首页 > 最新文献

IMA Journal of Numerical Analysis最新文献

英文 中文
Convergence of Lagrange finite element methods for Maxwell eigenvalue problem in 3D 三维Maxwell特征值问题拉格朗日有限元方法的收敛性
IF 2.1 2区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2023-10-14 DOI: 10.1093/imanum/drad053
Daniele Boffi, Sining Gong, Johnny Guzmán, Michael Neilan
We prove convergence of the Maxwell eigenvalue problem using quadratic or higher Lagrange finite elements on Worsey–Farin splits in three dimensions. To do this, we construct two Fortin-like operators to prove uniform convergence of the corresponding source problem. We present numerical experiments to illustrate the theoretical results.
我们使用二次或更高拉格朗日有限元在三维Worsey–Farin分裂上证明了Maxwell特征值问题的收敛性。为此,我们构造了两个类Fortin算子来证明相应源问题的一致收敛性。我们用数值实验来说明理论结果。
{"title":"Convergence of Lagrange finite element methods for Maxwell eigenvalue problem in 3D","authors":"Daniele Boffi, Sining Gong, Johnny Guzmán, Michael Neilan","doi":"10.1093/imanum/drad053","DOIUrl":"https://doi.org/10.1093/imanum/drad053","url":null,"abstract":"We prove convergence of the Maxwell eigenvalue problem using quadratic or higher Lagrange finite elements on Worsey–Farin splits in three dimensions. To do this, we construct two Fortin-like operators to prove uniform convergence of the corresponding source problem. We present numerical experiments to illustrate the theoretical results.","PeriodicalId":56295,"journal":{"name":"IMA Journal of Numerical Analysis","volume":"21 2","pages":""},"PeriodicalIF":2.1,"publicationDate":"2023-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71509813","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A new step size selection strategy for the superiorization methodology using subgradient vectors and its application for solving convex constrained optimization problems 基于次梯度向量的优化方法步长选择策略及其在求解凸约束优化问题中的应用
2区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2023-10-09 DOI: 10.1093/imanum/drad070
Mokhtar Abbasi, Mahdi Ahmadinia, Ali Ahmadinia
Abstract This paper presents a novel approach for solving convex constrained minimization problems by introducing a special subclass of quasi-nonexpansive operators and combining them with the superiorization methodology that utilizes subgradient vectors. Superiorization methodology tries to reduce a target function while seeking a feasible point for the given constraints. We begin by introducing a new class of operators, which includes many well-known operators used for solving convex feasibility problems. Next, we demonstrate how the superiorization methodology can be combined with the introduced class of operators to obtain superiorized operators. To achieve this, we present a new formula for the step size of the perturbations in the superiorized operators. Finally, we propose an iterative method that utilizes the superiorized operators to solve convex constrained minimization problems. We provide examples of image reconstruction from projections (tomography) to demonstrate the capabilities of our proposed iterative method.
