Abbas Khan, Syed Shujait Ali, Muhammad Ammar Zahid, Shahenda Salah Abdelsalam, Noorah Albekairi, Raed M Al-Zoubi, Mohanad Shkoor, Dong-Qing Wei, Abdelali Agouni
The RAF1-RAP1A interaction activates the MAPK/ERK pathway which is very crucial in the carcinogenesis process. This protein complex influences tumor formation, proliferation, and metastasis. Understanding aberrant interactions driven by clinical mutations is vital for targeted therapies. Hence, the current study focuses on the screening of clinically reported substitutions in the RAF1 and RAP1A genes using predictive algorithms integrated with all-atoms simulation, essential dynamics, and binding free energy methods. Survival analysis results revealed a strong association between RAF1 and RAP1A expression levels and diminished survival rates in cancer patients across different cancer types. Integrated machine learning algorithms showed that among the 134 mutations reported for these 2 proteins, only 13 and 35 were classified as deleterious mutations in RAF1 and RAP1P, respectively. Moreover, one mutation in RAF1 reported elevated levels of binding between RAF1 and RAP1P while in RAP1A, 7 mutations were reported to increase the binding affinity. The high-binding mutations, P34Q and V60F, were subjected to protein-protein coupling which confirmed the increase in the binding affinity. Wild-type and mutant RAF1-RAP1P bound complexes were subjected to molecular simulation investigation, revealing enhanced structural stability, increased compactness, and stabilized residue fluctuations of the mutant systems in contrast to the wild-type. In addition, hydrogen bonding analysis revealed a variation in the binding paradigm which further underscores the impact of these substitutions on the coupling of RAF1 and RAP1A. Principal component analysis (PCA) and free energy landscape (FEL) evaluation further determined dynamical variations in the wild-type and mutant complexes. Finally, the Gibbs free energy for each complex was estimated and found to be -71.94 ± 0.38 kcal/mol for the wild-type, -95.57 ± 0.37 kcal/mol for the V60F, and -85.76 ± 0.72 kcal/mol for P34Q complex. These findings confirm the effect of these variants on increasing the binding affinity of RAF1 to RAP1P. These mutations can therefore be targeted for cancer therapy to modulate the activity of the MAPK/ERK signaling pathway.
{"title":"Exploring the Dynamic Interplay of Deleterious Variants on the RAF1-RAP1A Binding in Cancer: Conformational Analysis, Binding Free Energy, and Essential Dynamics.","authors":"Abbas Khan, Syed Shujait Ali, Muhammad Ammar Zahid, Shahenda Salah Abdelsalam, Noorah Albekairi, Raed M Al-Zoubi, Mohanad Shkoor, Dong-Qing Wei, Abdelali Agouni","doi":"10.1002/prot.26759","DOIUrl":"https://doi.org/10.1002/prot.26759","url":null,"abstract":"<p><p>The RAF1-RAP1A interaction activates the MAPK/ERK pathway which is very crucial in the carcinogenesis process. This protein complex influences tumor formation, proliferation, and metastasis. Understanding aberrant interactions driven by clinical mutations is vital for targeted therapies. Hence, the current study focuses on the screening of clinically reported substitutions in the RAF1 and RAP1A genes using predictive algorithms integrated with all-atoms simulation, essential dynamics, and binding free energy methods. Survival analysis results revealed a strong association between RAF1 and RAP1A expression levels and diminished survival rates in cancer patients across different cancer types. Integrated machine learning algorithms showed that among the 134 mutations reported for these 2 proteins, only 13 and 35 were classified as deleterious mutations in RAF1 and RAP1P, respectively. Moreover, one mutation in RAF1 reported elevated levels of binding between RAF1 and RAP1P while in RAP1A, 7 mutations were reported to increase the binding affinity. The high-binding mutations, P34Q and V60F, were subjected to protein-protein coupling which confirmed the increase in the binding affinity. Wild-type and mutant RAF1-RAP1P bound complexes were subjected to molecular simulation investigation, revealing enhanced structural stability, increased compactness, and stabilized residue fluctuations of the mutant systems in contrast to the wild-type. In addition, hydrogen bonding analysis revealed a variation in the binding paradigm which further underscores the impact of these substitutions on the coupling of RAF1 and RAP1A. Principal component analysis (PCA) and free energy landscape (FEL) evaluation further determined dynamical variations in the wild-type and mutant complexes. Finally, the Gibbs free energy for each complex was estimated and found to be -71.94 ± 0.38 kcal/mol for the wild-type, -95.57 ± 0.37 kcal/mol for the V60F, and -85.76 ± 0.72 kcal/mol for P34Q complex. These findings confirm the effect of these variants on increasing the binding affinity of RAF1 to RAP1P. These mutations can therefore be targeted for cancer therapy to modulate the activity of the MAPK/ERK signaling pathway.</p>","PeriodicalId":56271,"journal":{"name":"Proteins-Structure Function and Bioinformatics","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142577358","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ibrahim A Imam, Shatha Al Adawi, Xiaoqi Liu, Sally Ellingson, Christine F Brainson, Hunter N B Moseley, Ralph Zinner, Shulin Zhang, Qing Shao
