首页 > 最新文献

Indagationes Mathematicae-New Series最新文献

英文 中文
Partition functions for non-commutative harmonic oscillators and related divergent series 非交换调和振荡器的分割函数及相关发散级数
IF 0.5 4区 数学 Q3 MATHEMATICS Pub Date : 2025-01-01 DOI: 10.1016/j.indag.2024.05.011
Kazufumi Kimoto , Masato Wakayama
In the standard normalization, the eigenvalues of the quantum harmonic oscillator are given by positive half-integers with the Hermite functions as eigenfunctions. Thus, its spectral zeta function is essentially given by the Riemann zeta function. The heat kernel (or propagator) of the quantum harmonic oscillator (qHO) is given by the Mehler formula, and the partition function is obtained by taking its trace. In general, the spectral zeta function of the given system is obtained by the Mellin transform of its partition function. In the case of non-commutative harmonic oscillators (NCHO), however, the heat kernel and partition functions are still unknown, although meromorphic continuation of the corresponding spectral zeta function and special values at positive integer points have been studied. On the other hand, explicit formulas for the heat kernel and partition function have been obtained for the quantum Rabi model (QRM), which is the simplest and most fundamental model for light and matter interaction in addition to having the NCHO as a covering model. In this paper, we propose a notion of the quasi-partition function for a quantum interaction model if the corresponding spectral zeta function can be meromorphically continued to the whole complex plane. The quasi-partition function for qHO and QRM actually gives the partition function. Assuming that this holds for the NCHO (currently a conjecture), we can find various interesting properties for the spectrum of the NCHO. Moreover, although we cannot expect any functional equation of the spectral zeta function for the quantum interaction models, we try to seek if there is some relation between the special values at positive and negative points. Attempting to seek this, we encounter certain divergent series expressing formally the Hurwitz zeta function by calculating integrals of the partition functions. We then give two interpretations of these divergent series by the Borel summation and p-adically convergent series defined by the p-adic Hurwitz zeta function.
在标准归一化中,量子谐振子的特征值由正半整数给出,Hermite 函数为特征函数。因此,它的谱zeta函数基本上是由黎曼zeta函数给出的。量子谐振子(qHO)的热核(或传播者)由梅勒公式给出,分割函数则通过求其迹线得到。一般来说,给定系统的谱zeta函数由其分割函数的梅林变换得到。然而,在非交换谐振子(NCHO)的情况下,热核和分割函数仍然是未知的,尽管人们已经研究了相应谱zeta函数的非定常延续以及在正整数点的特殊值。另一方面,量子拉比模型(QRM)的热核和分区函数的明确公式已经得到,该模型是光与物质相互作用的最简单和最基本的模型,此外还以 NCHO 作为覆盖模型。在本文中,我们提出了一个量子相互作用模型的准分区函数的概念,即如果相应的谱zeta函数可以在整个复平面上进行分形延续,则该模型的准分区函数可以在整个复平面上进行分形延续。qHO 和 QRM 的准分区函数实际上给出了分区函数。假设这一点对 NCHO 成立(目前只是一种猜想),我们就能发现 NCHO 谱的各种有趣性质。此外,尽管我们不能指望量子相互作用模型的谱 zeta 函数有任何函数方程,但我们还是试图寻找正负点的特殊值之间是否存在某种关系。为了寻求这种关系,我们遇到了某些发散级数,它们通过计算分区函数的积分来正式表达赫维茨zeta函数。然后,我们给出了这些发散级数的两种解释:伯累尔求和和由-adic Hurwitz zeta 函数定义的-adically 收敛级数。
{"title":"Partition functions for non-commutative harmonic oscillators and related divergent series","authors":"Kazufumi Kimoto ,&nbsp;Masato Wakayama","doi":"10.1016/j.indag.2024.05.011","DOIUrl":"10.1016/j.indag.2024.05.011","url":null,"abstract":"<div><div><span><span>In the standard normalization, the eigenvalues of the quantum harmonic oscillator<span> are given by positive half-integers with the Hermite functions as eigenfunctions<span>. Thus, its spectral zeta function is essentially given by the Riemann zeta function. The heat kernel (or propagator) of the quantum harmonic oscillator (qHO) is given by the Mehler formula, and the </span></span></span>partition function is obtained by taking its trace. In general, the spectral zeta function of the given system is obtained by the Mellin transform of its partition function. In the case of non-commutative harmonic oscillators (NCHO), however, the heat kernel and partition functions are still unknown, although meromorphic continuation of the corresponding spectral zeta function and special values at positive integer points have been studied. On the other hand, explicit formulas for the heat kernel and partition function have been obtained for the quantum Rabi model (QRM), which is the simplest and most fundamental model for light and matter interaction in addition to having the NCHO as a covering model. In this paper, we propose a notion of the </span><em>quasi-partition function</em> for a quantum interaction model if the corresponding spectral zeta function can be meromorphically continued to the whole complex plane. The quasi-partition function for qHO and QRM actually gives the partition function. Assuming that this holds for the NCHO (currently a conjecture), we can find various interesting properties for the spectrum of the NCHO. Moreover, although we cannot expect any functional equation of the spectral zeta function for the quantum interaction models, we try to seek if there is some relation between the special values at positive and negative points. Attempting to seek this, we encounter certain divergent series expressing formally the Hurwitz zeta function by calculating integrals of the partition functions. We then give two interpretations of these divergent series by the Borel summation and <span><math><mi>p</mi></math></span>-adically convergent series defined by the <span><math><mi>p</mi></math></span>-adic Hurwitz zeta function.</div></div>","PeriodicalId":56126,"journal":{"name":"Indagationes Mathematicae-New Series","volume":"36 1","pages":"Pages 302-336"},"PeriodicalIF":0.5,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141550825","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Holomorphic Laplacian on the Lie ball and the Penrose transform 李球上的全态拉普拉斯和彭罗斯变换
IF 0.5 4区 数学 Q3 MATHEMATICS Pub Date : 2025-01-01 DOI: 10.1016/j.indag.2024.04.004
Hideko Sekiguchi
We prove that any holomorphic function f on the Lie ball of even dimension satisfying Δf=0 is obtained uniquely by the higher-dimensional Penrose transform of a Dolbeault cohomology for a twisted line bundle of a certain domain of the Grassmannian of isotropic subspaces. To overcome the difficulties arising from our setting that the line bundle parameter is outside the good range, we use some techniques from algebraic representation theory.
