Recurrent miscarriage (RM) is a frustrating and complex pregnancy disorder and long noncoding RNAs (lncRNAs) modulate susceptibility to RM. This study expounded on the role of specificity protein 1 (SP1) in functions of chorionic trophoblast and decidual cells via regulating lncRNA nuclear paraspeckle assembly transcript 1 (NEAT1). Chorionic villus tissues and decidual tissues of RM patients and normal pregnant women were collected. Real-time quantitative polymerase chain reaction and Western blotting revealed that SP1 and NEAT1 were downregulated in trophoblast and decidual tissues of RM patients, and the Pearson correlation analysis detected that they were positively correlated in expression level. Chorionic trophoblast and decidual cells of RM patients were isolated and intervened by vectors over-expressing SP1 or NEAT1 siRNAs. Thereafter, the cell counting kit-8, Transwell, flow cytometry assays detected that SP1 overexpression accelerated trophoblast cell proliferation, invasion, and migration, meanwhile, enhancing decidual cell proliferation while repressed apoptosis. Next, the dual-luciferase and Chromatin immunoprecipitation assays showed that SP1 bound to the NEAT1 promoter region and further activated NEAT1 transcription. Silencing NEAT1 reversed the efforts of SP1 overexpression on the functions of trophoblast and decidual cells. Overall, SP1 activated NEAT1 transcription, accelerating trophoblast cell proliferation, invasion, and migration and mitigating decidual cell apoptosis.
{"title":"Effects of the SPI/lncRNA NEAT1 Axis on Functions of Trophoblast and Decidual Cells in Patients with Recurrent Miscarriage.","authors":"Fei Tian, Yuan Zhang, Jie Li, Zhaoping Chu, Junqin Zhang, Hua Han, Ligang Jia","doi":"10.1615/CritRevEukaryotGeneExpr.2022045376","DOIUrl":"https://doi.org/10.1615/CritRevEukaryotGeneExpr.2022045376","url":null,"abstract":"<p><p>Recurrent miscarriage (RM) is a frustrating and complex pregnancy disorder and long noncoding RNAs (lncRNAs) modulate susceptibility to RM. This study expounded on the role of specificity protein 1 (SP1) in functions of chorionic trophoblast and decidual cells via regulating lncRNA nuclear paraspeckle assembly transcript 1 (NEAT1). Chorionic villus tissues and decidual tissues of RM patients and normal pregnant women were collected. Real-time quantitative polymerase chain reaction and Western blotting revealed that SP1 and NEAT1 were downregulated in trophoblast and decidual tissues of RM patients, and the Pearson correlation analysis detected that they were positively correlated in expression level. Chorionic trophoblast and decidual cells of RM patients were isolated and intervened by vectors over-expressing SP1 or NEAT1 siRNAs. Thereafter, the cell counting kit-8, Transwell, flow cytometry assays detected that SP1 overexpression accelerated trophoblast cell proliferation, invasion, and migration, meanwhile, enhancing decidual cell proliferation while repressed apoptosis. Next, the dual-luciferase and Chromatin immunoprecipitation assays showed that SP1 bound to the NEAT1 promoter region and further activated NEAT1 transcription. Silencing NEAT1 reversed the efforts of SP1 overexpression on the functions of trophoblast and decidual cells. Overall, SP1 activated NEAT1 transcription, accelerating trophoblast cell proliferation, invasion, and migration and mitigating decidual cell apoptosis.</p>","PeriodicalId":56317,"journal":{"name":"Critical Reviews in Eukaryotic Gene Expression","volume":"33 3","pages":"47-60"},"PeriodicalIF":1.6,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9282963","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.1615/CritRevEukaryotGeneExpr.2022045308
Lijuan Huang, Yan Han, Qingmin Zhou, Zhihao Sun, Jianhui Yan
Pancreatic ductal adenocarcinoma (PDAC) remains one of the most difficult to treat of all malignancies. Multimodality regimens provide only short-term symptomatic improvement with minor impact on survival, underscoring the urgent need for novel therapeutics and treatment strategies for PDAC. We screened out the highly expressed gene LAMC2 in PDAC tissues through the GEO online database, and further demonstrated that it is related to the poor prognosis of PDAC patients. Next, we investigated the effect of LAMC2 in the development and metastasis of PDAC by silencing LAMC2 expression in PDAC cells. The results showed that silencing of LAMC2 inhibited the proliferation, invasion and metastasis, and promoted apoptosis of PDAC cells, silencing of LAMC2 also reversed the epithelial mesenchymal transition (EMT) and suppressed the activation of NF-κB signaling pathway. Our results identify LAMC2 as a pivotal regulator of PDAC malignant progression, and its overexpression is sufficient to confer the characteristically aggressive clinical features of this disease.