Acquired resistance to first-line treatments in various cancers both promotes cancer recurrence as well as limits effective treatment. This is true for epidermal growth factor receptor (EGFR) mutations, for which secondary EGFR mutations are one of the principal mechanisms conferring resistance to the covalent inhibitor osimertinib. Thus, it is very important to develop a deeper understanding of the secondary mutational resistance mechanisms associated with EGFR mutations arising in tumors treated with osimertinib to expedite the development of innovative therapeutic drugs to overcome acquired resistance. This work uses all-atom molecular dynamics (MD) simulations to investigate the conformational variation of two reported EGFR mutants (L858R/L718Q and L858R/L792H) that resist osimertinib. The wild-type EGFR kinase domain and the L858R mutant are used as the reference. Our MD simulation results revealed that both the L718Q and L792H secondary mutations induce additional hydrogen bonds between the residues in the active pocket and the residues with the water molecules. These additional hydrogen bonds reduce the exposure area of C797, the covalent binding target of osimertinib. The additional hydrogen bonds also influence the binding affinity of the EGFR kinase domain by altering the secondary structure and flexibility of the amino acid residues in the domain. Our work highlights how the two reported mutations may alter both residue-residue and residue-solvent hydrogen bonds, affecting protein binding properties, which could be helpful for future drug discovery.
{"title":"L858R/L718Q and L858R/L792H Mutations of EGFR Inducing Resistance Against Osimertinib by Forming Additional Hydrogen Bonds.","authors":"Ibrahim A Imam, Shatha Al Adawi, Xiaoqi Liu, Sally Ellingson, Christine F Brainson, Hunter N B Moseley, Ralph Zinner, Shulin Zhang, Qing Shao","doi":"10.1002/prot.26761","DOIUrl":"https://doi.org/10.1002/prot.26761","url":null,"abstract":"<p><p>Acquired resistance to first-line treatments in various cancers both promotes cancer recurrence as well as limits effective treatment. This is true for epidermal growth factor receptor (EGFR) mutations, for which secondary EGFR mutations are one of the principal mechanisms conferring resistance to the covalent inhibitor osimertinib. Thus, it is very important to develop a deeper understanding of the secondary mutational resistance mechanisms associated with EGFR mutations arising in tumors treated with osimertinib to expedite the development of innovative therapeutic drugs to overcome acquired resistance. This work uses all-atom molecular dynamics (MD) simulations to investigate the conformational variation of two reported EGFR mutants (L858R/L718Q and L858R/L792H) that resist osimertinib. The wild-type EGFR kinase domain and the L858R mutant are used as the reference. Our MD simulation results revealed that both the L718Q and L792H secondary mutations induce additional hydrogen bonds between the residues in the active pocket and the residues with the water molecules. These additional hydrogen bonds reduce the exposure area of C797, the covalent binding target of osimertinib. The additional hydrogen bonds also influence the binding affinity of the EGFR kinase domain by altering the secondary structure and flexibility of the amino acid residues in the domain. Our work highlights how the two reported mutations may alter both residue-residue and residue-solvent hydrogen bonds, affecting protein binding properties, which could be helpful for future drug discovery.</p>","PeriodicalId":56271,"journal":{"name":"Proteins-Structure Function and Bioinformatics","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142570153","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The ATP-dependent phosphorylation activity of cyclin-dependent kinase 1 (CDK1), an essential enzyme for cell cycle progression, is regulated by interactions with Cyclin-B, substrate, and Cks proteins. We have recently shown that active site acetylation in CDK1 abrogated binding to Cyclin-B which posits an intriguing long-range communication between the catalytic site and the protein-protein interaction (PPI) interface. Now, we demonstrate a general allosteric link between the CDK1 active site and all three of its PPI interfaces through atomistic molecular dynamics (MD) simulations. Specifically, we examined ATP binding free energies to CDK1 in native nonacetylated (K33wt) and acetylated (K33Ac) forms as well as the acetyl-mimic K33Q and the acetyl-null K33R mutant forms, which are accessible in vitro. In agreement with experiments, ATP binding is stronger in K33wt relative to the other three perturbed states. Free energy decomposition reveals, in addition to expected local changes, significant and selective nonlocal entropic responses to ATP binding/perturbation of K33 from the -helix, activation loop (A-loop), and - H segments in CDK1 which interface with Cyclin-B, substrate, and Cks proteins, respectively. Statistical analysis reveals that while entropic responses of protein segments to active site perturbations are on average correlated with their dynamical changes, such correlations are lost in about 9%-48% of the dataset depending on the segment. Besides proving the bi-directional communication between the active site and the CDK1:Cyclin-B interface, our study uncovers a hitherto unknown mode of ATP binding regulation by multiple PPI interfaces in CDK1.
