > 最新文献

Journal of Topology最新文献

英文 中文
Applications of higher-dimensional Heegaard Floer homology to contact topology 高维 Heegaard Floer 同调在接触拓扑学中的应用
IF 0.8 2区 数学 Q2 MATHEMATICS Pub Date : 2024-07-11 DOI: 10.1112/topo.12349
Vincent Colin, Ko Honda, Yin Tian

The goal of this paper is to set up the general framework of higher-dimensional Heegaard Floer homology, define the contact class, and use it to give an obstruction to the Liouville fillability of a contact manifold and a sufficient condition for the Weinstein conjecture to hold. We discuss several classes of examples including those coming from analyzing a close cousin of symplectic Khovanov homology and the analog of the Plamenevskaya invariant of transverse links.

本文的目的是建立高维希加弗洛尔同调的一般框架,定义接触类,并利用它给出接触流形的柳维尔可填充性的障碍和温斯坦猜想成立的充分条件。我们讨论了几类例子,包括来自分析交点霍瓦诺夫同调的近亲和横向联系的普拉梅内夫斯卡娅不变量的类似物的例子。
{"title":"Applications of higher-dimensional Heegaard Floer homology to contact topology","authors":"Vincent Colin,&nbsp;Ko Honda,&nbsp;Yin Tian","doi":"10.1112/topo.12349","DOIUrl":"https://doi.org/10.1112/topo.12349","url":null,"abstract":"<p>The goal of this paper is to set up the general framework of higher-dimensional Heegaard Floer homology, define the contact class, and use it to give an obstruction to the Liouville fillability of a contact manifold and a sufficient condition for the Weinstein conjecture to hold. We discuss several classes of examples including those coming from analyzing a close cousin of symplectic Khovanov homology and the analog of the Plamenevskaya invariant of transverse links.</p>","PeriodicalId":56114,"journal":{"name":"Journal of Topology","volume":"17 3","pages":""},"PeriodicalIF":0.8,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141597127","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Characteristic cohomology II: Matrix singularities 特性同调 II:矩阵奇点
IF 0.8 2区 数学 Q2 MATHEMATICS Pub Date : 2024-06-27 DOI: 10.1112/topo.12330
James Damon
<p>For a germ of a variety <span></span><math> <semantics> <mrow> <mi>V</mi> <mo>,</mo> <mn>0</mn> <mo>⊂</mo> <msup> <mi>C</mi> <mi>N</mi> </msup> <mo>,</mo> <mn>0</mn> </mrow> <annotation>$mathcal {V}, 0 subset mathbb {C}^N, 0$</annotation> </semantics></math>, a singularity <span></span><math> <semantics> <msub> <mi>V</mi> <mn>0</mn> </msub> <annotation>$mathcal {V}_0$</annotation> </semantics></math> of “type <span></span><math> <semantics> <mi>V</mi> <annotation>$mathcal {V}$</annotation> </semantics></math>”  is given by a germ <span></span><math> <semantics> <mrow> <msub> <mi>f</mi> <mn>0</mn> </msub> <mo>:</mo> <msup> <mi>C</mi> <mi>n</mi> </msup> <mo>,</mo> <mn>0</mn> <mo>→</mo> <msup> <mi>C</mi> <mi>N</mi> </msup> <mo>,</mo> <mn>0</mn> </mrow> <annotation>$f_0: mathbb {C}^n, 0 rightarrow mathbb {C}^N, 0$</annotation> </semantics></math>, which is transverse to <span></span><math> <semantics> <mrow> <mi>V</mi> <mo>∖</mo> <mo>{</mo> <mn>0</mn> <mo>}</mo> </mrow> <annotation>$mathcal {V}setminus lbrace 0rbrace$</annotation> </semantics></math> in an appropriate sense, such that <span></span><math> <semantics> <mrow> <msub> <mi>V</mi> <mn>0</mn> </msub> <mo>=</mo> <msubsup> <mi>f</mi> <mn>0</mn> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msubsup> <mrow> <mo>(</mo> <mi>V</mi> <mo>)</mo> </mrow> </mrow> <annotation>$mathcal {V}_0 = f_0^{-1}(mathcal {V})$</annotation> </semantics></math>. In part I of this paper, we introduced for such singularities the Characteristic Cohomology for the Milnor fiber (for <span></span><math> <semantics>
对于 "类型 V $mathcal {V}$"的一个综类 V 0 $mathcal {V}_0$ 是由一个综类 f 0 : C n , 0 → C N , 0 $f_0: mathbb {C}^n, 0 rightarrow mathbb {C}^N, 0$ 给出的,它横向于 V ∖ { 0 }。 $mathcal {V}setminus lbrace 0rbrace$ 在适当的意义上,这样 V 0 = f 0 - 1 ( V ) $mathcal {V}_0 = f_0^{-1}(mathcal {V})$ 。在本文的第一部分,我们介绍了这种奇点的米尔诺纤维(对于 V $mathcal {V}$ 一个超曲面)的特性同调(Characteristic Cohomology),以及补集和链接(对于一般情况)。它捕捉了从 V $mathcal {V}$ 继承而来的 V 0 $mathcal {V}_0$ 的同调,并由米尔诺纤维和补集的 V 0 $mathcal {V}_0$ 的同调的子代数给出,而且是链接的同调的子群。我们证明了这些同调在米尔诺纤维的等价衍射组 K H $mathcal {K}_{H}$和补集与链接的等价衍射组 K V $mathcal {K}_{mathcal {V}}$下是函数式的和不变的。在本文中,我们将这些方法应用于 V $mathcal {V}$ 表示奇异 m × m $m times m$ 复矩阵的任何品种的情况,这些复矩阵可能是一般的、对称的或倾斜对称的(m $m$ 偶数)。对于这些矩阵,我们在另一篇论文中已经证明,它们的米尔诺纤维和补集有紧凑的 "模型子 afternoon",它们的同调类型是 Cartan 意义上的经典对称空间。因此,我们首先给出了米尔诺纤维和补集的特征同调子代数的结构,即外部代数的图像(或者在一种情况下,外部代数上两个生成器的模块)。对于链接,特征同调群是移位上截外部代数的映像。此外,我们将这些关于补集和链接的结果扩展到一般 m × p $m times p$ 复矩阵的情况。其次,我们应用第一部分介绍的几何检测方法来检测米尔诺纤维或补集的特定特征同调类何时为非零。我们在一组特定的生成器上识别出一个外部子代数,并确定它包含一个适当的移位上截断外部子代数。检测标准涉及一种基于给定子空间标志的特殊类型 "大小为 ℓ $ell$ 的风筝映射胚芽"。