{"title":"Silencing of LAMC2 Reverses Epithelial Mesenchymal Transition and Inhibits Progression in Pancreatic Ductal Adenocarcinoma via Inactivation of the NF-κB Signaling Pathway.","authors":"Lijuan Huang, Yan Han, Qingmin Zhou, Zhihao Sun, Jianhui Yan","doi":"10.1615/CritRevEukaryotGeneExpr.2022045308","DOIUrl":"10.1615/CritRevEukaryotGeneExpr.2022045308","url":null,"abstract":"<p><p>Pancreatic ductal adenocarcinoma (PDAC) remains one of the most difficult to treat of all malignancies. Multimodality regimens provide only short-term symptomatic improvement with minor impact on survival, underscoring the urgent need for novel therapeutics and treatment strategies for PDAC. We screened out the highly expressed gene LAMC2 in PDAC tissues through the GEO online database, and further demonstrated that it is related to the poor prognosis of PDAC patients. Next, we investigated the effect of LAMC2 in the development and metastasis of PDAC by silencing LAMC2 expression in PDAC cells. The results showed that silencing of LAMC2 inhibited the proliferation, invasion and metastasis, and promoted apoptosis of PDAC cells, silencing of LAMC2 also reversed the epithelial mesenchymal transition (EMT) and suppressed the activation of NF-κB signaling pathway. Our results identify LAMC2 as a pivotal regulator of PDAC malignant progression, and its overexpression is sufficient to confer the characteristically aggressive clinical features of this disease.</p>","PeriodicalId":56317,"journal":{"name":"Critical Reviews in Eukaryotic Gene Expression","volume":"33 4","pages":"13-23"},"PeriodicalIF":1.6,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9495305","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Diabetic nephropathy (DN) accompanied by cardiac fibrosis (CF) increases the mortality rate among people with diabetes. This study sought to explore the molecular mechanism of long non-coding RNA X inactive specific transcript (lncRNA XIST) in CF in DN mice. The animal model of DN was established by streptozocin (STZ). The levels of lncRNA XIST, microRNA (miR)-106a-5p, and RUNX family transcription factor 1 (RUNX1) were determined by quantitative real-time polymerase chain reaction (qRT-PCR), followed by biochemical analysis, hematoxylin & eosin and Masson staining, echocardiography, and quantification of collagen I, collagen III, α-smooth muscle actin (α-SMA), and transforming growth factor-β1 (TGF-β1) levels through qRT-PCR and Western blot assay. The subcellular localization of lncRNA XIST was analyzed by nuclear/cytoplasmic fractionation assay and the bindings of miR-106a-5p to lncRNA XIST and RUNX1 were confirmed by RNA immunoprecipitation and dual-luciferase assays. Functional rescue experiments were performed to validate the role of miR-106a-5p/RUNX1 in CF in DN mice. lncRNA XIST and RUNX1 were elevated while miR-106a-5p was decreased in STZ mice. lncRNA XIST inhibition reduced myocardial injury and collagen deposition, along with decreased levels of fasting blood glucose, serum creatinine, blood urea nitrogen, and urinary microalbumin, collagen I, collagen III, α-SMA, and TGF-β1. lncRNA XIST competitively bound to miR-106a-5p to promote RUNX1 transcription. miR-106a-5p downregulation or RUXN1 upregulation reversed the protective role of lncRNA XIST inhibition in STZ mice. lncRNA XIST competitively bound to miR-106a-5p to promote RUNX1 transcription, thereby aggravating renal dysfunction and CF in DN mice.