摘要本文通过引入拟非膨胀算子的一个特殊子类,并将其与利用次梯度向量的优越化方法相结合,提出了求解凸约束最小化问题的一种新方法。优越化方法在寻找给定约束条件下可行点的同时,试图减少目标函数。我们首先介绍一类新的算子,其中包括许多用于求解凸可行性问题的著名算子。接下来,我们演示了如何将优越化方法与引入的算子类相结合以获得优越化算子。为了达到这一目的,我们提出了一个新的计算扰动步长的公式。最后,我们提出了一种利用优越算子求解凸约束最小化问题的迭代方法。我们提供了从投影(断层扫描)图像重建的例子来演示我们提出的迭代方法的能力。
{"title":"A new step size selection strategy for the superiorization methodology using subgradient vectors and its application for solving convex constrained optimization problems","authors":"Mokhtar Abbasi, Mahdi Ahmadinia, Ali Ahmadinia","doi":"10.1093/imanum/drad070","DOIUrl":"https://doi.org/10.1093/imanum/drad070","url":null,"abstract":"Abstract This paper presents a novel approach for solving convex constrained minimization problems by introducing a special subclass of quasi-nonexpansive operators and combining them with the superiorization methodology that utilizes subgradient vectors. Superiorization methodology tries to reduce a target function while seeking a feasible point for the given constraints. We begin by introducing a new class of operators, which includes many well-known operators used for solving convex feasibility problems. Next, we demonstrate how the superiorization methodology can be combined with the introduced class of operators to obtain superiorized operators. To achieve this, we present a new formula for the step size of the perturbations in the superiorized operators. Finally, we propose an iterative method that utilizes the superiorized operators to solve convex constrained minimization problems. We provide examples of image reconstruction from projections (tomography) to demonstrate the capabilities of our proposed iterative method.","PeriodicalId":56295,"journal":{"name":"IMA Journal of Numerical Analysis","volume":"18 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135146275","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Linearly implicit energy-preserving integrating factor methods and convergence analysis for the 2D nonlinear Schrödinger equation with wave operator 带波算子的二维非线性Schrödinger方程的线性隐式保能积分因子方法及其收敛性分析
2区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2023-09-25 DOI: 10.1093/imanum/drad067
Xuelong Gu, Wenjun Cai, Yushun Wang, Chaolong Jiang
Abstract In this paper, we develop a novel class of linearly implicit and energy-preserving integrating factor methods for the 2D nonlinear Schrödinger equation with wave operator (NLSW), combining the scalar auxiliary variable approach and the integrating factor methods. To begin, a second-order scheme is proposed, which is rigorously proved to be energy-preserving. By using the energy methods, we analyze its optimal convergence without any restrictions on the grid ratio, where a novel technique and an improved induction argument are proposed to circumvent the difficulty arising from the unavailability of a priori$L^{infty }$ estimates of numerical solutions. Based on the integrating factor Runge–Kutta methods, we extend the proposed scheme to arbitrarily high order, which is also linearly implicit and conservative. Numerical experiments are presented to confirm the theoretical analysis and demonstrate the advantages of the proposed methods.
本文将标量辅助变量法与积分因子法相结合,建立了一类新的线性隐式、能量守恒的二维非线性含波算子Schrödinger方程积分因子法。首先,提出了一种二阶格式,并严格证明了该格式的能量守恒性。通过使用能量方法,我们分析了它的最优收敛性,而不受网格比的限制,其中提出了一种新的技术和改进的归纳论证,以避免由于无法获得先验的$L^{infty }$数值解估计而产生的困难。基于积分因子龙格-库塔方法,将该方案扩展到任意高阶,具有线性隐式和保守性。数值实验验证了理论分析,并证明了所提方法的优越性。
{"title":"Linearly implicit energy-preserving integrating factor methods and convergence analysis for the 2D nonlinear Schrödinger equation with wave operator","authors":"Xuelong Gu, Wenjun Cai, Yushun Wang, Chaolong Jiang","doi":"10.1093/imanum/drad067","DOIUrl":"https://doi.org/10.1093/imanum/drad067","url":null,"abstract":"Abstract In this paper, we develop a novel class of linearly implicit and energy-preserving integrating factor methods for the 2D nonlinear Schrödinger equation with wave operator (NLSW), combining the scalar auxiliary variable approach and the integrating factor methods. To begin, a second-order scheme is proposed, which is rigorously proved to be energy-preserving. By using the energy methods, we analyze its optimal convergence without any restrictions on the grid ratio, where a novel technique and an