{"title":"Characteristic cohomology II: Matrix singularities","authors":"James Damon","doi":"10.1112/topo.12330","DOIUrl":"https://doi.org/10.1112/topo.12330","url":null,"abstract":"&lt;p&gt;For a germ of a variety &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;V&lt;/mi&gt;\u0000 &lt;mo&gt;,&lt;/mo&gt;\u0000 &lt;mn&gt;0&lt;/mn&gt;\u0000 &lt;mo&gt;⊂&lt;/mo&gt;\u0000 &lt;msup&gt;\u0000 &lt;mi&gt;C&lt;/mi&gt;\u0000 &lt;mi&gt;N&lt;/mi&gt;\u0000 &lt;/msup&gt;\u0000 &lt;mo&gt;,&lt;/mo&gt;\u0000 &lt;mn&gt;0&lt;/mn&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$mathcal {V}, 0 subset mathbb {C}^N, 0$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;, a singularity &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;V&lt;/mi&gt;\u0000 &lt;mn&gt;0&lt;/mn&gt;\u0000 &lt;/msub&gt;\u0000 &lt;annotation&gt;$mathcal {V}_0$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; of “type &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mi&gt;V&lt;/mi&gt;\u0000 &lt;annotation&gt;$mathcal {V}$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;”  is given by a germ &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;f&lt;/mi&gt;\u0000 &lt;mn&gt;0&lt;/mn&gt;\u0000 &lt;/msub&gt;\u0000 &lt;mo&gt;:&lt;/mo&gt;\u0000 &lt;msup&gt;\u0000 &lt;mi&gt;C&lt;/mi&gt;\u0000 &lt;mi&gt;n&lt;/mi&gt;\u0000 &lt;/msup&gt;\u0000 &lt;mo&gt;,&lt;/mo&gt;\u0000 &lt;mn&gt;0&lt;/mn&gt;\u0000 &lt;mo&gt;→&lt;/mo&gt;\u0000 &lt;msup&gt;\u0000 &lt;mi&gt;C&lt;/mi&gt;\u0000 &lt;mi&gt;N&lt;/mi&gt;\u0000 &lt;/msup&gt;\u0000 &lt;mo&gt;,&lt;/mo&gt;\u0000 &lt;mn&gt;0&lt;/mn&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$f_0: mathbb {C}^n, 0 rightarrow mathbb {C}^N, 0$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;, which is transverse to &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;V&lt;/mi&gt;\u0000 &lt;mo&gt;∖&lt;/mo&gt;\u0000 &lt;mo&gt;{&lt;/mo&gt;\u0000 &lt;mn&gt;0&lt;/mn&gt;\u0000 &lt;mo&gt;}&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$mathcal {V}setminus lbrace 0rbrace$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; in an appropriate sense, such that &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;V&lt;/mi&gt;\u0000 &lt;mn&gt;0&lt;/mn&gt;\u0000 &lt;/msub&gt;\u0000 &lt;mo&gt;=&lt;/mo&gt;\u0000 &lt;msubsup&gt;\u0000 &lt;mi&gt;f&lt;/mi&gt;\u0000 &lt;mn&gt;0&lt;/mn&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;−&lt;/mo&gt;\u0000 &lt;mn&gt;1&lt;/mn&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/msubsup&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;mi&gt;V&lt;/mi&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$mathcal {V}_0 = f_0^{-1}(mathcal {V})$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;. In part I of this paper, we introduced for such singularities the Characteristic Cohomology for the Milnor fiber (for &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 ","PeriodicalId":56114,"journal":{"name":"Journal of Topology","volume":"17 3","pages":""},"PeriodicalIF":0.8,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141488838","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Local connectedness of boundaries for relatively hyperbolic groups 相对双曲群边界的局部连通性
IF 1.1 2区 数学 Q2 MATHEMATICS Pub Date : 2024-06-10 DOI: 10.1112/topo.12347
Ashani Dasgupta, G. Christopher Hruska

Let (Γ,P)$(Gamma,mathbb {P})$ be a relatively hyperbolic group pair that is relatively one ended. Then, the Bowditch boundary of (Γ,P)$(Gamma,mathbb {P})$ is locally connected. Bowditch previously established this conclusion under the additional assumption that all peripheral subgroups are finitely presented, either one or two ended, and contain no infinite torsion subgroups. We remove these restrictions; we make no restriction on the cardinality of Γ$Gamma$ and no restriction on the peripheral subgroups PP$P in mathbb {P}$.