细胞周期蛋白依赖性激酶 1(CDK1)是细胞周期进行过程中必不可少的酶,其 ATP 依赖性磷酸化活性受与 Cyclin-B、底物和 Cks 蛋白相互作用的调节。我们最近发现,CDK1 的活性位点乙酰化会减弱与 Cyclin-B 的结合,这表明催化位点与蛋白-蛋白相互作用(PPI)界面之间存在着有趣的长程通讯。现在,我们通过原子分子动力学(MD)模拟证明了 CDK1 活性位点与其所有三个 PPI 界面之间的一般异构联系。具体来说,我们研究了 ATP 与 CDK1 的结合自由能,包括原生的非乙酰化(K33wt)和乙酰化(K33Ac)形式,以及乙酰基模拟物 K33Q 和乙酰基缺失的 K33R 突变形式,这些形式在体外均可获得。与实验结果一致,K33wt 的 ATP 结合力强于其他三种扰动状态。自由能分解显示,除了预期的局部变化外,CDK1 中分别与 Cyclin-B、底物和 Cks 蛋白连接的 αC $ alpha C $ -helix、激活环(A 环)和 αG $ alpha G $ - α$ alpha $ H 段对 ATP 结合/扰动 K33 有显著和选择性的非局部熵响应。统计分析表明,虽然蛋白质片段对活性位点扰动的熵响应与其动态变化平均相关,但根据片段的不同,约有9%-48%的数据集失去了这种相关性。除了证明活性位点与 CDK1:Cyclin-B 界面之间的双向交流外,我们的研究还揭示了 CDK1 中多个 PPI 界面的 ATP 结合调控的一种迄今未知的模式。
{"title":"Multiple Functional Protein-Protein Interaction Interfaces Allosterically Regulate ATP-Binding in Cyclin-Dependent Kinase-1.","authors":"Krishna Kant Vishwakarma, Ullas Seetharam Kolthur, Ravindra Venkatramani","doi":"10.1002/prot.26729","DOIUrl":"10.1002/prot.26729","url":null,"abstract":"<p><p>The ATP-dependent phosphorylation activity of cyclin-dependent kinase 1 (CDK1), an essential enzyme for cell cycle progression, is regulated by interactions with Cyclin-B, substrate, and Cks proteins. We have recently shown that active site acetylation in CDK1 abrogated binding to Cyclin-B which posits an intriguing long-range communication between the catalytic site and the protein-protein interaction (PPI) interface. Now, we demonstrate a general allosteric link between the CDK1 active site and all three of its PPI interfaces through atomistic molecular dynamics (MD) simulations. Specifically, we examined ATP binding free energies to CDK1 in native nonacetylated (K33wt) and acetylated (K33Ac) forms as well as the acetyl-mimic K33Q and the acetyl-null K33R mutant forms, which are accessible in vitro. In agreement with experiments, ATP binding is stronger in K33wt relative to the other three perturbed states. Free energy decomposition reveals, in addition to expected local changes, significant and selective nonlocal entropic responses to ATP binding/perturbation of K33 from the <math> <semantics><mrow><mi>αC</mi></mrow> </semantics> </math> -helix, activation loop (A-loop), and <math> <semantics><mrow><mi>αG</mi></mrow> </semantics> </math> - <math> <semantics><mrow><mi>α</mi></mrow> </semantics> </math> H segments in CDK1 which interface with Cyclin-B, substrate, and Cks proteins, respectively. Statistical analysis reveals that while entropic responses of protein segments to active site perturbations are on average correlated with their dynamical changes, such correlations are lost in about 9%-48% of the dataset depending on the segment. Besides proving the bi-directional communication between the active site and the CDK1:Cyclin-B interface, our study uncovers a hitherto unknown mode of ATP binding regulation by multiple PPI interfaces in CDK1.</p>","PeriodicalId":56271,"journal":{"name":"Proteins-Structure Function and Bioinformatics","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141621819","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01Epub Date: 2024-06-23DOI: 10.1002/prot.26721
Yucong Liu, Yijun Liu, Zhenhai Li