我们证明,在满足偶数维的Lie球上的任何全形函数,都可以通过各向同性子空间的格拉斯曼的某个域的扭曲线束的多尔贝同调的高维彭罗斯变换唯一地得到。为了克服线束参数为 ,这一设定所带来的困难,我们使用了代数表示理论中的一些技术。
{"title":"Holomorphic Laplacian on the Lie ball and the Penrose transform","authors":"Hideko Sekiguchi","doi":"10.1016/j.indag.2024.04.004","DOIUrl":"10.1016/j.indag.2024.04.004","url":null,"abstract":"<div><div>We prove that any holomorphic function <span><math><mi>f</mi></math></span> on the Lie ball of even dimension satisfying <span><math><mrow><mi>Δ</mi><mi>f</mi><mo>=</mo><mn>0</mn></mrow></math></span><span> is obtained uniquely by the higher-dimensional Penrose transform of a Dolbeault cohomology for a twisted line bundle of a certain domain of the Grassmannian of isotropic subspaces. To overcome the difficulties arising from our setting that the line bundle parameter is </span><em>outside the good range</em>, we use some techniques from algebraic representation theory.</div></div>","PeriodicalId":56126,"journal":{"name":"Indagationes Mathematicae-New Series","volume":"36 1","pages":"Pages 114-123"},"PeriodicalIF":0.5,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140928520","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The refined solution to the Capelli eigenvalue problem for gl(m|n)⊕gl(m|n) and gl(m|2n) gl(m|n<mml)的卡佩利特征值问题的精解
IF 0.5 4区 数学 Q3 MATHEMATICS Pub Date : 2025-01-01 DOI: 10.1016/j.indag.2024.05.002
Mengyuan Cao, Monica Nevins, Hadi Salmasian
Let g be either the Lie superalgebra gl(V)gl(V) where Vm|n or the Lie superalgebra gl(V) where Vm|2n. Furthermore, let W be the g-module defined by WVV in the former case and WS2(V) in the latter case. Associated to (g,W) there exists a distinguished basis of Capelli operators {Dλ}λΩ, naturally indexed by a set of hook partitions Ω, for the subalgebra of g-invariants in the superalgebra PD(W) of superdifferential operators on W.
Let b be a Borel subalgebra of g. We compute eigenvalues of the Dλ on the irreducible g-submodules of P(W) and obtain them explicitly as the evaluation of the interpolation super Jack polynomials of Sergeev–Veselov at suitable affine functions of the b-highest weight. While the former case is straightforward, the latter is significantly more complex. This generalizes a result by Sahi, Salmasian and Serganova for these cases, where such formulas were given for a fixed choice of Borel subalgebra.
设g为李超代数gl(V)⊕gl(V),其中V是对象中包含的向量,其中V是对象中包含的向量,其中V是对象中包含的向量。更进一步,设W为g模,其中W在前一种情况下是W,在后一种情况下是W, W在前一种情况下是V⊗V *, W在后一种情况下是W,是S2(V)。相关(g, W)存在一个杰出的基础卡佩里运营商{Dλ}λ∈Ω,自然被一组钩子分区Ω,子代数的g-invariants superdifferential superalgebra PD (W)的运营商W.Let b是一个波莱尔的子代数g。我们计算特征值D的不可约g-submodulesλP (W),得到他们明确的评价插值超级杰克Sergeev-Veselov在合适的仿射函数的多项式b-highest重量。前一种情况很简单,而后一种情况要复杂得多。这推广了Sahi, Salmasian和Serganova在这些情况下的结果,在这些情况下,这些公式是针对固定选择的Borel子代数给出的。
{"title":"The refined solution to the Capelli eigenvalue problem for gl(m|n)⊕gl(m|n) and gl(m|2n)","authors":"Mengyuan Cao,&nbsp;Monica Nevins,&nbsp;Hadi Salmasian","doi":"10.1016/j.indag.2024.05.002","DOIUrl":"10.1016/j.indag.2024.05.002","url":null,"abstract":"<div><div>Let <span><math><mi>g</mi></math></span> be either the Lie superalgebra <span><math><mrow><mi>gl</mi><mrow><mo>(</mo><mi>V</mi><mo>)</mo></mrow><mo>⊕</mo><mi>gl</mi><mrow><mo>(</mo><mi>V</mi><mo>)</mo></mrow></mrow></math></span> where <span><math><mrow><mi>V</mi><mo>≔</mo><msup><mrow><mi>ℂ</mi></mrow><mrow><mi>m</mi><mo>|</mo><mi>n</mi></mrow></msup></mrow></math></span> or the Lie superalgebra <span><math><mrow><mi>gl</mi><mrow><mo>(</mo><mi>V</mi><mo>)</mo></mrow></mrow></math></span> where <span><math><mrow><mi>V</mi><mo>≔</mo><msup><mrow><mi>ℂ</mi></mrow><mrow><mi>m</mi><mo>|</mo><mn>2</mn><mi>n</mi></mrow></msup></mrow></math></span>. Furthermore, let <span><math><mi>W</mi></math></span> be the <span><math><mi>g</mi></math></span>-module defined by <span><math><mrow><mi>W</mi><mo>≔</mo><mi>V</mi><mo>⊗</mo><msup><mrow><mi>V</mi></mrow><mrow><mo>∗</mo></mrow></msup></mrow></math></span> in the former case and <span><math><mrow><mi>W</mi><mo>≔</mo><msup><mrow><mi>S</mi></mrow><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><mi>V</mi><mo>)</mo></mrow></mrow></math></span> in the latter case. Associated to <span><math><mrow><mo>(</mo><mi>g</mi><mo>,</mo><mi>W</mi><mo>)</mo></mrow></math></span> there exists a distinguished basis of <em>Capelli operators</em> <span><math><msub><mrow><mrow><mo>{</mo><msup><mrow><mi>D</mi></mrow><mrow><mi>λ</mi></mrow></msup><mo>}</mo></mrow></mrow><mrow><mi>λ</mi><mo>∈</mo><mi>Ω</mi></mrow></msub></math></span>, naturally indexed by a set of hook partitions <span><math><mi>Ω</mi></math></span>, for the subalgebra of <span><math><mi>g</mi></math></span>-invariants in the superalgebra <span><math><mrow><mi>PD</mi><mrow><mo>(</mo><mi>W</mi><mo>)</mo></mrow></mrow></math></span> of superdifferential operators on <span><math><mi>W</mi></math></span>.</div><div>Let <span><math><mi>b</mi></math></span> be a Borel subalgebra of <span><math><mi>g</mi></math></span>. We compute eigenvalues of the <span><math><msup><mrow><mi>D</mi></mrow><mrow><mi>λ</mi></mrow></msup></math></span> on the irreducible <span><math><mi>g</mi></math></span>-submodules of <span><math><mrow><mi>P</mi><mrow><mo>(</mo><mi>W</mi><mo>)</mo></mrow></mrow></math></span> and obtain them explicitly as the evaluation of the interpolation super Jack polynomials of Sergeev–Veselov at suitable affine functions of the <span><math><mi>b</mi></math></span>-highest weight. While the former case is straightforward, the latter is significantly more complex. This generalizes a result by Sahi, Salmasian and Serganova for these cases, where such formulas were given for a fixed choice of Borel subalgebra.</div></div>","PeriodicalId":56126,"journal":{"name":"Indagationes Mathematicae-New Series","volume":"36 1","pages":"Pages 218-244"},"PeriodicalIF":0.5,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141034907","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The holomorphic discrete series contribution to the generalized Whittaker Plancherel formula II. Non-tube type groups 全形离散级数对广义惠特克-普朗切尔公式的贡献 II.非管型群
IF 0.5 4区 数学 Q3 MATHEMATICS Pub Date : 2025-01-01 DOI: 10.1016/j.indag.2024.05.012
Jan Frahm , Gestur Ólafsson , Bent Ørsted
For every simple Hermitian Lie group G, we consider a certain maximal parabolic subgroup whose unipotent radical N is either abelian (if G is of tube type) or two-step nilpotent (if G is of non-tube type). By the generalized Whittaker Plancherel formula we mean the Plancherel decomposition of L2(G/N,ω), the space of square-integrable sections of the homogeneous vector bundle over G/N associated with an irreducible unitary representation ω of N. Assuming that the central character of ω is contained in a certain cone, we construct embeddings of all holomorphic discrete series representations of G into L2(G/N,ω) and show that the multiplicities are equal to the dimensions of the lowest K-types. The construction is in terms of a kernel function which can be explicitly defined using certain projections inside a complexification of G. This kernel function carries all information about the holomorphic discrete series embedding, the lowest K-type as functions on G/N, as well as the associated Whittaker vectors.