让 ( Γ , P ) $(Gamma,mathbb {P})$ 是相对一端的相对双曲群对。那么,( Γ , P ) $(Gamma,mathbb {P})$ 的鲍迪奇边界是局部连通的。鲍迪奇之前是在所有外围子群都是有限呈现、一端或两端、不包含无限扭转子群的额外假设下得出这个结论的。我们取消了这些限制;我们不限制Γ $Gamma$ 的心性,也不限制外围子群 P ∈ P $P in mathbb {P}$ 。
{"title":"Local connectedness of boundaries for relatively hyperbolic groups","authors":"Ashani Dasgupta,&nbsp;G. Christopher Hruska","doi":"10.1112/topo.12347","DOIUrl":"https://doi.org/10.1112/topo.12347","url":null,"abstract":"<p>Let <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mi>Γ</mi>\u0000 <mo>,</mo>\u0000 <mi>P</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation>$(Gamma,mathbb {P})$</annotation>\u0000 </semantics></math> be a relatively hyperbolic group pair that is relatively one ended. Then, the Bowditch boundary of <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mi>Γ</mi>\u0000 <mo>,</mo>\u0000 <mi>P</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation>$(Gamma,mathbb {P})$</annotation>\u0000 </semantics></math> is locally connected. Bowditch previously established this conclusion under the additional assumption that all peripheral subgroups are finitely presented, either one or two ended, and contain no infinite torsion subgroups. We remove these restrictions; we make no restriction on the cardinality of <span></span><math>\u0000 <semantics>\u0000 <mi>Γ</mi>\u0000 <annotation>$Gamma$</annotation>\u0000 </semantics></math> and no restriction on the peripheral subgroups <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>P</mi>\u0000 <mo>∈</mo>\u0000 <mi>P</mi>\u0000 </mrow>\u0000 <annotation>$P in mathbb {P}$</annotation>\u0000 </semantics></math>.</p>","PeriodicalId":56114,"journal":{"name":"Journal of Topology","volume":"17 2","pages":""},"PeriodicalIF":1.1,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141304256","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Involutions, links, and Floer cohomologies 卷积、链接和浮子同调
IF 1.1 2区 数学 Q2 MATHEMATICS Pub Date : 2024-06-10 DOI: 10.1112/topo.12340
Hokuto Konno, Jin Miyazawa, Masaki Taniguchi

We develop a version of Seiberg–Witten Floer cohomology/homotopy type for a spinc${rm spin}^c$ 4-manifold with boundary and with an involution that reverses the spinc${rm spin}^c$ structure, as well as a version of Floer cohomology/homotopy type for oriented links with nonzero determinant. This framework generalizes the previous work of the authors regarding Floer homotopy type for spin 3-manifolds with involutions and for knots. Based on this Floer cohomological setting, we prove Frøyshov-type inequalities that relate topological quantities of 4-manifolds with certain equivariant homology cobordism invariants. The inequalities and homology cobordism invariants have applications to the topology of unoriented surfaces, the Nielsen realization problem for nonspin 4-manifolds, and nonsmoothable unoriented surfaces in 4-manifolds.

我们为一个有边界的自旋 c ${rm spin}^c$ 4-manifold,以及一个反转自旋 c ${rm spin}^c$ 结构的内卷,建立了一个版本的塞伯格-维滕(Seiberg-Witten)弗洛尔同构/同调类型,并为具有非零行列式的定向链接建立了一个版本的弗洛尔同构/同调类型。这个框架概括了作者之前关于有卷积的自旋 3-manifolds和结的浮子同调类型的工作。基于这种弗洛尔同调设置,我们证明了弗洛依肖夫型不等式,它将 4-manifold 的拓扑量与某些等变同调共线性不变式联系起来。这些不等式和同调共线性不变式可应用于无向曲面拓扑学、非旋4-manifolds的尼尔森实现问题以及4-manifolds中的非光滑无向曲面。
{"title":"Involutions, links, and Floer cohomologies","authors":"Hokuto Konno,&nbsp;Jin Miyazawa,&nbsp;Masaki Taniguchi","doi":"10.1112/topo.12340","DOIUrl":"https://doi.org/10.1112/topo.12340","url":null,"abstract":"<p>We develop a version of Seiberg–Witten Floer cohomology/homotopy type for a <span></span><math>\u0000 <semantics>\u0000 <msup>\u0000 <mi>spin</mi>\u0000 <mi>c</mi>\u0000 </msup>\u0000 <annotation>${rm spin}^c$</annotation>\u0000 </semantics></math> 4-manifold with boundary and with an involution that reverses the <span></span><math>\u0000 <semantics>\u0000 <msup>\u0000 <mi>spin</mi>\u0000 <mi>c</mi>\u0000 </msup>\u0000 <annotation>${rm spin}^c$</annotation>\u0000 </semantics></math> structure, as well as a version of Floer cohomology/homotopy type for oriented links with nonzero determinant. This framework generalizes the previous work of the authors regarding Floer homotopy type for spin 3-manifolds with involutions and for knots. Based on this Floer cohomological setting, we prove Frøyshov-type inequalities that relate topological quantities of 4-manifolds with certain equivariant homology cobordism invariants. The inequalities and homology cobordism invariants have applications to the topology of unoriented surfaces, the Nielsen realization problem for nonspin 4-manifolds, and nonsmoothable unoriented surfaces in 4-manifolds.</p>","PeriodicalId":56114,"journal":{"name":"Journal of Topology","volume":"17 2","pages":""},"PeriodicalIF":1.1,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141304268","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the tau invariants in instanton and monopole Floer theories 论瞬子和单极浮子理论中的陶不变式
IF 1.1 2区 数学 Q2 MATHEMATICS Pub Date : 2024-06-05 DOI: 10.1112/topo.12346
Sudipta Ghosh, Zhenkun Li, C.-M. Michael Wong

We unify two existing approaches to the tau invariants in instanton and monopole Floer theories, by identifying τG$tau _{mathrm{G}}$, defined by the second author via the minus flavors KHI̲$underline{operatorname{KHI}}^-$ and KHM̲$underline{operatorname{KHM}}^-$ of the knot homologies, with τG$tau ^sharp _{mathrm{G}}$, defined by Baldwin and Sivek via cobordism maps of the 3-manifold homologies induced by knot surgeries. We exhibit several consequences, including a relationship with Heegaard Floer theory, and use our result to compute KHI̲$underline{operatorname{KHI}}^-$ and KHM̲$underline{operatorname{KHM}}^-$ for twist knots.