Protein-protein interactions (PPIs) play an essential role in life activities. Many artificial intelligence algorithms based on protein sequence information have been developed to predict PPIs. However, these models have difficulty dealing with various sequence lengths and suffer from low generalization and prediction accuracy. In this study, we proposed a novel end-to-end deep learning framework, RSPPI, combining residual neural network (ResNet) and spatial pyramid pooling (SPP), to predict PPIs based on the protein sequence physicochemistry properties and spatial structural information. In the RSPPI model, ResNet was employed to extract the structural and physicochemical information from the protein three-dimensional structure and primary sequence; the SPP layer was used to transform feature maps to a single vector and avoid the fixed-length requirement. The RSPPI model possessed excellent cross-species performance and outperformed several state-of-the-art methods based either on protein sequence or gene ontology in most evaluation metrics. The RSPPI model provides a novel strategy to develop an AI PPI prediction algorithm.
蛋白质-蛋白质相互作用(PPIs)在生命活动中发挥着至关重要的作用。目前已开发出许多基于蛋白质序列信息的人工智能算法来预测蛋白质相互作用。然而,这些模型很难处理不同的序列长度,而且泛化率和预测准确率较低。在这项研究中,我们结合残差神经网络(ResNet)和空间金字塔池化(SPP),提出了一种新颖的端到端深度学习框架--RSPPI,用于根据蛋白质序列理化性质和空间结构信息预测PPIs。在RSPPI模型中,ResNet用于从蛋白质三维结构和主序列中提取结构和理化信息;SPP层用于将特征图转换为单一向量,避免了固定长度的要求。RSPPI 模型具有出色的跨物种性能,在大多数评价指标上都优于基于蛋白质序列或基因本体的几种先进方法。RSPPI 模型为开发人工智能 PPI 预测算法提供了一种新策略。
{"title":"Protein-Protein Interaction Prediction via Structure-Based Deep Learning.","authors":"Yucong Liu, Yijun Liu, Zhenhai Li","doi":"10.1002/prot.26721","DOIUrl":"10.1002/prot.26721","url":null,"abstract":"<p><p>Protein-protein interactions (PPIs) play an essential role in life activities. Many artificial intelligence algorithms based on protein sequence information have been developed to predict PPIs. However, these models have difficulty dealing with various sequence lengths and suffer from low generalization and prediction accuracy. In this study, we proposed a novel end-to-end deep learning framework, RSPPI, combining residual neural network (ResNet) and spatial pyramid pooling (SPP), to predict PPIs based on the protein sequence physicochemistry properties and spatial structural information. In the RSPPI model, ResNet was employed to extract the structural and physicochemical information from the protein three-dimensional structure and primary sequence; the SPP layer was used to transform feature maps to a single vector and avoid the fixed-length requirement. The RSPPI model possessed excellent cross-species performance and outperformed several state-of-the-art methods based either on protein sequence or gene ontology in most evaluation metrics. The RSPPI model provides a novel strategy to develop an AI PPI prediction algorithm.</p>","PeriodicalId":56271,"journal":{"name":"Proteins-Structure Function and Bioinformatics","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141461102","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The MC1R protein is a receptor found in melanocytes that plays a role in melanin synthesis. Mutations in this protein can impact hair color, skin tone, tanning ability, and increase the risk of skin cancer. The MC1R protein is activated by the alpha-melanocyte-stimulating hormone (α-MSH). Previous studies have shown that mutations affect the interaction between MC1R and α-MSH; however, the mechanism behind this process is poorly understood. Our study aims to shed light on this mechanism using molecular dynamics (MD) simulations to analyze the Asp84Glu and Asp294His variants. We simulated both the wild-type (WT) protein and the mutants with and without ligand. Our results reveal that mutations induce unique conformations during state transitions, hindering the switch between active and inactive states and decreasing cellular levels of cAMP. Interestingly, Asp294His showed increased ligand affinity but decreased protein activity, highlighting that tighter binding does not always lead to increased activation. Our study provides insights into the molecular mechanisms underlying the impact of MC1R mutations on protein activity.