{"title":"IncRNA XIST Promotes Cardiac Fibrosis in Mice with Diabetic Nephropathy via Sponging miR-106a-5p to Target RUNX1.","authors":"Jia Xu, Jinshun Li, Xiaohui Xu, Peidan Chen, Qin Wang, Aiping Li, Yeping Ren","doi":"10.1615/CritRevEukaryotGeneExpr.2022044404","DOIUrl":"https://doi.org/10.1615/CritRevEukaryotGeneExpr.2022044404","url":null,"abstract":"<p><p>Diabetic nephropathy (DN) accompanied by cardiac fibrosis (CF) increases the mortality rate among people with diabetes. This study sought to explore the molecular mechanism of long non-coding RNA X inactive specific transcript (lncRNA XIST) in CF in DN mice. The animal model of DN was established by streptozocin (STZ). The levels of lncRNA XIST, microRNA (miR)-106a-5p, and RUNX family transcription factor 1 (RUNX1) were determined by quantitative real-time polymerase chain reaction (qRT-PCR), followed by biochemical analysis, hematoxylin & eosin and Masson staining, echocardiography, and quantification of collagen I, collagen III, α-smooth muscle actin (α-SMA), and transforming growth factor-β1 (TGF-β1) levels through qRT-PCR and Western blot assay. The subcellular localization of lncRNA XIST was analyzed by nuclear/cytoplasmic fractionation assay and the bindings of miR-106a-5p to lncRNA XIST and RUNX1 were confirmed by RNA immunoprecipitation and dual-luciferase assays. Functional rescue experiments were performed to validate the role of miR-106a-5p/RUNX1 in CF in DN mice. lncRNA XIST and RUNX1 were elevated while miR-106a-5p was decreased in STZ mice. lncRNA XIST inhibition reduced myocardial injury and collagen deposition, along with decreased levels of fasting blood glucose, serum creatinine, blood urea nitrogen, and urinary microalbumin, collagen I, collagen III, α-SMA, and TGF-β1. lncRNA XIST competitively bound to miR-106a-5p to promote RUNX1 transcription. miR-106a-5p downregulation or RUXN1 upregulation reversed the protective role of lncRNA XIST inhibition in STZ mice. lncRNA XIST competitively bound to miR-106a-5p to promote RUNX1 transcription, thereby aggravating renal dysfunction and CF in DN mice.</p>","PeriodicalId":56317,"journal":{"name":"Critical Reviews in Eukaryotic Gene Expression","volume":"33 2","pages":"55-66"},"PeriodicalIF":1.6,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9634276","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Osteosarcoma (OS) is the most representative primary bone tumour in children and teenagers. This study explored the regulatory effects of long noncoding RNA MIR503HG (MIR503HG) on the biological functions of OS cells, and further investigated the potential mechanism of MIR503HG function exertion by analyzing the microRNA-103a-3p (miR-103a-3p) in OS cells and tissues. The expression of MIR503HG was examined using reverse transcription-quantitative PCR. OS cell proliferation was assessed by CCK-8 assay. Transwell assay was used to evaluate the migration and invasion of OS cells. The interaction between MIR503HG and miR-103a-3p was detected using the Dual-luciferase reporter assay. Forty-six paired OS tissues were collected, and the expression and correlation of MIR503HG and miR-103a-3p were evaluated. The expression of MIR503HG were significantly decreased in both OS cells and tissues. Over-expression of MIR503HG inhibited OS cell proliferation, migration and invasion. miR-103a-3p was directly targeted by MIR503HG in OS cells, and mediated the inhibitory effects of MIR503HG on OS cell malignant behaviors. miR-103a-3p expression was upregulated in OS tissues, which was negatively correlated with MIR503HG expression levels. The expression of MIR503HG was associated with OS patients' tumor size, differentiation, distant metastasis and clinical stage. Decreased MIR503HG in OS tissues and cell lines served as a tumor suppressor by inhibiting OS cell malignant behaviors through sponging miR-103a-3p. The findings of this study may provide evidence for the development of novel therapeutic targets of OS.
{"title":"MIR503HG Overexpression Inhibits the Malignant Behaviors of Osteosarcoma Cells by Sponging miR-103a-3p.","authors":"Enhui Li, Shoubin Zhong, Guikai Ma, Qian Wang, Yanfang Gao","doi":"10.1615/CritRevEukaryotGeneExpr.2022042373","DOIUrl":"https://doi.org/10.1615/CritRevEukaryotGeneExpr.2022042373","url":null,"abstract":"<p><p>Osteosarcoma (OS) is the most representative primary bone tumour in children and teenagers. This study explored the regulatory effects of long noncoding RNA MIR503HG (MIR503HG) on the biological functions of OS cells, and further investigated the potential mechanism of MIR503HG function exertion by analyzing the microRNA-103a-3p (miR-103a-3p) in OS cells and tissues. The expression of MIR503HG was examined using reverse transcription-quantitative PCR. OS cell proliferation was assessed by CCK-8 assay. Transwell assay was used to evaluate the migration and invasion of OS cells. The interaction between MIR503HG and miR-103a-3p was detected using the Dual-luciferase reporter assay. Forty-six paired OS tissues were collected, and the expression and correlation of MIR503HG and miR-103a-3p were evaluated. The expression of MIR503HG were significantly decreased in both OS cells and tissues. Over-expression of MIR503HG inhibited OS cell proliferation, migration and invasion. miR-103a-3p was directly targeted by MIR503HG in OS cells, and mediated the inhibitory effects of MIR503HG on OS cell malignant behaviors. miR-103a-3p expression was upregulated in OS tissues, which was negatively correlated with MIR503HG expression levels. The expression of MIR503HG was associated with OS patients' tumor size, differentiation, distant metastasis and clinical stage. Decreased MIR503HG in OS tissues and cell lines served as a tumor suppressor by inhibiting OS cell malignant behaviors through sponging miR-103a-3p. The findings of this study may provide evidence for the development of novel therapeutic targets of OS.</p>","PeriodicalId":56317,"journal":{"name":"Critical Reviews in Eukaryotic Gene Expression","volume":"33 3","pages":"1-11"},"PeriodicalIF":1.6,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9275431","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.1615/CritRevEukaryotGeneExpr.2023044081