improved induction argument are proposed to circumvent the difficulty arising from the unavailability of a priori$L^{infty }$ estimates of numerical solutions. Based on the integrating factor Runge–Kutta methods, we extend the proposed scheme to arbitrarily high order, which is also linearly implicit and conservative. Numerical experiments are presented to confirm the theoretical analysis and demonstrate the advantages of the proposed methods.","PeriodicalId":56295,"journal":{"name":"IMA Journal of Numerical Analysis","volume":"20 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135859525","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A general collocation analysis for weakly singular Volterra integral equations with variable exponent 变指数弱奇异Volterra积分方程的一般配位分析
2区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2023-09-19 DOI: 10.1093/imanum/drad072
Hui Liang, Martin Stynes
Abstract Piecewise polynomial collocation of weakly singular Volterra integral equations (VIEs) of the second kind has been extensively studied in the literature, where integral kernels of the form $(t-s)^{-alpha }$ for some constant $alpha in (0,1)$ are considered. Variable-order fractional-derivative differential equations currently attract much research interest, and in Zheng & Wang (2020, An optimal-order numerical approximation to variable-order space-fractional diffusion equations on uniform or graded meshes. SIAM J. Numer. Anal., 58, 330–352), such a problem is transformed to a weakly singular VIE whose kernel has the above form with variable $alpha = alpha (t)$, then solved numerically by piecewise linear collocation, but it is unclear whether this analysis could be extended to more general problems or to polynomials of higher degree. In the present paper, the general theory (existence, uniqueness, regularity of solutions) of variable-exponent weakly singular VIEs is developed using novel techniques. These results then underpin an error analysis of collocation methods where piecewise polynomials of any degree can be used. This error analysis is also novel—it makes no use of the usual resolvent representation, which is a key technique in the error analysis of collocation methods for VIEs in the current research literature. Furthermore, all the above analysis for a scalar VIE can be extended to certain nonlinear VIEs and to systems of VIEs. The sharpness of the theoretical error bounds obtained for the collocation methods is demonstrated by numerical examples.
第二类弱奇异Volterra积分方程(VIEs)的分段多项式配置问题在文献中得到了广泛的研究,其中考虑了$(t-s)^{-alpha}$形式的积分核对于某常数$alpha in(0,1)$。变阶分数阶微分方程是目前研究的热点。Wang(2020),均匀或梯度网格上变阶空间分数扩散方程的最优阶数值逼近。SIAM J. number。分析的, 58, 330-352),将该问题转化为弱奇异VIE,其核具有上述形式,变量$alpha = alpha (t)$,然后通过分段线性配置进行数值求解,但尚不清楚这种分析是否可以推广到更一般的问题或更高次的多项式。本文利用新技术,建立了变指数弱奇异vie的一般理论(解的存在性、唯一性和正则性)。然后,这些结果支持可以使用任意程度的分段多项式的搭配方法的误差分析。这种误差分析也是新颖的,它没有使用通常的解析表示,这是当前研究文献中vie搭配方法误差分析的关键技术。此外,上述对标量VIE的分析可以推广到某些非线性VIE和VIE系统。数值算例表明,所得到的配置方法的理论误差界限是清晰的。
{"title":"A general collocation analysis for weakly singular Volterra integral equations with variable exponent","authors":"Hui Liang, Martin Stynes","doi":"10.1093/imanum/drad072","DOIUrl":"https://doi.org/10.1093/imanum/drad072","url":null,"abstract":"Abstract Piecewise polynomial collocation of weakly singular Volterra integral equations (VIEs) of the second kind has been extensively studied in the literature, where integral kernels of the form $(t-s)^{-alpha }$ for some constant $alpha in (0,1)$ are considered. Variable-order fractional-derivative differential equations currently attract much research interest, and in Zheng & Wang (2020, An optimal-order numerical approximation to variable-order space-fractional diffusion equations on uniform or graded meshes. SIAM J. Numer. Anal., 58, 330–352), such a problem is transformed to a weakly singular VIE whose kernel has the above form with variable $alpha = alpha (t)$, then solved numerically by piecewise linear collocation, but it is unclear whether this analysis could be extended to more general problems or to polynomials of higher degree. In the present paper, the general theory (existence, uniqueness, regularity of solutions) of variable-exponent weakly singular VIEs is developed using novel techniques. These