对于每一个简单赫米蒂李群 ,我们都考虑某个最大抛物线子群,它的单势根要么是无性的(如果是管型),要么是两步零势的(如果是非管型)。通过广义惠特克-普朗切尔公式,我们指的是普朗切尔分解,即与.的不可还原单元代表相关联的均相向量束的平方可积分截面空间。 假设.的中心特征包含在某个锥体中,我们构造了.的所有全形离散序列代表的嵌入,并证明其乘数等于最低类型的维数。这个核函数包含了全态离散级数嵌入的所有信息、作为函数的最低类型以及相关的惠特克向量。
{"title":"The holomorphic discrete series contribution to the generalized Whittaker Plancherel formula II. Non-tube type groups","authors":"Jan Frahm ,&nbsp;Gestur Ólafsson ,&nbsp;Bent Ørsted","doi":"10.1016/j.indag.2024.05.012","DOIUrl":"10.1016/j.indag.2024.05.012","url":null,"abstract":"<div><div>For every simple Hermitian Lie group <span><math><mi>G</mi></math></span>, we consider a certain maximal parabolic subgroup whose unipotent radical <span><math><mi>N</mi></math></span> is either abelian (if <span><math><mi>G</mi></math></span> is of tube type) or two-step nilpotent (if <span><math><mi>G</mi></math></span> is of non-tube type). By the generalized Whittaker Plancherel formula we mean the Plancherel decomposition of <span><math><mrow><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><mi>G</mi><mo>/</mo><mi>N</mi><mo>,</mo><mi>ω</mi><mo>)</mo></mrow></mrow></math></span>, the space of square-integrable sections of the homogeneous vector bundle over <span><math><mrow><mi>G</mi><mo>/</mo><mi>N</mi></mrow></math></span> associated with an irreducible unitary representation <span><math><mi>ω</mi></math></span> of <span><math><mi>N</mi></math></span>. Assuming that the central character of <span><math><mi>ω</mi></math></span> is contained in a certain cone, we construct embeddings of all holomorphic discrete series representations of <span><math><mi>G</mi></math></span> into <span><math><mrow><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><mi>G</mi><mo>/</mo><mi>N</mi><mo>,</mo><mi>ω</mi><mo>)</mo></mrow></mrow></math></span> and show that the multiplicities are equal to the dimensions of the lowest <span><math><mi>K</mi></math></span>-types. The construction is in terms of a kernel function which can be explicitly defined using certain projections inside a complexification of <span><math><mi>G</mi></math></span>. This kernel function carries all information about the holomorphic discrete series embedding, the lowest <span><math><mi>K</mi></math></span>-type as functions on <span><math><mrow><mi>G</mi><mo>/</mo><mi>N</mi></mrow></math></span>, as well as the associated Whittaker vectors.</div></div>","PeriodicalId":56126,"journal":{"name":"Indagationes Mathematicae-New Series","volume":"36 1","pages":"Pages 337-356"},"PeriodicalIF":0.5,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141504920","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Parameters of Hecke algebras for Bernstein components of p-adic groups p-adic 群伯恩斯坦成分的赫克代数参数
IF 0.5 4区 数学 Q3 MATHEMATICS Pub Date : 2025-01-01 DOI: 10.1016/j.indag.2024.04.005
Maarten Solleveld
Let G be a reductive group over a non-archimedean local field F. Consider an arbitrary Bernstein block Rep(G)s in the category of complex smooth G-representations. In earlier work the author showed that there exists an affine Hecke algebra H(O,G) whose category of right modules is closely related to Rep(G)s. In many cases this is in fact an equivalence of categories, like for Iwahori-spherical representations.
In this paper we study the q-parameters of the affine Hecke algebras H(O,G). We compute them in many cases, in particular for principal series representations of quasi-split groups and for classical groups.
Lusztig conjectured that the q-parameters are always integral powers of the cardinality of the residue field of F, and that they coincide with the q-parameters coming from some Bernstein block of unipotent representations. We reduce this conjecture to the case of absolutely simple p-adic groups, and we prove it for most of those.
设G是非阿基米德局部域f上的约化群,考虑复光滑G表示范畴中的任意Bernstein块Rep(G)s。作者在前期工作中证明了存在一个仿射Hecke代数H(O,G),其右模的范畴与Rep(G)s密切相关。在许多情况下,这实际上是范畴的等价,就像iwahori -球面表示。本文研究仿射Hecke代数H(O,G)的q参数。我们在许多情况下计算了它们,特别是对于拟分裂群和经典群的主级数表示。Lusztig推测q-参数总是F的残馀域的基数的整数幂,并且它们与来自某个Bernstein块的单幂表示的q-参数一致。我们把这个猜想简化到绝对简单的p进群的情况下,并对大多数这种情况进行了证明。
{"title":"Parameters of Hecke algebras for Bernstein components of p-adic groups","authors":"Maarten Solleveld","doi":"10.1016/j.indag.2024.04.005","DOIUrl":"10.1016/j.indag.2024.04.005","url":null,"abstract":"<div><div>Let <span><math><mi>G</mi></math></span> be a reductive group over a non-archimedean local field <span><math><mi>F</mi></math></span>. Consider an arbitrary Bernstein block <span><math><mrow><mi>Rep</mi><msup><mrow><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow><mrow><mi>s</mi></mrow></msup></mrow></math></span> in the category of complex smooth <span><math><mi>G</mi></math></span>-representations. In earlier work the author showed that there exists an affine Hecke algebra <span><math><mrow><mi>H</mi><mrow><mo>(</mo><mi>O</mi><mo>,</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> whose category of right modules is closely related to <span><math><mrow><mi>Rep</mi><msup><mrow><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow><mrow><mi>s</mi></mrow></msup></mrow></math></span>. In many cases this is in fact an equivalence of categories, like for Iwahori-spherical representations.</div><div>In this paper we study the <span><math><mi>q</mi></math></span>-parameters of the affine Hecke algebras <span><math><mrow><mi>H</mi><mrow><mo>(</mo><mi>O</mi><mo>,</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>. We compute them in many cases, in particular for principal series representations of quasi-split groups and for classical groups.</div><div>Lusztig conjectured that the <span><math><mi>q</mi></math></span>-parameters are always integral powers of the cardinality of the residue field of <span><math><mi>F</mi></math></span>, and that they coincide with the <span><math><mi>q</mi></math></span>-parameters coming from some Bernstein block of unipotent representations. We reduce this conjecture to the case of absolutely simple <span><math><mi>p</mi></math></span>-adic groups, and we prove it for most of those.</div></div>","PeriodicalId":56126,"journal":{"name":"Indagationes Mathematicae-New Series","volume":"36 1","pages":"Pages 124-170"},"PeriodicalIF":0.5,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140778482","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spectral correspondences for finite graphs without dead ends 无死角有限图谱的谱对应关系
IF 0.5 4区 数学 Q3 MATHEMATICS Pub Date : 2025-01-01 DOI: 10.1016/j.indag.2024.05.001
K.-U. Bux , J. Hilgert , T. Weich
We compare the spectral properties of two kinds of linear operators characterizing the (classical) geodesic flow and its quantization on connected locally finite graphs without dead ends. The first kind are transfer operators acting on vector spaces associated with the set of non-backtracking paths in the graphs. The second kind of operators are averaging operators acting on vector spaces associated with the space of vertices of the graph. The choice of vector spaces reflects regularity properties. Our main results are correspondences between classical and quantum spectral objects as well as some automatic regularity properties for eigenfunctions of transfer operators.