Quan Zhou, Dou-Dou Ding, Man Lu, Man-Zhen Zuo
Runt-related transcription factor 3 (RUNX3) plays a pivotal role in tumor microenvironment and immune infiltration. However, the prognostic and immunological roles of RUNX3 in pancancer remain unclear. In the current study, we explored the expression profiles, prognostic landscape, and immune infiltration of RUNX3 in pancancer through a variety of online platforms, including HPA, ONCOMINE, UALCAN, GEPIA, PrognoScan, TCGA, TIMER, R2, and Reactome databases. In general, RUNX3 was widely expressed in tonsil, gallbladder, skin, spleen, lymph node, and bone marrow, and RUNX3 was frequently higher expression in tumor tissues compared to normal tissues. In prognostic analysis, the RUNX3 expression level was significantly correlated with the clinical outcomes of bladder cancer, blood cancer, brain cancer, breast cancer, colorectal cancer, lung cancer, and ovarian cancer. In mutation analysis, a total 72 mutation sites were located within amino acids 1 to 415 of RUNX3, including 65 missense sites and seven truncating sites, whereas the mutation frequency of skin cutaneous melanoma and uterine corpus endometrial carcinoma (UCEC) is relatively high (> 3%). In immune infiltration analysis, the RUNX3 expression level was significantly related to recognized markers and the immune infiltration levels of various types of immune cells in colon adenocarcinoma (COAD) and brain lower grade glioma (LGG). After that, 453 RUNX3 co-expressed genes were recognized in COAD, lymphoid neoplasm diffuse large B-cell lymphoma, LGG, and ovarian serous cystadenocarcinoma (OV). Pathway enrichment analysis revealed that RUNX3 co-expressed genes were remarkably enriched in immune system and tumor progression pathways. RUNX3 expression is associated with clinical prognosis, immune infiltration, and identified RUNX3 related pathways in a variety of tumors, which may serve as targets of promising prognostic markers and novel therapeutic targets for various human cancers.
{"title":"Multi-Omics Analysis of the Prognostic and Immunological Role of Runt-Related Transcription Factor 3 in Pan-Cancer.","authors":"Quan Zhou, Dou-Dou Ding, Man Lu, Man-Zhen Zuo","doi":"10.1615/CritRevEukaryotGeneExpr.2023044081","DOIUrl":"10.1615/CritRevEukaryotGeneExpr.2023044081","url":null,"abstract":"<p><p>Runt-related transcription factor 3 (RUNX3) plays a pivotal role in tumor microenvironment and immune infiltration. However, the prognostic and immunological roles of RUNX3 in pancancer remain unclear. In the current study, we explored the expression profiles, prognostic landscape, and immune infiltration of RUNX3 in pancancer through a variety of online platforms, including HPA, ONCOMINE, UALCAN, GEPIA, PrognoScan, TCGA, TIMER, R2, and Reactome databases. In general, RUNX3 was widely expressed in tonsil, gallbladder, skin, spleen, lymph node, and bone marrow, and RUNX3 was frequently higher expression in tumor tissues compared to normal tissues. In prognostic analysis, the RUNX3 expression level was significantly correlated with the clinical outcomes of bladder cancer, blood cancer, brain cancer, breast cancer, colorectal cancer, lung cancer, and ovarian cancer. In mutation analysis, a total 72 mutation sites were located within amino acids 1 to 415 of RUNX3, including 65 missense sites and seven truncating sites, whereas the mutation frequency of skin cutaneous melanoma and uterine corpus endometrial carcinoma (UCEC) is relatively high (> 3%). In immune infiltration analysis, the RUNX3 expression level was significantly related to recognized markers and the immune infiltration levels of various types of immune cells in colon adenocarcinoma (COAD) and brain lower grade glioma (LGG). After that, 453 RUNX3 co-expressed genes were recognized in COAD, lymphoid neoplasm diffuse large B-cell lymphoma, LGG, and ovarian serous cystadenocarcinoma (OV). Pathway enrichment analysis revealed that RUNX3 co-expressed genes were remarkably enriched in immune system and tumor progression pathways. RUNX3 expression is associated with clinical prognosis, immune infiltration, and identified RUNX3 related pathways in a variety of tumors, which may serve as targets of promising prognostic markers and novel therapeutic targets for various human cancers.</p>","PeriodicalId":56317,"journal":{"name":"Critical Reviews in Eukaryotic Gene Expression","volume":"33 4","pages":"63-83"},"PeriodicalIF":1.6,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9501739","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.1615/critreveukaryotgeneexpr.2023050843
George Eliceiri
Individual cells are known to behave differently than their whole populations of cells. The present work focused on proteins that control cancer invasiveness. Individual Dicer siRNA knockdown of HER4, CDC42, and E-cadherin decreased MMP1 mRNA levels in SCP2, a cancer single-cell progeny that is highly metastatic to bone and adrenal gland. Individual knockdown of β-catenin, CDC42, HER3, and the γ catalytic subunit of PI3K raised MMP1 mRNA levels in SCP21, a single-cell progeny of the same tumor and patient, with low metastasis to bone and adrenal.