results then underpin an error analysis of collocation methods where piecewise polynomials of any degree can be used. This error analysis is also novel—it makes no use of the usual resolvent representation, which is a key technique in the error analysis of collocation methods for VIEs in the current research literature. Furthermore, all the above analysis for a scalar VIE can be extended to certain nonlinear VIEs and to systems of VIEs. The sharpness of the theoretical error bounds obtained for the collocation methods is demonstrated by numerical examples.","PeriodicalId":56295,"journal":{"name":"IMA Journal of Numerical Analysis","volume":"111 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135108645","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hybrid neural-network FEM approximation of diffusion coefficient in elliptic and parabolic Problems 椭圆型和抛物型问题扩散系数的混合神经网络有限元逼近
2区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2023-09-18 DOI: 10.1093/imanum/drad073
Siyu Cen, Bangti Jin, Qimeng Quan, Zhi Zhou
Abstract In this work we investigate the numerical identification of the diffusion coefficient in elliptic and parabolic problems using neural networks (NNs). The numerical scheme is based on the standard output least-squares formulation where the Galerkin finite element method (FEM) is employed to approximate the state and NNs act as a smoothness prior to approximate the unknown diffusion coefficient. A projection operation is applied to the NN approximation in order to preserve the physical box constraint on the unknown coefficient. The hybrid approach enjoys both rigorous mathematical foundation of the FEM and inductive bias/approximation properties of NNs. We derive a priori error estimates in the standard $L^2(varOmega )$ norm for the numerical reconstruction, under a positivity condition which can be verified for a large class of problem data. The error bounds depend explicitly on the noise level, regularization parameter and discretization parameters (e.g., spatial mesh size, time step size and depth, upper bound and number of nonzero parameters of NNs). We also provide extensive numerical experiments, indicating that the hybrid method is very robust for large noise when compared with the pure FEM approximation.
摘要本文研究了椭圆型和抛物型问题中扩散系数的神经网络辨识方法。数值格式基于标准输出最小二乘公式,其中Galerkin有限元法(FEM)用于近似状态,神经网络作为平滑,在近似未知扩散系数之前。投影运算应用于神经网络近似,以保持未知系数的物理盒约束。该混合方法既具有有限元法的严格数学基础,又具有神经网络的归纳偏置/近似特性。我们在一个正性条件下,在标准的$L^2(varOmega)$范数中导出了数值重构的先验误差估计,该估计可用于大型问题数据的验证。误差界限明确地取决于噪声水平、正则化参数和离散化参数(例如,空间网格大小、时间步长和深度、神经网络的上限和非零参数的数量)。我们还提供了大量的数值实验,表明与纯有限元近似相比,混合方法对大噪声具有很强的鲁棒性。
{"title":"Hybrid neural-network FEM approximation of diffusion coefficient in elliptic and parabolic Problems","authors":"Siyu Cen, Bangti Jin, Qimeng Quan, Zhi Zhou","doi":"10.1093/imanum/drad073","DOIUrl":"https://doi.org/10.1093/imanum/drad073","url":null,"abstract":"Abstract In this work we investigate the numerical identification of the diffusion coefficient in elliptic and parabolic problems using neural networks (NNs). The numerical scheme is based on the standard output least-squares formulation where the Galerkin finite element method (FEM) is employed to approximate the state and NNs act as a smoothness prior to approximate the unknown diffusion coefficient. A projection operation is applied to the NN approximation in order to preserve the physical box constraint on the unknown coefficient. The hybrid approach enjoys both rigorous mathematical foundation of the FEM and inductive bias/approximation properties of NNs. We derive a priori error estimates in the standard $L^2(varOmega )$ norm for the numerical reconstruction, under a positivity condition which can be verified for a large class of problem data. The error bounds depend explicitly on the noise level, regularization parameter and discretization parameters (e.g., spatial mesh size, time step size and depth, upper bound and number of nonzero parameters of NNs). We also provide extensive numerical experiments, indicating that the hybrid method is very robust for large noise when compared with the pure FEM approximation.","PeriodicalId":56295,"journal":{"name":"IMA Journal of Numerical Analysis","volume":"19 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135208123","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A posteriori error estimates for fully coupled McKean–Vlasov forward-backward SDEs 完全耦合McKean-Vlasov正向向后SDEs的后验误差估计