我们将第二作者通过结同构的减味 KHI ̲ - $underline{operatorname{KHI}}^-$ 和 KHM ̲ - $underline{operatorname{KHM}}^-$ 定义的 τ G $tau _{mathrm{G}}$ 与 Baldwin 和 Sivek 通过共线性定义的 τ G ♯ $tau sharp _{mathrm{G}}$ 统一为瞬子和单极浮子理论中的头不变式的两种现有方法、G τ ♯ $tau ^sharp _{mathrm{G}}$,由鲍德温和西韦克通过结手术诱导的 3-manifold同调的共线性映射定义。我们展示了几个结果,包括与 Heegaard Floer 理论的关系,并用我们的结果计算了扭结的 KHI ̲ - $underline{operatorname{KHI}}^-$ 和 KHM ̲ - $underline{operatorname{KHM}}^-$ 。
{"title":"On the tau invariants in instanton and monopole Floer theories","authors":"Sudipta Ghosh,&nbsp;Zhenkun Li,&nbsp;C.-M. Michael Wong","doi":"10.1112/topo.12346","DOIUrl":"https://doi.org/10.1112/topo.12346","url":null,"abstract":"<p>We unify two existing approaches to the <i>tau</i> invariants in instanton and monopole Floer theories, by identifying <span></span><math>\u0000 <semantics>\u0000 <msub>\u0000 <mi>τ</mi>\u0000 <mi>G</mi>\u0000 </msub>\u0000 <annotation>$tau _{mathrm{G}}$</annotation>\u0000 </semantics></math>, defined by the second author via the <i>minus</i> flavors <span></span><math>\u0000 <semantics>\u0000 <msup>\u0000 <munder>\u0000 <mo>KHI</mo>\u0000 <mo>̲</mo>\u0000 </munder>\u0000 <mo>−</mo>\u0000 </msup>\u0000 <annotation>$underline{operatorname{KHI}}^-$</annotation>\u0000 </semantics></math> and <span></span><math>\u0000 <semantics>\u0000 <msup>\u0000 <munder>\u0000 <mo>KHM</mo>\u0000 <mo>̲</mo>\u0000 </munder>\u0000 <mo>−</mo>\u0000 </msup>\u0000 <annotation>$underline{operatorname{KHM}}^-$</annotation>\u0000 </semantics></math> of the knot homologies, with <span></span><math>\u0000 <semantics>\u0000 <msubsup>\u0000 <mi>τ</mi>\u0000 <mi>G</mi>\u0000 <mo>♯</mo>\u0000 </msubsup>\u0000 <annotation>$tau ^sharp _{mathrm{G}}$</annotation>\u0000 </semantics></math>, defined by Baldwin and Sivek via cobordism maps of the 3-manifold homologies induced by knot surgeries. We exhibit several consequences, including a relationship with Heegaard Floer theory, and use our result to compute <span></span><math>\u0000 <semantics>\u0000 <msup>\u0000 <munder>\u0000 <mo>KHI</mo>\u0000 <mo>̲</mo>\u0000 </munder>\u0000 <mo>−</mo>\u0000 </msup>\u0000 <annotation>$underline{operatorname{KHI}}^-$</annotation>\u0000 </semantics></math> and <span></span><math>\u0000 <semantics>\u0000 <msup>\u0000 <munder>\u0000 <mo>KHM</mo>\u0000 <mo>̲</mo>\u0000 </munder>\u0000 <mo>−</mo>\u0000 </msup>\u0000 <annotation>$underline{operatorname{KHM}}^-$</annotation>\u0000 </semantics></math> for twist knots.</p>","PeriodicalId":56114,"journal":{"name":"Journal of Topology","volume":"17 2","pages":""},"PeriodicalIF":1.1,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/topo.12346","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141264624","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Brieskorn spheres, cyclic group actions and the Milnor conjecture 布里斯科恩球、循环群作用和米尔诺猜想
IF 1.1 2区 数学 Q2 MATHEMATICS Pub Date : 2024-06-04 DOI: 10.1112/topo.12339
David Baraglia, Pedram Hekmati
<p>In this paper we further develop the theory of equivariant Seiberg–Witten–Floer cohomology of the two authors, with an emphasis on Brieskorn homology spheres. We obtain a number of applications. First, we show that the knot concordance invariants <span></span><math> <semantics> <msup> <mi>θ</mi> <mrow> <mo>(</mo> <mi>c</mi> <mo>)</mo> </mrow> </msup> <annotation>$theta ^{(c)}$</annotation> </semantics></math> defined by the first author satisfy <span></span><math> <semantics> <mrow> <msup> <mi>θ</mi> <mrow> <mo>(</mo> <mi>c</mi> <mo>)</mo> </mrow> </msup> <mrow> <mo>(</mo> <msub> <mi>T</mi> <mrow> <mi>a</mi> <mo>,</mo> <mi>b</mi> </mrow> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mrow> <mo>(</mo> <mi>a</mi> <mo>−</mo> <mn>1</mn> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mi>b</mi> <mo>−</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>/</mo> <mn>2</mn> </mrow> <annotation>$theta ^{(c)}(T_{a,b}) = (a-1)(b-1)/2$</annotation> </semantics></math> for torus knots, whenever <span></span><math> <semantics> <mi>c</mi> <annotation>$c$</annotation> </semantics></math> is a prime not dividing <span></span><math> <semantics> <mrow> <mi>a</mi> <mi>b</mi> </mrow> <annotation>$ab$</annotation> </semantics></math>. Since <span></span><math> <semantics> <msup> <mi>θ</mi> <mrow> <mo>(</mo> <mi>c</mi> <mo>)</mo> </mrow> </msup> <annotation>$theta ^{(c)}$</annotation> </semantics></math> is a lower bound for