{"title":"Novel pathways between invasiveness modulators in breast cancer single cells","authors":"George Eliceiri","doi":"10.1615/critreveukaryotgeneexpr.2023050843","DOIUrl":"https://doi.org/10.1615/critreveukaryotgeneexpr.2023050843","url":null,"abstract":"Individual cells are known to behave differently than their whole populations of cells. The present work focused on proteins that control cancer invasiveness. Individual Dicer siRNA knockdown of HER4, CDC42, and E-cadherin decreased MMP1 mRNA levels in SCP2, a cancer single-cell progeny that is highly metastatic to bone and adrenal gland. Individual knockdown of β-catenin, CDC42, HER3, and the γ catalytic subunit of PI3K raised MMP1 mRNA levels in SCP21, a single-cell progeny of the same tumor and patient, with low metastasis to bone and adrenal.","PeriodicalId":56317,"journal":{"name":"Critical Reviews in Eukaryotic Gene Expression","volume":"6 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135506663","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.1615/CritRevEukaryotGeneExpr.2022044929
Meng-Jun Liu, Bin Du, Jin-Song Yu, Ji Zhao, Hao Chen, Xing-Sheng Xiang, Yu-Zhu Wang, Wei Chen
This study aimed to identify the possible function and the molecular mechanism of hsa_circ_0007334 in human bone marrow mesenchymal stem cells (hBMSCs) osteogenic differentiation. The level of hsa_circ_0007334 was detected by means of quantitative real-time polymerase chain reaction (RT-qPCR). Alkaline phosphatase (ALP), RUNX2, osterix (OSX), and osteocalcin (OCN) were monitored to analyze the degree of osteogenic differentiation under routine culture or under the control of hsa_circ_0007334. The proliferation of hBMSCs was tested with a cell counting kit-8 (CCK-8) assay. The migration of hBMSCs was tested using the Transwell assay. Bioinformatics analysis was used to predict the possible targets of hsa_circ_0007334 or miR-144-3p. Dual-luciferase reporter assay system was used to analyze the combination between hsa_circ_0007334 and miR-144-3p. Hsa_circ_0007334 was upregulated in osteogenic differentiation of hBMSCs. Osteogenic differentiation increased by hsa_circ_0007334 in vitro was confirmed with levels of ALP and bone markers (RUNX2, OCN, OSX). hsa_circ_0007334 overexpression promoted osteogenic differentiation, proliferation, and migration of hBMSCs, and knockdown of hsa_circ_0007334 has the opposite effects. miR-144-3p was identified as the target of hsa_circ_0007334. The targeting genes of miR-144-3p are involved in osteogenic-differentia-tion-related biological processes (such as bone development, epithelial cell proliferation, and mesenchymal cell apoptotic prosess) and pathways (including FoxO and VEGF signaling pathway). Hsa_circ_0007334, therefore, presents itself as a promising biological for osteogenic differentiation.