2区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2023-09-15 DOI: 10.1093/imanum/drad060
Christoph Reisinger, Wolfgang Stockinger, Yufei Zhang
Abstract Fully coupled McKean–Vlasov forward-backward stochastic differential equations (MV-FBSDEs) arise naturally from large population optimization problems. Judging the quality of given numerical solutions for MV-FBSDEs, which usually require Picard iterations and approximations of nested conditional expectations, is typically difficult. This paper proposes an a posteriori error estimator to quantify the $L^2$-approximation error of an arbitrarily generated approximation on a time grid. We establish that the error estimator is equivalent to the global approximation error between the given numerical solution and the solution of a forward Euler discretized MV-FBSDE. A crucial and challenging step in the analysis is the proof of stability of this Euler approximation to the MV-FBSDE, which is of independent interest. We further demonstrate that, for sufficiently fine time grids, the accuracy of numerical solutions for solving the continuous MV-FBSDE can also be measured by the error estimator. The error estimates justify the use of residual-based algorithms for solving MV-FBSDEs. Numerical experiments for MV-FBSDEs arising from mean field control and games confirm the effectiveness and practical applicability of the error estimator.
完全耦合McKean-Vlasov正倒向随机微分方程(MV-FBSDEs)是求解大种群优化问题的自然方法。MV-FBSDEs通常需要Picard迭代和嵌套条件期望的近似,判断给定数值解的质量通常是困难的。本文提出了一种后验误差估计器,用于量化时间网格上任意生成的逼近的L^2逼近误差。我们建立了误差估计量等价于给定数值解与正演欧拉离散MV-FBSDE解之间的全局逼近误差。分析中的一个关键和具有挑战性的步骤是证明这个欧拉近似对MV-FBSDE的稳定性,这是一个独立的兴趣。我们进一步证明,对于足够精细的时间网格,求解连续MV-FBSDE的数值解的精度也可以通过误差估计器来测量。误差估计证明了使用基于残差的算法求解MV-FBSDEs是正确的。对平均场控制和博弈引起的MV-FBSDEs进行了数值实验,验证了误差估计器的有效性和实用性。
{"title":"<i>A posteriori</i> error estimates for fully coupled McKean–Vlasov forward-backward SDEs","authors":"Christoph Reisinger, Wolfgang Stockinger, Yufei Zhang","doi":"10.1093/imanum/drad060","DOIUrl":"https://doi.org/10.1093/imanum/drad060","url":null,"abstract":"Abstract Fully coupled McKean–Vlasov forward-backward stochastic differential equations (MV-FBSDEs) arise naturally from large population optimization problems. Judging the quality of given numerical solutions for MV-FBSDEs, which usually require Picard iterations and approximations of nested conditional expectations, is typically difficult. This paper proposes an a posteriori error estimator to quantify the $L^2$-approximation error of an arbitrarily generated approximation on a time grid. We establish that the error estimator is equivalent to the global approximation error between the given numerical solution and the solution of a forward Euler discretized MV-FBSDE. A crucial and challenging step in the analysis is the proof of stability of this Euler approximation to the MV-FBSDE, which is of independent interest. We further demonstrate that, for sufficiently fine time grids, the accuracy of numerical solutions for solving the continuous MV-FBSDE can also be measured by the error estimator. The error estimates justify the use of residual-based algorithms for solving MV-FBSDEs. Numerical experiments for MV-FBSDEs arising from mean field control and games confirm the effectiveness and practical applicability of the error estimator.","PeriodicalId":56295,"journal":{"name":"IMA Journal of Numerical Analysis","volume":"41 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135438201","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Group sparse optimization for inpainting of random fields on the sphere 球上随机场绘制的群稀疏优化
2区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2023-09-15 DOI: 10.1093/imanum/drad071
Chao Li, Xiaojun Chen