在本文中,我们进一步发展了两位作者的等变塞伯格-维滕-弗洛尔同调理论,重点是布里斯科恩同调球。我们获得了一些应用。首先,我们证明了第一作者定义的结协和不变式 θ ( c ) $theta ^{(c)}$ 满足 θ ( c ) ( T a , b ) = ( a - 1 ) ( b - 1 ) / 2 $theta ^{(c)}(T_{a,b}) = (a-1)(b-1)/2$ 对于环结来说,只要 c $c$ 是不除以 a b $ab$ 的素数。由于 θ ( c ) $theta ^{(c)}$ 是片属的下限,这就给出了米尔诺猜想的新证明。其次,我们证明了在布里斯科恩同调 3 球 Y = Σ ( a 1 , ⋯ , a r ) $Y = Sigma (a_1, dots, a_r)$ 上的自由循环群作用不会平滑地扩展到任何与 Y $Y$ 边界的同调 4 球。在素数阶的非自由循环群作用的情况下,我们证明如果 H F r e d + ( Y ) $HF_{red}^+(Y)$ 的秩大于 H F r e d + ( Y / Z p ) $HF_{red}^+(Y/mathbb {Z}_p)$ 的秩的 p $p $ 倍,那么 Y $Y$ 上的 Z p $mathbb {Z}_p$ 作用不会平滑地扩展到任何与 Y $Y$ 定界的同源 4 球。第三,我们证明,对于除有限多个素以外的所有情况,类似的非扩展结果在边界 4-manifold具有正定交形式的情况下成立。最后,我们还证明了布里斯科恩同调球等变连接和的非扩展结果。
{"title":"Brieskorn spheres, cyclic group actions and the Milnor conjecture","authors":"David Baraglia,&nbsp;Pedram Hekmati","doi":"10.1112/topo.12339","DOIUrl":"https://doi.org/10.1112/topo.12339","url":null,"abstract":"&lt;p&gt;In this paper we further develop the theory of equivariant Seiberg–Witten–Floer cohomology of the two authors, with an emphasis on Brieskorn homology spheres. We obtain a number of applications. First, we show that the knot concordance invariants &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;msup&gt;\u0000 &lt;mi&gt;θ&lt;/mi&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;mi&gt;c&lt;/mi&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/msup&gt;\u0000 &lt;annotation&gt;$theta ^{(c)}$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; defined by the first author satisfy &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;msup&gt;\u0000 &lt;mi&gt;θ&lt;/mi&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;mi&gt;c&lt;/mi&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/msup&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;T&lt;/mi&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;a&lt;/mi&gt;\u0000 &lt;mo&gt;,&lt;/mo&gt;\u0000 &lt;mi&gt;b&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/msub&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;mo&gt;=&lt;/mo&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;mi&gt;a&lt;/mi&gt;\u0000 &lt;mo&gt;−&lt;/mo&gt;\u0000 &lt;mn&gt;1&lt;/mn&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;mi&gt;b&lt;/mi&gt;\u0000 &lt;mo&gt;−&lt;/mo&gt;\u0000 &lt;mn&gt;1&lt;/mn&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;mo&gt;/&lt;/mo&gt;\u0000 &lt;mn&gt;2&lt;/mn&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$theta ^{(c)}(T_{a,b}) = (a-1)(b-1)/2$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; for torus knots, whenever &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mi&gt;c&lt;/mi&gt;\u0000 &lt;annotation&gt;$c$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; is a prime not dividing &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;a&lt;/mi&gt;\u0000 &lt;mi&gt;b&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$ab$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;. Since &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;msup&gt;\u0000 &lt;mi&gt;θ&lt;/mi&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;mi&gt;c&lt;/mi&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/msup&gt;\u0000 &lt;annotation&gt;$theta ^{(c)}$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; is a lower bound for","PeriodicalId":56114,"journal":{"name":"Journal of Topology","volume":"17 2","pages":""},"PeriodicalIF":1.1,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/topo.12339","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141251284","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Corrigendum: Étale cohomology, purity and formality with torsion coefficients 更正:带扭转系数的Étale同调、纯粹性和形式性
IF 1.1 2区 数学 Q2 MATHEMATICS Pub Date : 2024-06-04 DOI: 10.1112/topo.12348
Joana Cirici, Geoffroy Horel