{"title":"Hsa_circ_0007334 Promotes the Osteogenic Differentiation and Proliferation of Human Bone Marrow Mesenchymal Stem Cells by Sponging miR-144-3p.","authors":"Meng-Jun Liu, Bin Du, Jin-Song Yu, Ji Zhao, Hao Chen, Xing-Sheng Xiang, Yu-Zhu Wang, Wei Chen","doi":"10.1615/CritRevEukaryotGeneExpr.2022044929","DOIUrl":"https://doi.org/10.1615/CritRevEukaryotGeneExpr.2022044929","url":null,"abstract":"<p><p>This study aimed to identify the possible function and the molecular mechanism of hsa_circ_0007334 in human bone marrow mesenchymal stem cells (hBMSCs) osteogenic differentiation. The level of hsa_circ_0007334 was detected by means of quantitative real-time polymerase chain reaction (RT-qPCR). Alkaline phosphatase (ALP), RUNX2, osterix (OSX), and osteocalcin (OCN) were monitored to analyze the degree of osteogenic differentiation under routine culture or under the control of hsa_circ_0007334. The proliferation of hBMSCs was tested with a cell counting kit-8 (CCK-8) assay. The migration of hBMSCs was tested using the Transwell assay. Bioinformatics analysis was used to predict the possible targets of hsa_circ_0007334 or miR-144-3p. Dual-luciferase reporter assay system was used to analyze the combination between hsa_circ_0007334 and miR-144-3p. Hsa_circ_0007334 was upregulated in osteogenic differentiation of hBMSCs. Osteogenic differentiation increased by hsa_circ_0007334 in vitro was confirmed with levels of ALP and bone markers (RUNX2, OCN, OSX). hsa_circ_0007334 overexpression promoted osteogenic differentiation, proliferation, and migration of hBMSCs, and knockdown of hsa_circ_0007334 has the opposite effects. miR-144-3p was identified as the target of hsa_circ_0007334. The targeting genes of miR-144-3p are involved in osteogenic-differentia-tion-related biological processes (such as bone development, epithelial cell proliferation, and mesenchymal cell apoptotic prosess) and pathways (including FoxO and VEGF signaling pathway). Hsa_circ_0007334, therefore, presents itself as a promising biological for osteogenic differentiation.</p>","PeriodicalId":56317,"journal":{"name":"Critical Reviews in Eukaryotic Gene Expression","volume":"33 3","pages":"61-70"},"PeriodicalIF":1.6,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9275430","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.1615/CritRevEukaryotGeneExpr.2022044777
Tao Zhou, Yuanyuan Zhang, Shilin Zheng, Fuhua Wang, Shengpan Jiang, Wenfeng Lei, Lili Xu, Yiqing Tan
Evidence displays that circular RNAs (circRNAs) are considerable mediators of numerous processes in cancer development. Given that many circRNAs are not functionally characterized, our aim was to explore the function and mechanisms of circ_0051428 in thyroid cancer (TC). The analysis of circ_0051428, miR-1248 and FN1 mRNA expression was conducted using real-time quantitative polymerase chain reaction. Cell growth was observed using CCK-8 and colony formation assays. Cell migration was investigated using wound healing assay. Cell apoptosis was identified by the expression of apoptosis-related proteins (Bax and Bcl-2) using Western blotting. Animal models were established to testify the role of circ_0051428 in vivo. The assumed binding between miR-1248 and circ_0051428 or FN1 was identified using dual-luciferase reporter or RIP assay. circ_0051428 exhibits an abnormally elevated expression in TC. circ_0051428 deficiency caused inhibition of TC cell proliferation, migration, clonogenic capacity, and inhibition of tumor growth in vivo. circ_0051428 directly targeted miR-1248, and FN1 was a target downstream of circ_0051428/miR-1248 axis. circ_0051428 could sponge miR-1248 to upregulate FN1. Furthermore, miR-1248 downregulation recovered circ_0051428 deficiency-suppressed cancer cell proliferation, survival and migration. Besides, the repressive effects of FN1 knockdown on cancer cell growth, survival and migration were also partly abolished by miR-1248 downregulation. circ_0051428 targeted miR-1248 to modulate FN1 expression, thereby facilitating the malignant progression of TC, which contributed to the understanding of the molecular mechanism of TC development.