Abstract We propose a group sparse optimization model for inpainting of a square-integrable isotropic random field on the unit sphere, where the field is represented by spherical harmonics with random complex coefficients. In the proposed optimization model, the variable is an infinite-dimensional complex vector and the objective function is a real-valued function defined by a hybrid of the $ell _2$ norm and non-Lipschitz $ell _p (0&lt;p&lt;1)$ norm that preserves rotational invariance property and group structure of the random complex coefficients. We show that the infinite-dimensional optimization problem is equivalent to a convexly-constrained finite-dimensional optimization problem. Moreover, we propose a smoothing penalty algorithm to solve the finite-dimensional problem via unconstrained optimization problems. We provide an approximation error bound of the inpainted random field defined by a scaled Karush–Kuhn–Tucker (KKT) point of the constrained optimization problem in the square-integrable space on the sphere with probability measure. Finally, we conduct numerical experiments on band-limited random fields on the sphere and images from Cosmic Microwave Background (CMB) data to show the promising performance of the smoothing penalty algorithm for inpainting of random fields on the sphere.
摘要提出了单位球上可平方积分各向同性随机场的群稀疏优化模型,该随机场用带随机复系数的球谐波表示。在该优化模型中,变量是一个无限维的复向量,目标函数是由$ell _2$范数和非lipschitz $ell _p (0<p<1)$范数的混合定义的实值函数,该函数保留了随机复系数的旋转不变性和群结构。我们证明了无限维优化问题等价于凸约束有限维优化问题。此外,我们提出了一种平滑惩罚算法,通过无约束优化问题来解决有限维问题。利用概率测度给出了球面上平方可积空间中约束优化问题的缩放Karush-Kuhn-Tucker (KKT)点所定义的内涂随机场的近似误差界。最后,对球面上的带限随机场和宇宙微波背景(CMB)数据图像进行了数值实验,验证了平滑惩罚算法在球面随机场图像处理中的良好性能。
{"title":"Group sparse optimization for inpainting of random fields on the sphere","authors":"Chao Li, Xiaojun Chen","doi":"10.1093/imanum/drad071","DOIUrl":"https://doi.org/10.1093/imanum/drad071","url":null,"abstract":"Abstract We propose a group sparse optimization model for inpainting of a square-integrable isotropic random field on the unit sphere, where the field is represented by spherical harmonics with random complex coefficients. In the proposed optimization model, the variable is an infinite-dimensional complex vector and the objective function is a real-valued function defined by a hybrid of the $ell _2$ norm and non-Lipschitz $ell _p (0&amp;lt;p&amp;lt;1)$ norm that preserves rotational invariance property and group structure of the random complex coefficients. We show that the infinite-dimensional optimization problem is equivalent to a convexly-constrained finite-dimensional optimization problem. Moreover, we propose a smoothing penalty algorithm to solve the finite-dimensional problem via unconstrained optimization problems. We provide an approximation error bound of the inpainted random field defined by a scaled Karush–Kuhn–Tucker (KKT) point of the constrained optimization problem in the square-integrable space on the sphere with probability measure. Finally, we conduct numerical experiments on band-limited random fields on the sphere and images from Cosmic Microwave Background (CMB) data to show the promising performance of the smoothing penalty algorithm for inpainting of random fields on the sphere.","PeriodicalId":56295,"journal":{"name":"IMA Journal of Numerical Analysis","volume":"205 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135396059","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Maximum norm error bounds for the full discretization of nonautonomous wave equations 非自治波动方程完全离散化的最大范数误差界
2区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2023-09-09 DOI: 10.1093/imanum/drad065
Benjamin Dörich, Jan Leibold, Bernhard Maier
Abstract In the present paper, we consider a specific class of nonautonomous wave equations on a smooth, bounded domain and their discretization in space by isoparametric finite elements and in time by the implicit Euler method. Building upon the work of Baker and Dougalis (1980, On the ${L}^{infty }$-convergence of Galerkin approximations for second-order hyperbolic equations. Math. Comp., 34, 401–424), we prove optimal error bounds in the $W^{1,infty } times L^infty $-norm for the semidiscretization in space and the full discretization. The key tool is the gain of integrability coming from the inverse of the discretized differential operator. For this, we have to pay with (discrete) time derivatives on the error in the $H^{1} times L^2$-norm, which are reduced to estimates of the differentiated initial errors. To confirm our theoretical findings, we also present numerical experiments.