Proposition 6.9 in (J. Topol. 15 (2022), no. 4, 2270–2297) is incorrect without a connectivity assumption. In this note, we provide a counter-example, give a correct proof of the modified proposition and explain the other changes that need to be made to [1].

Topol.15 (2022), no.4,2270-2297)中的命题 6.9 在没有连接性假设的情况下是不正确的。在本注释中,我们提供了一个反例,给出了修改后命题的正确证明,并解释了[1]需要做的其他改动。
{"title":"Corrigendum: Étale cohomology, purity and formality with torsion coefficients","authors":"Joana Cirici,&nbsp;Geoffroy Horel","doi":"10.1112/topo.12348","DOIUrl":"https://doi.org/10.1112/topo.12348","url":null,"abstract":"<p>Proposition 6.9 in (J. Topol. <b>15</b> (2022), no. 4, 2270–2297) is incorrect without a connectivity assumption. In this note, we provide a counter-example, give a correct proof of the modified proposition and explain the other changes that need to be made to [1].</p>","PeriodicalId":56114,"journal":{"name":"Journal of Topology","volume":"17 2","pages":""},"PeriodicalIF":1.1,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/topo.12348","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141251285","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the Smith–Thom deficiency of Hilbert squares 论希尔伯特正方形的史密斯-托姆缺陷
IF 1.1 2区 数学 Q2 MATHEMATICS Pub Date : 2024-05-30 DOI: 10.1112/topo.12345
Viatcheslav Kharlamov, Rareş Răsdeaconu

We give an expression for the Smith–Thom deficiency of the Hilbert square X[2]$X^{[2]}$ of a smooth real algebraic variety X$X$ in terms of the rank of a suitable Mayer– Vietoris mapping in several situations. As a consequence, we establish a necessary and sufficient condition for the maximality of X[2]$X^{[2]}$ in the case of projective complete intersections, and show that with a few exceptions, no real nonsingular projective complete intersection of even dimension has maximal Hilbert square. We also provide new examples of smooth real algebraic varieties with maximal Hilbert square.