{"title":"hsa_circ_0051428 Facilitates the Progression of Thyroid Cancer by Sponging miR-1248 to Up-Regulate FN1.","authors":"Tao Zhou, Yuanyuan Zhang, Shilin Zheng, Fuhua Wang, Shengpan Jiang, Wenfeng Lei, Lili Xu, Yiqing Tan","doi":"10.1615/CritRevEukaryotGeneExpr.2022044777","DOIUrl":"https://doi.org/10.1615/CritRevEukaryotGeneExpr.2022044777","url":null,"abstract":"<p><p>Evidence displays that circular RNAs (circRNAs) are considerable mediators of numerous processes in cancer development. Given that many circRNAs are not functionally characterized, our aim was to explore the function and mechanisms of circ_0051428 in thyroid cancer (TC). The analysis of circ_0051428, miR-1248 and FN1 mRNA expression was conducted using real-time quantitative polymerase chain reaction. Cell growth was observed using CCK-8 and colony formation assays. Cell migration was investigated using wound healing assay. Cell apoptosis was identified by the expression of apoptosis-related proteins (Bax and Bcl-2) using Western blotting. Animal models were established to testify the role of circ_0051428 in vivo. The assumed binding between miR-1248 and circ_0051428 or FN1 was identified using dual-luciferase reporter or RIP assay. circ_0051428 exhibits an abnormally elevated expression in TC. circ_0051428 deficiency caused inhibition of TC cell proliferation, migration, clonogenic capacity, and inhibition of tumor growth in vivo. circ_0051428 directly targeted miR-1248, and FN1 was a target downstream of circ_0051428/miR-1248 axis. circ_0051428 could sponge miR-1248 to upregulate FN1. Furthermore, miR-1248 downregulation recovered circ_0051428 deficiency-suppressed cancer cell proliferation, survival and migration. Besides, the repressive effects of FN1 knockdown on cancer cell growth, survival and migration were also partly abolished by miR-1248 downregulation. circ_0051428 targeted miR-1248 to modulate FN1 expression, thereby facilitating the malignant progression of TC, which contributed to the understanding of the molecular mechanism of TC development.</p>","PeriodicalId":56317,"journal":{"name":"Critical Reviews in Eukaryotic Gene Expression","volume":"33 4","pages":"25-38"},"PeriodicalIF":1.6,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9495303","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.1615/critreveukaryotgeneexpr.2023050271
Jianye Yang, Liang Xu, Xiaoliang Han
Objective: Kinesin family proteins (KIFs) play crucial roles in human tumorigenesis and progression. This study aimed to investigate the expression and association of Kinesin family member 20B (KIF20B) with lung adenocarcinoma (LUAD). Methods: RNA-seq data from LUAD patients (n=535) were extracted from TCGA. KIF20B expression was compared between tumor tissues and controls, and between different stages of the disease. Survival and Cox regression analyses were performed, as well as in vitro cellular experiments on A549 cells. Results: KIF20B is upregulated in LUAD tumor tissues compared with controls and is higher in advanced stages. Patients with high expression of KIF20B have shorter survival times. KIF20B is an independent risk factor for the prognosis of LUAD. High KIF20B expression samples were enriched in signaling pathways related to tumor progression. si-KIF20B transfection reduced migration and invasion of A549 cells and increased apoptosis. The expression of p53 and Bax proteins were upregulated by si-KIF20B, while Bcl-2 was down-regulated. Discussion: This study reveals that high KIF20B expression is an independent risk factor for the poor prognosis of LUAD. The inhibition of KIF20B might be of great value for suppressing LUAD progression.
目的:运动蛋白家族蛋白(Kinesin family protein, KIFs)在人类肿瘤的发生发展中起着至关重要的作用。本研究旨在探讨运动蛋白家族成员20B (KIF20B)在肺腺癌(LUAD)中的表达及其相关性。方法:从TCGA中提取LUAD患者(n=535)的RNA-seq数据。比较KIF20B在肿瘤组织和对照组之间以及不同疾病阶段之间的表达。对A549细胞进行生存分析和Cox回归分析,并进行体外细胞实验。结果:与对照组相比,KIF20B在LUAD肿瘤组织中表达上调,且在晚期更高。KIF20B高表达的患者生存时间较短。KIF20B是影响LUAD预后的独立危险因素。KIF20B高表达的样本在与肿瘤进展相关的信号通路中富集。转染si-KIF20B可减少A549细胞的迁移和侵袭,增加凋亡。si-KIF20B上调p53和Bax蛋白的表达,下调Bcl-2的表达。讨论:本研究提示KIF20B高表达是LUAD预后不良的独立危险因素。抑制KIF20B可能对抑制LUAD的进展具有重要价值。
{"title":"KIF20B correlates with LUAD progression and is an independent risk factor","authors":"Jianye Yang, Liang Xu, Xiaoliang Han","doi":"10.1615/critreveukaryotgeneexpr.2023050271","DOIUrl":"https://doi.org/10.1615/critreveukaryotgeneexpr.2023050271","url":null,"abstract":"Objective: Kinesin family proteins (KIFs) play crucial roles in human tumorigenesis and progression. This study aimed to investigate the expression and association of Kinesin family member 20B (KIF20B) with lung adenocarcinoma (LUAD). Methods: RNA-seq data from LUAD patients (n=535) were extracted from TCGA. KIF20B expression was compared between tumor tissues and controls, and between different stages of the disease. Survival and Cox regression analyses were performed, as well as in vitro cellular experiments on A549 cells. Results: KIF20B is upregulated in LUAD tumor tissues compared with controls and is higher in advanced stages. Patients with high expression of KIF20B have shorter survival times. KIF20B is an independent risk factor for the prognosis of LUAD. High KIF20B expression samples were enriched in signaling pathways related to tumor progression. si-KIF20B transfection reduced migration and invasion of A549 cells and increased apoptosis. The expression of p53 and Bax proteins were upregulated by si-KIF20B, while Bcl-2 was down-regulated. Discussion: This study reveals that high KIF20B expression is an independent risk factor for the poor prognosis of LUAD. The inhibition of KIF20B might be of great value for suppressing LUAD progression.","PeriodicalId":56317,"journal":{"name":"Critical Reviews in Eukaryotic Gene Expression","volume":"56 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135267583","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.1615/CritRevEukaryotGeneExpr.2023048608