{"title":"Molecular Basis of MC1R Activation: Mutation-Induced Alterations in Structural Dynamics.","authors":"Fernando Guimarães Cavatão, Éderson Sales Moreira Pinto, Mathias J Krause, Clarice Sampaio Alho, Marcio Dorn","doi":"10.1002/prot.26722","DOIUrl":"10.1002/prot.26722","url":null,"abstract":"<p><p>The MC1R protein is a receptor found in melanocytes that plays a role in melanin synthesis. Mutations in this protein can impact hair color, skin tone, tanning ability, and increase the risk of skin cancer. The MC1R protein is activated by the alpha-melanocyte-stimulating hormone (α-MSH). Previous studies have shown that mutations affect the interaction between MC1R and α-MSH; however, the mechanism behind this process is poorly understood. Our study aims to shed light on this mechanism using molecular dynamics (MD) simulations to analyze the Asp84Glu and Asp294His variants. We simulated both the wild-type (WT) protein and the mutants with and without ligand. Our results reveal that mutations induce unique conformations during state transitions, hindering the switch between active and inactive states and decreasing cellular levels of cAMP. Interestingly, Asp294His showed increased ligand affinity but decreased protein activity, highlighting that tighter binding does not always lead to increased activation. Our study provides insights into the molecular mechanisms underlying the impact of MC1R mutations on protein activity.</p>","PeriodicalId":56271,"journal":{"name":"Proteins-Structure Function and Bioinformatics","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141461101","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01Epub Date: 2024-07-18DOI: 10.1002/prot.26728
Marcello Miceli, Marco Cannariato, Riccardo Tortarolo, Lorenzo Pallante, Eric A Zizzi, Marco A Deriu
Despite the ubiquity of membrane occupation recognition nexus (MORN) motifs across diverse species in both eukaryotic and prokaryotic organisms, these protein domains remain poorly characterized. Their significance is underscored in the context of the Alsin protein, implicated in the debilitating condition known as infantile-onset ascending hereditary spastic paralysis (IAHSP). Recent investigations have proposed that mutations within the Alsin MORN domain disrupt proper protein assembly, precluding the formation of the requisite tetrameric configuration essential for the protein's inherent biological activity. However, a comprehensive understanding of the relationship between the biological functions of Alsin and its three-dimensional molecular structure is hindered by the lack of available experimental structures. In this study, we employed and compared several protein structure prediction algorithms to identify a three-dimensional structure for the putative MORN of Alsin. Furthermore, inspired by experimental pieces of evidence from previous studies, we employed the developed models to predict and investigate two homo-dimeric assemblies, characterizing their stability. This study's insights into the three-dimensional structure of the Alsin MORN domain and the stability dynamics of its homo-dimeric assemblies suggest an antiparallel linear configuration stabilized by a noncovalent interaction network.
{"title":"Conformational Dynamics and Molecular Characterization of Alsin MORN Monomer and Dimeric Assemblies.","authors":"Marcello Miceli, Marco Cannariato, Riccardo Tortarolo, Lorenzo Pallante, Eric A Zizzi, Marco A Deriu","doi":"10.1002/prot.26728","DOIUrl":"10.1002/prot.26728","url":null,"abstract":"<p><p>Despite the ubiquity of membrane occupation recognition nexus (MORN) motifs across diverse species in both eukaryotic and prokaryotic organisms, these protein domains remain poorly characterized. Their significance is underscored in the context of the Alsin protein, implicated in the debilitating condition known as infantile-onset ascending hereditary spastic paralysis (IAHSP). Recent investigations have proposed that mutations within the Alsin MORN domain disrupt proper protein assembly, precluding the formation of the requisite tetrameric configuration essential for the protein's inherent biological activity. However, a comprehensive understanding of the relationship between the biological functions of Alsin and its three-dimensional molecular structure is hindered by the lack of available experimental structures. In this study, we employed and compared several protein structure prediction algorithms to identify a three-dimensional structure for the putative MORN of Alsin. Furthermore, inspired by experimental pieces of evidence from previous studies, we employed the developed models to predict and investigate two homo-dimeric assemblies, characterizing their stability. This study's insights into the three-dimensional structure of the Alsin MORN domain and the stability dynamics of its homo-dimeric assemblies suggest an antiparallel linear configuration stabilized by a noncovalent interaction network.</p>","PeriodicalId":56271,"journal":{"name":"Proteins-Structure Function and Bioinformatics","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141635972","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01Epub Date: 2024-06-03DOI: 10.1002/prot.26706