我们给出了几种情况下光滑实代数纷 X $X$ 的希尔伯特平方 X [ 2 ] $X^{[2]}$ 的 Smith-Thom 缺陷的表达式,即合适的 Mayer- Vietoris 映射的秩。因此,在射影完全交的情况下,我们为 X [ 2 ] $X^{[2]}$ 的最大性建立了必要条件和充分条件,并证明除了少数例外,没有偶数维的实非正射完全交具有最大希尔伯特平方。我们还提供了具有最大希尔伯特平方的光滑实代数品种的新例子。
{"title":"On the Smith–Thom deficiency of Hilbert squares","authors":"Viatcheslav Kharlamov,&nbsp;Rareş Răsdeaconu","doi":"10.1112/topo.12345","DOIUrl":"https://doi.org/10.1112/topo.12345","url":null,"abstract":"<p>We give an expression for the Smith–Thom deficiency of the Hilbert square <span></span><math>\u0000 <semantics>\u0000 <msup>\u0000 <mi>X</mi>\u0000 <mrow>\u0000 <mo>[</mo>\u0000 <mn>2</mn>\u0000 <mo>]</mo>\u0000 </mrow>\u0000 </msup>\u0000 <annotation>$X^{[2]}$</annotation>\u0000 </semantics></math> of a smooth real algebraic variety <span></span><math>\u0000 <semantics>\u0000 <mi>X</mi>\u0000 <annotation>$X$</annotation>\u0000 </semantics></math> in terms of the rank of a suitable Mayer– Vietoris mapping in several situations. As a consequence, we establish a necessary and sufficient condition for the maximality of <span></span><math>\u0000 <semantics>\u0000 <msup>\u0000 <mi>X</mi>\u0000 <mrow>\u0000 <mo>[</mo>\u0000 <mn>2</mn>\u0000 <mo>]</mo>\u0000 </mrow>\u0000 </msup>\u0000 <annotation>$X^{[2]}$</annotation>\u0000 </semantics></math> in the case of projective complete intersections, and show that with a few exceptions, no real nonsingular projective complete intersection of even dimension has maximal Hilbert square. We also provide new examples of smooth real algebraic varieties with maximal Hilbert square.</p>","PeriodicalId":56114,"journal":{"name":"Journal of Topology","volume":"17 2","pages":""},"PeriodicalIF":1.1,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/topo.12345","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141182129","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Invertible topological field theories 可逆拓扑场论
IF 1.1 2区 数学 Q2 MATHEMATICS Pub Date : 2024-05-28 DOI: 10.1112/topo.12335
Christopher Schommer-Pries
<p>A <span></span><math> <semantics> <mi>d</mi> <annotation>$d$</annotation> </semantics></math>-dimensional invertible topological field theory (TFT) is a functor from the symmetric monoidal <span></span><math> <semantics> <mrow> <mo>(</mo> <mi>∞</mi> <mo>,</mo> <mi>n</mi> <mo>)</mo> </mrow> <annotation>$(infty,n)$</annotation> </semantics></math>-category of <span></span><math> <semantics> <mi>d</mi> <annotation>$d$</annotation> </semantics></math>-bordisms (embedded into <span></span><math> <semantics> <msup> <mi>R</mi> <mi>∞</mi> </msup> <annotation>$mathbb {R}^infty$</annotation> </semantics></math> and equipped with a tangential <span></span><math> <semantics> <mrow> <mo>(</mo> <mi>X</mi> <mo>,</mo> <mi>ξ</mi> <mo>)</mo> </mrow> <annotation>$(X,xi)$</annotation> </semantics></math>-structure) that lands in the Picard subcategory of the target symmetric monoidal <span></span><math> <semantics> <mrow> <mo>(</mo> <mi>∞</mi> <mo>,</mo> <mi>n</mi> <mo>)</mo> </mrow> <annotation>$(infty,n)$</annotation> </semantics></math>-category. We classify these field theories in terms of the cohomology of the <span></span><math> <semantics> <mrow> <mo>(</mo> <mi>n</mi> <mo>−</mo> <mi>d</mi> <mo>)</mo> </mrow> <annotation>$(n-d)$</annotation> </semantics></math>-connective cover of the Madsen–Tillmann spectrum. This is accomplished by identifying the classifying space of the <span></span><math> <semantics> <mrow> <mo>(</mo> <mi>∞</mi> <mo>,</mo> <mi>n</mi> <mo>)</mo> </mrow> <annotation>$(infty,n)$</annotation> </semantics></math>-category of bordisms with <span></span><math> <semantics> <mrow> <msup> <mi>Ω</mi> <mrow> <mi>∞</mi> <mo>−</mo> <mi>n</mi> </mrow> </msup> <mi>M</mi> <mi>T</mi> <mi>ξ</mi> </mrow>
一个 d $d $ -d 维可逆拓扑场论(TFT)是一个来自对称一元 ( ∞ , n ) $(infty,n)$ -category of d $d $ -bordisms 的函子(嵌入到 R ∞ $mathbb {R}^infty$ 并配备一个切向 ( X 、 ξ ) $(X,xi)$结构),落在目标对称一元 ( ∞ , n ) $(infty,n)$类别的皮卡尔子类别中。我们根据马德森-蒂尔曼谱的( n - d ) $(n-d)$-康盖的同调对这些场论进行分类。这是通过将(∞ , n ) $(infty,n)$ -category of bordisms 的分类空间与 Ω ∞ - n M T ξ $Omega ^{infty -n}MTxi$ 识别为 E ∞ $E_infty$ -space 来实现的。这概括了加拉蒂乌斯-马德森-蒂尔曼-魏斯的著名成果(《数学法学》,第 202 卷(2009 年),第 2 期)。202 (2009), no. 2, 195-239) 在 n = 1 $n=1$ 情况下的著名结果,以及伯克斯特-马德森 (Bökstedt-Madsen) (An alpine expedition through algebraic topology, vol. 617, Contemp.Math.Math.Soc., Providence, RI, 2014, pp.我们还得到了嵌入到固定环境流形 M $M$ 的 d $d $ 边界的 ( ∞ , n ) $(infty,n)$ 类别的结果,概括了 Randal-Williams 的结果(Int.Math.Res.IMRN 2011 (2011), no.3,572-608)在 n = 1 $n=1$ 情况下的结果。我们给出了两个应用:(1)我们完全计算了所有扩展和部分扩展的可反转 TFT,其目标是某类 n $n$ - 向量空间(对于 n ⩽ 4 $n leqslant 4$ );(2)我们利用这一点给出了吉尔默和马斯鲍姆(Forum Math.25 (2013), no.arXiv:0912.4706).
{"title":"Invertible topological field theories","authors":"Christopher Schommer-Pries","doi":"10.1112/topo.12335","DOIUrl":"https://doi.org/10.1112/topo.12335","url":null,"abstract":"&lt;p&gt;A &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mi&gt;d&lt;/mi&gt;\u0000 &lt;annotation&gt;$d$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;-dimensional invertible topological field theory (TFT) is a functor from the symmetric monoidal &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;mi&gt;∞&lt;/mi&gt;\u0000 &lt;mo&gt;,&lt;/mo&gt;\u0000 &lt;mi&gt;n&lt;/mi&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$(infty,n)$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;-category of &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mi&gt;d&lt;/mi&gt;\u0000 &lt;annotation&gt;$d$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;-bordisms (embedded into &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;msup&gt;\u0000 &lt;mi&gt;R&lt;/mi&gt;\u0000 &lt;mi&gt;∞&lt;/mi&gt;\u0000 &lt;/msup&gt;\u0000 &lt;annotation&gt;$mathbb {R}^infty$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; and equipped with a tangential &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;mi&gt;X&lt;/mi&gt;\u0000 &lt;mo&gt;,&lt;/mo&gt;\u0000 &lt;mi&gt;ξ&lt;/mi&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$(X,xi)$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;-structure) that lands in the Picard subcategory of the target symmetric monoidal &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;mi&gt;∞&lt;/mi&gt;\u0000 &lt;mo&gt;,&lt;/mo&gt;\u0000 &lt;mi&gt;n&lt;/mi&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$(infty,n)$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;-category. We classify these field theories in terms of the cohomology of the &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;mi&gt;n&lt;/mi&gt;\u0000 &lt;mo&gt;−&lt;/mo&gt;\u0000 &lt;mi&gt;d&lt;/mi&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$(n-d)$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;-connective cover of the Madsen–Tillmann spectrum. This is accomplished by identifying the classifying space of the &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;mi&gt;∞&lt;/mi&gt;\u0000 &lt;mo&gt;,&lt;/mo&gt;\u0000 &lt;mi&gt;n&lt;/mi&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$(infty,n)$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;-category of bordisms with &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;msup&gt;\u0000 &lt;mi&gt;Ω&lt;/mi&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;∞&lt;/mi&gt;\u0000 &lt;mo&gt;−&lt;/mo&gt;\u0000 &lt;mi&gt;n&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/msup&gt;\u0000 &lt;mi&gt;M&lt;/mi&gt;\u0000 &lt;mi&gt;T&lt;/mi&gt;\u0000 &lt;mi&gt;ξ&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000","PeriodicalId":56114,"journal":{"name":"Journal of Topology","volume":"17 2","pages":""},"PeriodicalIF":1.1,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141164808","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Non-accessible localizations 无障碍本地化
IF 1.1 2区 数学 Q2 MATHEMATICS Pub Date : 2024-05-23 DOI: 10.1112/topo.12336
J. Daniel Christensen