我们比较了两类线性算子的频谱特性,它们表征了(经典)大地流及其在无死角连通局部有限图上的量化。第一种是作用于与图中非回溯路径集相关的向量空间的转移算子。第二类算子是作用于与图顶点空间相关的向量空间的平均算子。向量空间的选择反映了正则特性。我们的主要成果是经典和量子光谱对象之间的对应关系,以及转移算子特征函数的一些自动正则特性。
{"title":"Spectral correspondences for finite graphs without dead ends","authors":"K.-U. Bux ,&nbsp;J. Hilgert ,&nbsp;T. Weich","doi":"10.1016/j.indag.2024.05.001","DOIUrl":"10.1016/j.indag.2024.05.001","url":null,"abstract":"<div><div>We compare the spectral properties of two kinds of linear operators characterizing the (classical) geodesic flow and its quantization on connected locally finite graphs without dead ends. The first kind are transfer operators acting on vector spaces associated with the set of non-backtracking paths in the graphs. The second kind of operators are averaging operators acting on vector spaces associated with the space of vertices of the graph. The choice of vector spaces reflects regularity properties. Our main results are correspondences between classical and quantum spectral objects as well as some automatic regularity properties for eigenfunctions of transfer operators.</div></div>","PeriodicalId":56126,"journal":{"name":"Indagationes Mathematicae-New Series","volume":"36 1","pages":"Pages 188-217"},"PeriodicalIF":0.5,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141513687","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A construction of solutions of an integrable deformation of a commutative Lie algebra of skew hermitian Z×Z-matrices 倾斜[式略]-赫米特矩阵的交换李代数可积分变形解的构造
IF 0.5 4区 数学 Q3 MATHEMATICS Pub Date : 2025-01-01 DOI: 10.1016/j.indag.2024.04.001
Aloysius G. Helminck , Gerardus F. Helminck
<div><div>Inside the algebra <span><math><mrow><mi>L</mi><msub><mrow><mi>T</mi></mrow><mrow><mi>Z</mi></mrow></msub><mrow><mo>(</mo><mi>R</mi><mo>)</mo></mrow></mrow></math></span> of <span><math><mrow><mi>Z</mi><mo>×</mo><mi>Z</mi></mrow></math></span>-matrices with coefficients from a commutative <span><math><mi>ℂ</mi></math></span>-algebra <span><math><mi>R</mi></math></span> that have only a finite number of nonzero diagonals above the central diagonal, we consider a deformation of a commutative Lie algebra <span><math><mrow><msub><mrow><mi>C</mi></mrow><mrow><mi>s</mi><mi>h</mi></mrow></msub><mrow><mo>(</mo><mi>ℂ</mi><mo>)</mo></mrow></mrow></math></span> of finite band skew hermitian matrices that is different from the Lie subalgebras that were deformed at the discrete KP hierarchy and its strict version. The evolution equations that the deformed generators of <span><math><mrow><msub><mrow><mi>C</mi></mrow><mrow><mi>s</mi><mi>h</mi></mrow></msub><mrow><mo>(</mo><mi>ℂ</mi><mo>)</mo></mrow></mrow></math></span> have to satisfy are determined by the decomposition of <span><math><mrow><mi>L</mi><msub><mrow><mi>T</mi></mrow><mrow><mi>Z</mi></mrow></msub><mrow><mo>(</mo><mi>R</mi><mo>)</mo></mrow></mrow></math></span> in the direct sum of an algebra of lower triangular matrices and the finite band skew hermitian matrices. This yields then the <span><math><mrow><msub><mrow><mi>C</mi></mrow><mrow><mi>s</mi><mi>h</mi></mrow></msub><mrow><mo>(</mo><mi>ℂ</mi><mo>)</mo></mrow></mrow></math></span><span>-hierarchy. We show that the projections of a solution satisfy zero curvature relations and that it suffices to solve an associated Cauchy problem. Solutions of this type can be obtained by finding appropriate vectors in the </span><span><math><mrow><mi>L</mi><msub><mrow><mi>T</mi></mrow><mrow><mi>Z</mi></mrow></msub><mrow><mo>(</mo><mi>R</mi><mo>)</mo></mrow></mrow></math></span>-module of oscillating matrices, the so-called wave matrices, that satisfy a set of equations in the oscillating matrices, called the linearization of the <span><math><mrow><msub><mrow><mi>C</mi></mrow><mrow><mi>s</mi><mi>h</mi></mrow></msub><mrow><mo>(</mo><mi>ℂ</mi><mo>)</mo></mrow></mrow></math></span><span>-hierarchy. Finally, a Hilbert Lie group will be introduced from which wave matrices for the </span><span><math><mrow><msub><mrow><mi>C</mi></mrow><mrow><mi>s</mi><mi>h</mi></mrow></msub><mrow><mo>(</mo><mi>ℂ</mi><mo>)</mo></mrow></mrow></math></span>-hierarchy are constructed. There is a real analogue of the <span><math><mrow><msub><mrow><mi>C</mi></mrow><mrow><mi>s</mi><mi>h</mi></mrow></msub><mrow><mo>(</mo><mi>ℂ</mi><mo>)</mo></mrow></mrow></math></span>-hierarchy called the <span><math><mrow><msub><mrow><mi>C</mi></mrow><mrow><mi>a</mi><mi>s</mi></mrow></msub><mrow><mo>(</mo><mi>R</mi><mo>)</mo></mrow></mrow></math></span>-hierarchy. It consists of a deformation of a commutative Lie algebra <span><math><mrow><msub><mrow><mi>C</mi></mrow><mrow><mi>a</mi><mi>s</mi></mro
在中央对角线以上只有有限个非零对角线的换元-矩阵代数中,我们考虑了有限带偏赫米矩阵的换元Lie代数的变形,它不同于在离散KP层次上变形的Lie子代数及其严格版本。变形生成器必须满足的演化方程是由下三角矩阵代数和有限带偏斜羿米提矩阵的直接和的分解决定的。这就产生了-层次结构。我们证明,解的投影满足零曲率关系,只需求解相关的考希问题即可。这种类型的解可以通过在振荡矩阵的-模块(即所谓的波矩阵)中找到适当的向量来获得,这些向量满足振荡矩阵中的方程组,即-层次结构的线性化。最后,将引入一个希尔伯特李群,并从中构造出-层次结构的波矩阵。-层次结构有一个实数类似物,称为-层次结构。它由反对称矩阵的交换李代数的变形组成。我们在这里也将顺便适当介绍它,并随处提及这种层次结构的相应结果,但我们将其证明主要留给读者。