Gianluca Interlandi
The blood protein von Willebrand factor (VWF) is a large multimeric protein that, when activated, binds to blood platelets, tethering them to the site of vascular injury and initiating blood coagulation. This process is critical for the normal hemostatic response, but especially under inflammatory conditions, it is thought to be a major player in pathological thrombus formation. For this reason, VWF has been the target for the development of anti-thrombotic therapeutics. However, it is challenging to prevent pathological thrombus formation while still allowing normal physiological blood coagulation, as currently available anti-thrombotic therapeutics are known to cause unwanted bleeding, in particular intracranial hemorrhage. This work explores the possibility of inhibiting VWF selectively under the inflammatory conditions present during pathological thrombus formation. In particular, the A2 domain of VWF is known to inhibit the neighboring A1 domain from binding to the platelet surface receptor GpIbα, and this auto-inhibitory mechanism has been shown to be removed by oxidizing agents released during inflammation. Hence, finding drug molecules that bind at the interface between A1 and A2 only under oxidizing conditions could restore such an auto-inhibitory mechanism. Here, by using a combination of computational docking, molecular dynamics simulations, and free energy perturbation calculations, a ligand from the ZINC15 database was identified that binds at the A1A2 interface, with the interaction being stronger under oxidizing conditions. The results provide a framework for the discovery of drug molecules that bind to a protein selectively in the presence of inflammatory conditions.
{"title":"Exploring ligands that target von Willebrand factor selectively under oxidizing conditions through docking and molecular dynamics simulations.","authors":"Gianluca Interlandi","doi":"10.1002/prot.26706","DOIUrl":"10.1002/prot.26706","url":null,"abstract":"<p><p>The blood protein von Willebrand factor (VWF) is a large multimeric protein that, when activated, binds to blood platelets, tethering them to the site of vascular injury and initiating blood coagulation. This process is critical for the normal hemostatic response, but especially under inflammatory conditions, it is thought to be a major player in pathological thrombus formation. For this reason, VWF has been the target for the development of anti-thrombotic therapeutics. However, it is challenging to prevent pathological thrombus formation while still allowing normal physiological blood coagulation, as currently available anti-thrombotic therapeutics are known to cause unwanted bleeding, in particular intracranial hemorrhage. This work explores the possibility of inhibiting VWF selectively under the inflammatory conditions present during pathological thrombus formation. In particular, the A2 domain of VWF is known to inhibit the neighboring A1 domain from binding to the platelet surface receptor GpIbα, and this auto-inhibitory mechanism has been shown to be removed by oxidizing agents released during inflammation. Hence, finding drug molecules that bind at the interface between A1 and A2 only under oxidizing conditions could restore such an auto-inhibitory mechanism. Here, by using a combination of computational docking, molecular dynamics simulations, and free energy perturbation calculations, a ligand from the ZINC15 database was identified that binds at the A1A2 interface, with the interaction being stronger under oxidizing conditions. The results provide a framework for the discovery of drug molecules that bind to a protein selectively in the presence of inflammatory conditions.</p>","PeriodicalId":56271,"journal":{"name":"Proteins-Structure Function and Bioinformatics","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11471382/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141201366","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01Epub Date: 2024-07-09DOI: 10.1002/prot.26726
Maxime Naudé, Peter Faller, Vincent Lebrun
Understanding the sequence-structure relationship in protein is of fundamental interest, but has practical applications such as the rational design of peptides and proteins. This relationship in the Type I left-handed β-helix containing proteins is updated and revisited in this study. Analyzing the available experimental structures in the Protein Data Bank, we could describe, further in detail, the structural features that are important for the stability of this fold, as well as its nucleation and termination. This study is meant to complete previous work, as it provides a separate analysis of the N-terminal and C-terminal rungs of the helix. Particular sequence motifs of these rungs are described along with the structural element they form.