Yang Xie, Jun Li, Qing Tao, Chunyan Zeng, Youxiang Chen
The purpose of this study is to identify the key regulatory genes related to the inflammatory response of esophageal adenocarcinoma (EAC) and to find new diagnosis and therapeutic options. We downloaded the dataset GSE72874 from the Gene Expression Omnibus database for this study. Weighted gene co-expression network analysis (WGCNA) and differentially expressed genes (DEGs) analysis were used to find common inflammatory response-related genes (IRRGs) in EAC. The relationship between normal and tumor immune infiltration was analyzed using an online database of CIBERSORTx. Finally, 920 DEGs were identified, of which 5 genes were key IRRGs associated with EAC, including three down-regulated genes GNA15, MXD1, and NOD2, and two down-regulated genes PLAUR and TIMP1. Further research found that GNA15, MXD1, and NOD2 were down-regulated, PLAUR and TIMP1 were up-regulated in Barrett's esophagus (BE). In addition, we found that the expression of GNA15 and MXD1 in normal esophageal squamous epithelial cells decreased after ethanol treatment, while the expression of PLAUR and TIMP1 increased after ethanol treatment. Compared with normal esophageal tissue, immune cells infiltrated such as plasma cells, macrophages M0, macrophages M1, macrophages M2, dendritic cells activated, and mast cells activated were significantly increased in EAC, while immune cells infiltrated such as T cells CD4 memory resting, T cells follicular helper, NK cells resting, and dendritic cells resting were significantly reduced. The receiver operating characteristic curve indicated that GNA15, MXD1, NOD2, PLAUR and TIMP1 expression had a performed well in diagnosing EAC from healthy control. GNA15, MXD1, NOD2, PLAUR and TIMP1 were identified and validated as novel potential biomarkers for early diagnosis and may be new molecular targets for treatment of EAC.
{"title":"Identification of a Diagnosis and Therapeutic Inflammatory Response-Related Gene Signature Associated with Esophageal Adenocarcinoma.","authors":"Yang Xie, Jun Li, Qing Tao, Chunyan Zeng, Youxiang Chen","doi":"10.1615/CritRevEukaryotGeneExpr.2023048608","DOIUrl":"https://doi.org/10.1615/CritRevEukaryotGeneExpr.2023048608","url":null,"abstract":"<p><p>The purpose of this study is to identify the key regulatory genes related to the inflammatory response of esophageal adenocarcinoma (EAC) and to find new diagnosis and therapeutic options. We downloaded the dataset GSE72874 from the Gene Expression Omnibus database for this study. Weighted gene co-expression network analysis (WGCNA) and differentially expressed genes (DEGs) analysis were used to find common inflammatory response-related genes (IRRGs) in EAC. The relationship between normal and tumor immune infiltration was analyzed using an online database of CIBERSORTx. Finally, 920 DEGs were identified, of which 5 genes were key IRRGs associated with EAC, including three down-regulated genes GNA15, MXD1, and NOD2, and two down-regulated genes PLAUR and TIMP1. Further research found that GNA15, MXD1, and NOD2 were down-regulated, PLAUR and TIMP1 were up-regulated in Barrett's esophagus (BE). In addition, we found that the expression of GNA15 and MXD1 in normal esophageal squamous epithelial cells decreased after ethanol treatment, while the expression of PLAUR and TIMP1 increased after ethanol treatment. Compared with normal esophageal tissue, immune cells infiltrated such as plasma cells, macrophages M0, macrophages M1, macrophages M2, dendritic cells activated, and mast cells activated were significantly increased in EAC, while immune cells infiltrated such as T cells CD4 memory resting, T cells follicular helper, NK cells resting, and dendritic cells resting were significantly reduced. The receiver operating characteristic curve indicated that GNA15, MXD1, NOD2, PLAUR and TIMP1 expression had a performed well in diagnosing EAC from healthy control. GNA15, MXD1, NOD2, PLAUR and TIMP1 were identified and validated as novel potential biomarkers for early diagnosis and may be new molecular targets for treatment of EAC.</p>","PeriodicalId":56317,"journal":{"name":"Critical Reviews in Eukaryotic Gene Expression","volume":"33 7","pages":"65-80"},"PeriodicalIF":1.6,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10425358","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}