{"title":"A construction of solutions of an integrable deformation of a commutative Lie algebra of skew hermitian Z×Z-matrices","authors":"Aloysius G. Helminck ,&nbsp;Gerardus F. Helminck","doi":"10.1016/j.indag.2024.04.001","DOIUrl":"10.1016/j.indag.2024.04.001","url":null,"abstract":"&lt;div&gt;&lt;div&gt;Inside the algebra &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;L&lt;/mi&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;T&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;Z&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;R&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; of &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;Z&lt;/mi&gt;&lt;mo&gt;×&lt;/mo&gt;&lt;mi&gt;Z&lt;/mi&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;-matrices with coefficients from a commutative &lt;span&gt;&lt;math&gt;&lt;mi&gt;ℂ&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;-algebra &lt;span&gt;&lt;math&gt;&lt;mi&gt;R&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; that have only a finite number of nonzero diagonals above the central diagonal, we consider a deformation of a commutative Lie algebra &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;mi&gt;h&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;ℂ&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; of finite band skew hermitian matrices that is different from the Lie subalgebras that were deformed at the discrete KP hierarchy and its strict version. The evolution equations that the deformed generators of &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;mi&gt;h&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;ℂ&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; have to satisfy are determined by the decomposition of &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;L&lt;/mi&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;T&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;Z&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;R&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; in the direct sum of an algebra of lower triangular matrices and the finite band skew hermitian matrices. This yields then the &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;mi&gt;h&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;ℂ&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt;-hierarchy. We show that the projections of a solution satisfy zero curvature relations and that it suffices to solve an associated Cauchy problem. Solutions of this type can be obtained by finding appropriate vectors in the &lt;/span&gt;&lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;L&lt;/mi&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;T&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;Z&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;R&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;-module of oscillating matrices, the so-called wave matrices, that satisfy a set of equations in the oscillating matrices, called the linearization of the &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;mi&gt;h&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;ℂ&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt;-hierarchy. Finally, a Hilbert Lie group will be introduced from which wave matrices for the &lt;/span&gt;&lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;mi&gt;h&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;ℂ&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;-hierarchy are constructed. There is a real analogue of the &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;mi&gt;h&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;ℂ&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;-hierarchy called the &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;R&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;-hierarchy. It consists of a deformation of a commutative Lie algebra &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;/mro","PeriodicalId":56126,"journal":{"name":"Indagationes Mathematicae-New Series","volume":"36 1","pages":"Pages 42-60"},"PeriodicalIF":0.5,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140609803","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On an estimate on Götzky’s domain 对Götzky域名的估计
IF 0.5 4区 数学 Q3 MATHEMATICS Pub Date : 2024-12-27 DOI: 10.1016/j.indag.2024.12.004
Dávid Tóth
A fundamental domain FH2 for the Hilbert modular group belonging to the quadratic number field Q(5) was constructed by Götzky almost a hundred years ago. He also gave a lower bound for the height y1y2 of the points (z1,z2)=(x1+iy1,x2+iy2)F. Later Gundlach used analogous domains and estimates for other fields as well to give a complete list of totally elliptic conjugacy classes in some Hilbert modular groups, while not long ago Deutsch analyzed two of these domains by numerical computations and stated some conjectures about them. We prove one of these by giving a sharp lower bound for the height of the points of Götzky’s domain.