了解蛋白质中的序列与结构关系不仅具有基础意义,而且还具有实际应用价值,例如肽和蛋白质的合理设计。本研究更新并重新审视了含有 I 型左旋 β-螺旋的蛋白质中的这种关系。通过分析蛋白质数据库(Protein Data Bank)中现有的实验结构,我们可以进一步详细描述对这种折叠的稳定性及其成核和终止具有重要意义的结构特征。这项研究旨在完善之前的工作,因为它对螺旋的 N 端和 C 端梯级进行了单独分析。这些梯级的特定序列图案以及它们所形成的结构元素均有描述。
{"title":"A Closer Look at Type I Left-Handed β-Helices Provides a Better Understanding in Their Sequence-Structure Relationship: Toward Their Rational Design.","authors":"Maxime Naudé, Peter Faller, Vincent Lebrun","doi":"10.1002/prot.26726","DOIUrl":"10.1002/prot.26726","url":null,"abstract":"<p><p>Understanding the sequence-structure relationship in protein is of fundamental interest, but has practical applications such as the rational design of peptides and proteins. This relationship in the Type I left-handed β-helix containing proteins is updated and revisited in this study. Analyzing the available experimental structures in the Protein Data Bank, we could describe, further in detail, the structural features that are important for the stability of this fold, as well as its nucleation and termination. This study is meant to complete previous work, as it provides a separate analysis of the N-terminal and C-terminal rungs of the helix. Particular sequence motifs of these rungs are described along with the structural element they form.</p>","PeriodicalId":56271,"journal":{"name":"Proteins-Structure Function and Bioinformatics","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141560388","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01Epub Date: 2024-06-17DOI: 10.1002/prot.26708
Federico A Olivieri, Marcelo A Marti, Diana E Wetzler
Histidine kinases (HKs) are a central part of bacterial environmental-sensing two-component systems. They provide their hosts with the ability to respond to a wide range of physical and chemical signals. HKs are multidomain proteins consisting of at least a sensor domain, dimerization and phosphorylation domain (DHp), and a catalytic domain. They work as homodimers and the existence of two different autophosphorylation mechanisms (cis and trans) has been proposed as relevant for pathway specificity. Although several HKs have been intensively studied, a precise sequence-to-structure explanation of why and how either cis or trans phosphorylation occurs is still unavailable nor is there any evolutionary analysis on the subject. In this work, we show that AlphaFold can accurately determine whether an HK dimerizes in a cis or trans structure. By modeling multiple HKs we show that both cis- and trans-acting HKs are common in nature and the switch between mechanisms has happened multiple times in the evolutionary history of the family. We then use AlphaFold modeling to explore the molecular determinants of the phosphorylation mechanism. We conclude that it is the difference in lengths of the helices surrounding the DHp loop that determines the mechanism. We also show that very small changes in these helices can cause a mechanism switch. Despite this, previous evidence shows that for a particular HK the phosphorylation mechanism is conserved. This suggests that the phosphorylation mechanism participates in system specificity and mechanism switching provides these systems with a way to diverge.
组氨酸激酶(HKs)是细菌环境感应双组分系统的核心部分。它们为宿主提供了对各种物理和化学信号做出反应的能力。HKs 是一种多结构域蛋白质,至少包括一个传感结构域、二聚化和磷酸化结构域(DHp)以及一个催化结构域。它们以同源二聚体的形式工作,有人提出存在两种不同的自动磷酸化机制(顺式和反式),这与通路特异性有关。尽管已经对几种 HK 进行了深入研究,但仍然没有从序列到结构的精确解释顺式或反式磷酸化发生的原因和方式,也没有关于这一主题的进化分析。在这项研究中,我们发现 AlphaFold 可以准确地确定 HK 的二聚体是顺式还是反式结构。通过对多个 HKs 进行建模,我们发现顺式和反式作用的 HKs 在自然界中都很常见,而且在该家族的进化史中,这两种机制之间的转换已经发生过多次。然后,我们使用 AlphaFold 建模来探索磷酸化机制的分子决定因素。我们的结论是,决定机制的是围绕 DHp 环的螺旋的长度差异。我们还表明,这些螺旋的微小变化就能导致机制转换。尽管如此,以前的证据表明,对于特定的 HK 而言,磷酸化机制是保守的。这表明磷酸化机制参与了系统特异性的形成,而机制转换则为这些系统提供了分化的途径。
{"title":"Phosphorylation Mechanism Switching in Histidine Kinases Is a Tool for Fast Protein Evolution: Insights From AlphaFold Models.","authors":"Federico A Olivieri, Marcelo A Marti, Diana E Wetzler","doi":"10.1002/prot.26708","DOIUrl":"10.1002/prot.26708","url":null,"abstract":"<p><p>Histidine kinases (HKs) are a central part of bacterial environmental-sensing two-component systems. They provide their hosts with the ability to respond to a wide range of physical and chemical signals. HKs are multidomain proteins consisting of at least a sensor domain, dimerization and phosphorylation domain (DHp), and a catalytic domain. They work as homodimers and the existence of two different autophosphorylation mechanisms (cis and trans) has been proposed as relevant for pathway specificity. Although several HKs have been intensively studied, a precise sequence-to-structure explanation of why and how either cis or trans phosphorylation occurs is still unavailable nor is there any evolutionary analysis on the subject. In this work, we show that AlphaFold can accurately