摘要本文研究光滑有界区域上的一类特殊的非自治波动方程及其在空间上用等参有限元和时间上用隐式欧拉方法的离散化。在Baker和Dougalis(1980)关于二阶双曲方程伽辽金近似的${L}^{infty }$ -收敛性的基础上。数学。(p., 34, 401-424),我们证明了空间半离散化和完全离散化的$W^{1,infty } times L^infty $ -范数的最优误差界。关键的工具是由离散微分算子的逆得到的可积性增益。为此,我们必须对$H^{1} times L^2$ -范数中的误差进行(离散)时间导数,将其简化为微分初始误差的估计。为了证实我们的理论发现,我们也提出了数值实验。
{"title":"Maximum norm error bounds for the full discretization of nonautonomous wave equations","authors":"Benjamin Dörich, Jan Leibold, Bernhard Maier","doi":"10.1093/imanum/drad065","DOIUrl":"https://doi.org/10.1093/imanum/drad065","url":null,"abstract":"Abstract In the present paper, we consider a specific class of nonautonomous wave equations on a smooth, bounded domain and their discretization in space by isoparametric finite elements and in time by the implicit Euler method. Building upon the work of Baker and Dougalis (1980, On the ${L}^{infty }$-convergence of Galerkin approximations for second-order hyperbolic equations. Math. Comp., 34, 401–424), we prove optimal error bounds in the $W^{1,infty } times L^infty $-norm for the semidiscretization in space and the full discretization. The key tool is the gain of integrability coming from the inverse of the discretized differential operator. For this, we have to pay with (discrete) time derivatives on the error in the $H^{1} times L^2$-norm, which are reduced to estimates of the differentiated initial errors. To confirm our theoretical findings, we also present numerical experiments.","PeriodicalId":56295,"journal":{"name":"IMA Journal of Numerical Analysis","volume":"40 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136192193","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Local absorbing boundary conditions on fixed domains give order-one errors for high-frequency waves 固定域上的局部吸收边界条件对高频波产生一阶误差
2区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2023-09-09 DOI: 10.1093/imanum/drad058
Jeffrey Galkowski, David Lafontaine, Euan A. Spence
Abstract We consider approximating the solution of the Helmholtz exterior Dirichlet problem for a nontrapping obstacle, with boundary data coming from plane-wave incidence, by the solution of the corresponding boundary value problem where the exterior domain is truncated and a local absorbing boundary condition coming from a Padé approximation (of arbitrary order) of the Dirichlet-to-Neumann map is imposed on the artificial boundary (recall that the simplest such boundary condition is the impedance boundary condition). We prove upper- and lower-bounds on the relative error incurred by this approximation, both in the whole domain and in a fixed neighbourhood of the obstacle (i.e., away from the artificial boundary). Our bounds are valid for arbitrarily-high frequency, with the artificial boundary fixed, and show that the relative error is bounded away from zero, independent of the frequency, and regardless of the geometry of the artificial boundary.