属于二次数域Q(5)的希尔伯特模群的基本定义域F∧H2是由Götzky在近百年前构造的。他还给出了点(z1,z2)=(x1+iy1,x2+iy2)∈F的高度y1y2的下界。后来Gundlach也利用其他领域的类似域和估计给出了一些Hilbert模群的全椭圆共轭类的完整列表,而Deutsch不久前用数值计算分析了其中的两个域并提出了一些猜想。我们通过给出Götzky定义域上点的高度的一个明显的下界来证明其中的一个。
{"title":"On an estimate on Götzky’s domain","authors":"Dávid Tóth","doi":"10.1016/j.indag.2024.12.004","DOIUrl":"10.1016/j.indag.2024.12.004","url":null,"abstract":"<div><div>A fundamental domain <span><math><mrow><mi>F</mi><mo>⊂</mo><msup><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></math></span> for the Hilbert modular group belonging to the quadratic number field <span><math><mrow><mi>Q</mi><mrow><mo>(</mo><msqrt><mrow><mn>5</mn></mrow></msqrt><mo>)</mo></mrow></mrow></math></span> was constructed by Götzky almost a hundred years ago. He also gave a lower bound for the height <span><math><mrow><msub><mrow><mi>y</mi></mrow><mrow><mn>1</mn></mrow></msub><msub><mrow><mi>y</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></math></span> of the points <span><math><mrow><mrow><mo>(</mo><msub><mrow><mi>z</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>z</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></mrow><mo>=</mo><mrow><mo>(</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><mi>i</mi><msub><mrow><mi>y</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>+</mo><mi>i</mi><msub><mrow><mi>y</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></mrow><mo>∈</mo><mi>F</mi></mrow></math></span>. Later Gundlach used analogous domains and estimates for other fields as well to give a complete list of totally elliptic conjugacy classes in some Hilbert modular groups, while not long ago Deutsch analyzed two of these domains by numerical computations and stated some conjectures about them. We prove one of these by giving a sharp lower bound for the height of the points of Götzky’s domain.</div></div>","PeriodicalId":56126,"journal":{"name":"Indagationes Mathematicae-New Series","volume":"36 4","pages":"Pages 1096-1111"},"PeriodicalIF":0.5,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144270398","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the evaluations of multiple S- and T-values of the form S(2(−),1,…,1,1(−)) and T(2(−),1,…,1,1(−)) 评价的多个表单的S - T S(2(−),1,…,1日1(−))和T(2(−),1,…,1日1(−))
IF 0.5 4区 数学 Q3 MATHEMATICS Pub Date : 2024-12-26 DOI: 10.1016/j.indag.2024.12.001
Steven Charlton
Xu, Yan and Zhao showed that in even weight, the multiple T-value T(2,1,,1,1¯) is a polynomial in log(2),π, Riemann zeta-values, and Dirichlet beta-values. Based on low-weight examples, they conjectured that log(2) does not appear in the evaluation. We show that their conjecture is correct, and in fact follows largely from various earlier results of theirs. More precisely, we derive explicit formulae for T(2,1,,1,1¯) in even weight and S(2,1,,1,1¯) in odd weight via generating series calculations. We also resolve another conjecture of theirs on the evaluations of T(2¯,1,,1,1¯), S(2¯,1,,1,1), and S(2¯,1,,1,1¯) in even weight, by way of calculations involving Goncharov’s theory of iterated integrals and multiple polylogarithms.
Xu, Yan和Zhao证明了在偶权下,多重T值T(2,1,…,1,1¯)是log(2),π, Riemann ζ值和Dirichlet β值的多项式。基于低权重的例子,他们推测log(2)不会出现在评价中。我们证明他们的猜想是正确的,事实上,他们的猜想在很大程度上是根据他们以前的各种结果得出的。更精确地说,我们通过生成级数计算,推导出偶数权T(2,1,…,1,1¯)和奇数权S(2,1,…,1,1¯)的显式公式。我们还解决了他们的另一个猜想,即T(2¯,1,…,1,1¯),S(2¯,1,…,1,1)和S(2¯,1,…,1,1¯)在偶数权重中的评估,通过计算涉及Goncharov的迭代积分理论和多重多对数。
{"title":"On the evaluations of multiple S- and T-values of the form S(2(−),1,…,1,1(−)) and T(2(−),1,…,1,1(−))","authors":"Steven Charlton","doi":"10.1016/j.indag.2024.12.001","DOIUrl":"10.1016/j.indag.2024.12.001","url":null,"abstract":"<div><div>Xu, Yan and Zhao showed that in even weight, the multiple <span><math><mi>T</mi></math></span>-value <span><math><mrow><mi>T</mi><mrow><mo>(</mo><mn>2</mn><mo>,</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mn>1</mn><mo>,</mo><mover><mrow><mn>1</mn></mrow><mo>¯</mo></mover><mo>)</mo></mrow></mrow></math></span> is a polynomial in <span><math><mrow><mo>log</mo><mrow><mo>(</mo><mn>2</mn><mo>)</mo></mrow><mo>,</mo><mi>π</mi></mrow></math></span>, Riemann zeta-values, and Dirichlet beta-values. Based on low-weight examples, they conjectured that <span><math><mrow><mo>log</mo><mrow><mo>(</mo><mn>2</mn><mo>)</mo></mrow></mrow></math></span> does not appear in the evaluation. We show that their conjecture is correct, and in fact follows largely from various earlier results of theirs. More precisely, we derive explicit formulae for <span><math><mrow><mi>T</mi><mrow><mo>(</mo><mn>2</mn><mo>,</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mn>1</mn><mo>,</mo><mover><mrow><mn>1</mn></mrow><mo>¯</mo></mover><mo>)</mo></mrow></mrow></math></span> in even weight and <span><math><mrow><mi>S</mi><mrow><mo>(</mo><mn>2</mn><mo>,</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mn>1</mn><mo>,</mo><mover><mrow><mn>1</mn></mrow><mo>¯</mo></mover><mo>)</mo></mrow></mrow></math></span> in odd weight via generating series calculations. We