determine whether an HK dimerizes in a cis or trans structure. By modeling multiple HKs we show that both cis- and trans-acting HKs are common in nature and the switch between mechanisms has happened multiple times in the evolutionary history of the family. We then use AlphaFold modeling to explore the molecular determinants of the phosphorylation mechanism. We conclude that it is the difference in lengths of the helices surrounding the DHp loop that determines the mechanism. We also show that very small changes in these helices can cause a mechanism switch. Despite this, previous evidence shows that for a particular HK the phosphorylation mechanism is conserved. This suggests that the phosphorylation mechanism participates in system specificity and mechanism switching provides these systems with a way to diverge.</p>","PeriodicalId":56271,"journal":{"name":"Proteins-Structure Function and Bioinformatics","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141332611","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01Epub Date: 2024-07-03DOI: 10.1002/prot.26725
David L Baker, Bing Wang, Lorna E Wilkinson-White, Serene El-Kamand, Thomas A Allport, Sandro F Ataide, Ann H Kwan, Irina Artsimovitch, Liza Cubeddu, Roland Gamsjaeger
The ongoing global pandemic of the coronavirus 2019 (COVID-19) disease is caused by the virus SARS-CoV-2, with very few highly effective antiviral treatments currently available. The machinery responsible for the replication and transcription of viral RNA during infection is made up of several important proteins. Two of these are nsp12, the catalytic subunit of the viral polymerase, and nsp9, a cofactor of nsp12 involved in the capping and priming of viral RNA. While several recent studies have determined the structural details of the interaction of nsp9 with nsp12 in the context of RNA capping, very few biochemical or biophysical details are currently available. In this study, we have used a combination of surface plasmon resonance (SPR) experiments, size exclusion chromatography (SEC) experiments, and biochemical assays to identify specific nsp9 residues that are critical for nsp12 binding as well as RNAylation, both of which are essential for the RNA capping process. Our data indicate that nsp9 dimerization is unlikely to play a significant functional role in the virus. We confirm that a set of recently discovered antiviral peptides inhibit nsp9-nsp12 interaction by specifically binding to nsp9; however, we find that these peptides do not impact RNAylation. In summary, our results have important implications for future drug discovery efforts to combat SARS-CoV-2 and any newly emerging coronaviruses.
{"title":"A Biochemical and Biophysical Analysis of the Interaction of nsp9 with nsp12 from SARS-CoV-2-Implications for Future Drug Discovery Efforts.","authors":"David L Baker, Bing Wang, Lorna E Wilkinson-White, Serene El-Kamand, Thomas A Allport, Sandro F Ataide, Ann H Kwan, Irina Artsimovitch, Liza Cubeddu, Roland Gamsjaeger","doi":"10.1002/prot.26725","DOIUrl":"10.1002/prot.26725","url":null,"abstract":"<p><p>The ongoing global pandemic of the coronavirus 2019 (COVID-19) disease is caused by the virus SARS-CoV-2, with very few highly effective antiviral treatments currently available. The machinery responsible for the replication and transcription of viral RNA during infection is made up of several important proteins. Two of these are nsp12, the catalytic subunit of the viral polymerase, and nsp9, a cofactor of nsp12 involved in the capping and priming of viral RNA. While several recent studies have determined the structural details of the interaction of nsp9 with nsp12 in the context of RNA capping, very few biochemical or biophysical details are currently available. In this study, we have used a combination of surface plasmon resonance (SPR) experiments, size exclusion chromatography (SEC) experiments, and biochemical assays to identify specific nsp9 residues that are critical for nsp12 binding as well as RNAylation, both of which are essential for the RNA capping process. Our data indicate that nsp9 dimerization is unlikely to play a significant functional role in the virus. We confirm that a set of recently discovered antiviral peptides inhibit nsp9-nsp12 interaction by specifically binding to nsp9; however, we find that these peptides do not impact RNAylation. In summary, our results have important implications for future drug discovery efforts to combat SARS-CoV-2 and any newly emerging coronaviruses.</p>","PeriodicalId":56271,"journal":{"name":"Proteins-Structure Function and Bioinformatics","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11471385/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141494429","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}