摘要考虑非捕获障碍物的Helmholtz外狄利克雷问题的近似解,边界数据来自平面波入射。通过求解相应的边值问题,其中外部域被截断,并在人工边界上施加来自dirichlet - - neumann映射的pad近似(任意阶)的局部吸收边界条件(回想一下,最简单的这种边界条件是阻抗边界条件)。我们证明了由这种近似引起的相对误差的上界和下界,在整个区域和障碍物的固定邻域(即远离人工边界)。我们的边界对任意高频率有效,人工边界固定,并且表明相对误差被限制在远离零的范围内,与频率无关,并且与人工边界的几何形状无关。
{"title":"Local absorbing boundary conditions on fixed domains give order-one errors for high-frequency waves","authors":"Jeffrey Galkowski, David Lafontaine, Euan A. Spence","doi":"10.1093/imanum/drad058","DOIUrl":"https://doi.org/10.1093/imanum/drad058","url":null,"abstract":"Abstract We consider approximating the solution of the Helmholtz exterior Dirichlet problem for a nontrapping obstacle, with boundary data coming from plane-wave incidence, by the solution of the corresponding boundary value problem where the exterior domain is truncated and a local absorbing boundary condition coming from a Padé approximation (of arbitrary order) of the Dirichlet-to-Neumann map is imposed on the artificial boundary (recall that the simplest such boundary condition is the impedance boundary condition). We prove upper- and lower-bounds on the relative error incurred by this approximation, both in the whole domain and in a fixed neighbourhood of the obstacle (i.e., away from the artificial boundary). Our bounds are valid for arbitrarily-high frequency, with the artificial boundary fixed, and show that the relative error is bounded away from zero, independent of the frequency, and regardless of the geometry of the artificial boundary.","PeriodicalId":56295,"journal":{"name":"IMA Journal of Numerical Analysis","volume":"54 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136107442","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Error estimates of high-order compact finite difference schemes for the nonlinear abcd Boussinesq systems 非线性abcd Boussinesq系统高阶紧致有限差分格式的误差估计
2区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2023-09-08 DOI: 10.1093/imanum/drad069
Su-Cheol Yi, Kai Fu, Shusen Xie
Abstract In this paper, some fourth-order compact finite difference schemes are derived and analyzed for the nonlinear $abcd$ Boussinesq systems. The optimal order error estimates for the semidiscrete compact finite difference schemes with different cases of dispersion coefficients $a, b, c, d$, are presented. The third-order and fourth-order linearized implicit multistep schemes are adopted for time discretization, and numerical experiments are conducted on the model problems. Numerical results show that the proposed schemes have high accuracy and are consistent with the theoretical analysis.
摘要本文导出并分析了一类非线性Boussinesq系统的四阶紧致有限差分格式。给出了具有不同色散系数$a, $ b, $ c, $ d$的半离散紧致有限差分格式的最优阶误差估计。采用三阶和四阶线性化隐式多步格式进行时间离散,并对模型问题进行了数值实验。数值结果表明,所提出的格式具有较高的精度,与理论分析相吻合。
{"title":"Error estimates of high-order compact finite difference schemes for the nonlinear <i>abcd</i> Boussinesq systems","authors":"Su-Cheol Yi, Kai Fu, Shusen Xie","doi":"10.1093/imanum/drad069","DOIUrl":"https://doi.org/10.1093/imanum/drad069","url":null,"abstract":"Abstract In this paper, some fourth-order compact finite difference schemes are derived and analyzed for the nonlinear $abcd$ Boussinesq systems. The optimal order error estimates for the semidiscrete compact finite difference schemes with different cases of dispersion coefficients $a, b, c, d$, are presented. The third-order and fourth-order linearized implicit multistep schemes are adopted for time discretization, and numerical experiments are conducted on the model problems. Numerical results show that the proposed schemes have high accuracy and are consistent with the theoretical analysis.","PeriodicalId":56295,"journal":{"name":"IMA Journal of Numerical Analysis","volume":"40 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136299906","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
IMA Journal of Numerical Analysis
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1