also resolve another conjecture of theirs on the evaluations of <span><math><mrow><mi>T</mi><mrow><mo>(</mo><mover><mrow><mn>2</mn></mrow><mo>¯</mo></mover><mo>,</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mn>1</mn><mo>,</mo><mover><mrow><mn>1</mn></mrow><mo>¯</mo></mover><mo>)</mo></mrow></mrow></math></span>, <span><math><mrow><mi>S</mi><mrow><mo>(</mo><mover><mrow><mn>2</mn></mrow><mo>¯</mo></mover><mo>,</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow></mrow></math></span>, and <span><math><mrow><mi>S</mi><mrow><mo>(</mo><mover><mrow><mn>2</mn></mrow><mo>¯</mo></mover><mo>,</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mn>1</mn><mo>,</mo><mover><mrow><mn>1</mn></mrow><mo>¯</mo></mover><mo>)</mo></mrow></mrow></math></span> in even weight, by way of calculations involving Goncharov’s theory of iterated integrals and multiple polylogarithms.</div></div>","PeriodicalId":56126,"journal":{"name":"Indagationes Mathematicae-New Series","volume":"36 4","pages":"Pages 1055-1083"},"PeriodicalIF":0.5,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144270396","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Waldschmidt constant of special fat flat subschemes in PN PN中特殊胖平子格式的Waldschmidt常数
IF 0.5 4区 数学 Q3 MATHEMATICS Pub Date : 2024-12-25 DOI: 10.1016/j.indag.2024.12.003
Hassan Haghighi, Mohammad Mosakhani
The purpose of this paper is to construct some special kind of subschemes in PN with N3, which we call them “fat flat subschemes” and compute their Waldschmidt constants. These subschemes are constructed by adding, in a particular way, a finite number of linear subspaces of PN of many different dimensions to a star configuration in PN, with arbitrary preassigned multiplicities to each one of these linear subspaces, as well as the star configuration. Among other things, it will be shown that for every positive integer d, there are infinitely many fat flat subschemes in PN with the Waldschmidt constant equal to d. In addition to this, for any two integers 1a<b, we also construct a fat flat subscheme of the above type in some projective space PM, whose Waldschmidt constant is equal to b/a. In addition to these, all non-reduced fat points subschemes Z in P2 with the Waldschmidt constants less than 5/2 are classified.
本文的目的是构造PN中N≥3的一类特殊子方案,我们称之为“胖平子方案”,并计算它们的Waldschmidt常数。这些子方案是通过将有限个不同维数的PN的线性子空间以一种特殊的方式添加到PN中的星形结构中来构造的,每个线性子空间以及星形结构具有任意预先分配的多重度。除此之外,我们将证明对于每一个正整数d, PN中存在无穷多个Waldschmidt常数等于d的胖平子方案。除此之外,对于任意两个整数1≤a<;b,我们还在某投影空间PM中构造了一个上述类型的胖平子方案,其Waldschmidt常数等于b/a。除此之外,还对P2中所有Waldschmidt常数小于5/2的非约化脂肪点子方案Z进行了分类。
{"title":"The Waldschmidt constant of special fat flat subschemes in PN","authors":"Hassan Haghighi,&nbsp;Mohammad Mosakhani","doi":"10.1016/j.indag.2024.12.003","DOIUrl":"10.1016/j.indag.2024.12.003","url":null,"abstract":"<div><div>The purpose of this paper is to construct some special kind of subschemes in <span><math><msup><mrow><mi>P</mi></mrow><mrow><mi>N</mi></mrow></msup></math></span> with <span><math><mrow><mi>N</mi><mo>≥</mo><mn>3</mn></mrow></math></span>, which we call them “fat flat subschemes” and compute their Waldschmidt constants. These subschemes are constructed by adding, in a particular way, a finite number of linear subspaces of <span><math><msup><mrow><mi>P</mi></mrow><mrow><mi>N</mi></mrow></msup></math></span> of many different dimensions to a star configuration in <span><math><msup><mrow><mi>P</mi></mrow><mrow><mi>N</mi></mrow></msup></math></span>, with arbitrary preassigned multiplicities to each one of these linear subspaces, as well as the star configuration. Among other things, it will be shown that for every positive integer <span><math><mi>d</mi></math></span>, there are infinitely many fat flat subschemes in <span><math><msup><mrow><mi>P</mi></mrow><mrow><mi>N</mi></mrow></msup></math></span> with the Waldschmidt constant equal to <span><math><mi>d</mi></math></span>. In addition to this, for any two integers <span><math><mrow><mn>1</mn><mo>≤</mo><mi>a</mi><mo>&lt;</mo><mi>b</mi></mrow></math></span>, we also construct a fat flat subscheme of the above type in some projective space <span><math><msup><mrow><mi>P</mi></mrow><mrow><mi>M</mi></mrow></msup></math></span>, whose Waldschmidt constant is equal to <span><math><mrow><mi>b</mi><mo>/</mo><mi>a</mi></mrow></math></span>. In addition to these, all non-reduced fat points subschemes <span><math><mi>Z</mi></math></span> in <span><math><msup><mrow><mi>P</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> with the Waldschmidt constants less than <span><math><mrow><mn>5</mn><mo>/</mo><mn>2</mn></mrow></math></span> are classified.</div></div>","PeriodicalId":56126,"journal":{"name":"Indagationes Mathematicae-New Series","volume":"36 4","pages":"Pages 1084-1095"},"PeriodicalIF":0.5,"publicationDate":"2024-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144270397","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Indagationes Mathematicae-New Series
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1