In a 2005 paper, Casacuberta, Scevenels, and Smith construct a homotopy idempotent functor E$E$ on the category of simplicial sets with the property that whether it can be expressed as localization with respect to a map f$f$ is independent of the ZFC axioms. We show that this construction can be carried out in homotopy type theory. More precisely, we give a general method of associating to a suitable (possibly large) family of maps, a reflective subuniverse of any universe U$mathcal {U}$. When specialized to an appropriate family, this produces a localization which when interpreted in the $infty$-topos of spaces agrees with the localization corresponding to E$E$. Our approach generalizes the approach of Casacuberta et al. (Adv. Math. 197 (2005), no. 1, 120–139) in two ways. First, by working in homotopy type theory, our construction can be interpreted in any $infty$-topos. Second, while the local objects produced by Casacuberta et al. are always 1-types, our construction can produce n$n$-types, for any n$n$. This is new, even in the $infty$-topos of spaces. In addition, by making use of universes, our proof is very direct. Along the way, we prove many results about “small” types that are of independent interest. As an application, we give a new proof that separated localizations exist. We also give results that say when a localization with respect to a family of maps can be presented as localization with respect to a single map, and show that the simplicial model satisfies a strong form of the axiom of choice that implies that sets cover and that the law of excluded middle holds.

在 2005 年的一篇论文中,Casacuberta、Scevenels 和 Smith 在单纯集范畴上构建了一个同调幂等幂函数 E $E$,其性质是:它是否可以表达为关于映射 f $f$ 的局部化与 ZFC 公理无关。我们证明这种构造可以在同调类型理论中进行。更准确地说,我们给出了一种将任何宇宙 U $mathcal {U}$ 的反射子宇宙与一个合适的(可能很大的)映射族关联起来的一般方法。当把它专门化为一个合适的族时,就会产生一种局部化,当用空间的∞ $infty$ -topos 来解释时,这种局部化与对应于 E $E$ 的局部化是一致的。我们的方法推广了 Casacuberta 等人的方法(Adv. Math.197 (2005), no. 1, 120-139)的方法。首先,通过在同调类型理论中工作,我们的构造可以在任何 ∞ $infty$ -topos 中解释。其次,卡萨库伯塔等人所产生的局部对象总是 1- 类型,而我们的构造可以产生 n $n$ 类型,对于任意 n $n$ 而言。即使在∞ $infty$ -topos 的空间中,这也是全新的。此外,通过使用宇宙,我们的证明非常直接。在此过程中,我们证明了许多关于 "小 "类型的结果,这些结果具有独立的意义。作为应用,我们给出了一个新的证明,即分离的定位是存在的。我们还给出了一些结果,说明什么情况下关于映射族的局部化可以呈现为关于单个映射的局部化,并证明了简单模型满足选择公理的强形式,这意味着集合覆盖和排除中间律成立。
{"title":"Non-accessible localizations","authors":"J. Daniel Christensen","doi":"10.1112/topo.12336","DOIUrl":"https://doi.org/10.1112/topo.12336","url":null,"abstract":"<p>In a 2005 paper, Casacuberta, Scevenels, and Smith construct a homotopy idempotent functor <span></span><math>\u0000 <semantics>\u0000 <mi>E</mi>\u0000 <annotation>$E$</annotation>\u0000 </semantics></math> on the category of simplicial sets with the property that whether it can be expressed as localization with respect to a map <span></span><math>\u0000 <semantics>\u0000 <mi>f</mi>\u0000 <annotation>$f$</annotation>\u0000 </semantics></math> is independent of the ZFC axioms. We show that this construction can be carried out in homotopy type theory. More precisely, we give a general method of associating to a suitable (possibly large) family of maps, a reflective subuniverse of any universe <span></span><math>\u0000 <semantics>\u0000 <mi>U</mi>\u0000 <annotation>$mathcal {U}$</annotation>\u0000 </semantics></math>. When specialized to an appropriate family, this produces a localization which when interpreted in the <span></span><math>\u0000 <semantics>\u0000 <mi>∞</mi>\u0000 <annotation>$infty$</annotation>\u0000 </semantics></math>-topos of spaces agrees with the localization corresponding to <span></span><math>\u0000 <semantics>\u0000 <mi>E</mi>\u0000 <annotation>$E$</annotation>\u0000 </semantics></math>. Our approach generalizes the approach of Casacuberta et al. (Adv. Math. <b>197</b> (2005), no. 1, 120–139) in two ways. First, by working in homotopy type theory, our construction can be interpreted in any <span></span><math>\u0000 <semantics>\u0000 <mi>∞</mi>\u0000 <annotation>$infty$</annotation>\u0000 </semantics></math>-topos. Second, while the local objects produced by Casacuberta et al. are always 1-types, our construction can produce <span></span><math>\u0000 <semantics>\u0000 <mi>n</mi>\u0000 <annotation>$n$</annotation>\u0000 </semantics></math>-types, for any <span></span><math>\u0000 <semantics>\u0000 <mi>n</mi>\u0000 <annotation>$n$</annotation>\u0000 </semantics></math>. This is new, even in the <span></span><math>\u0000 <semantics>\u0000 <mi>∞</mi>\u0000 <annotation>$infty$</annotation>\u0000 </semantics></math>-topos of spaces. In addition, by making use of universes, our proof is very direct. Along the way, we prove many results about “small” types that are of independent interest. As an application, we give a new proof that separated localizations exist. We also give results that say when a localization with respect to a family of maps can be presented as localization with respect to a single map, and show that the simplicial model satisfies a strong form of the axiom of choice that implies that sets cover and that the law of excluded middle holds.</p>","PeriodicalId":56114,"journal":{"name":"Journal of Topology","volume":"17 2","pages":""},"PeriodicalIF":1.1,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/topo.12336","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141085022","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Topology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1