首页 > 最新文献

Journal of Agricultural Biological and Environmental Statistics最新文献

英文 中文
Bayesian Nonparametric Generative Modeling of Large Multivariate Non-Gaussian Spatial Fields 大型多元非高斯空间场的贝叶斯非参数生成建模
4区 数学 Q1 Mathematics Pub Date : 2023-11-09 DOI: 10.1007/s13253-023-00580-z
Paul F. V. Wiemann, Matthias Katzfuss
{"title":"Bayesian Nonparametric Generative Modeling of Large Multivariate Non-Gaussian Spatial Fields","authors":"Paul F. V. Wiemann, Matthias Katzfuss","doi":"10.1007/s13253-023-00580-z","DOIUrl":"https://doi.org/10.1007/s13253-023-00580-z","url":null,"abstract":"","PeriodicalId":56336,"journal":{"name":"Journal of Agricultural Biological and Environmental Statistics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135241901","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Geographically Weighted Regression-Based Model Calibration Estimation of Finite Population Total Under Geo-referenced Complex Surveys 地理参考复杂调查下有限人口总数基于地理加权回归的模型校正估计
4区 数学 Q1 Mathematics Pub Date : 2023-11-06 DOI: 10.1007/s13253-023-00576-9
Bappa Saha, Ankur Biswas, Tauqueer Ahmad, Nobin Chandra Paul
{"title":"Geographically Weighted Regression-Based Model Calibration Estimation of Finite Population Total Under Geo-referenced Complex Surveys","authors":"Bappa Saha, Ankur Biswas, Tauqueer Ahmad, Nobin Chandra Paul","doi":"10.1007/s13253-023-00576-9","DOIUrl":"https://doi.org/10.1007/s13253-023-00576-9","url":null,"abstract":"","PeriodicalId":56336,"journal":{"name":"Journal of Agricultural Biological and Environmental Statistics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135679106","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comparing Methods for Determining Power Priors Based on Different Congruence Measures 基于不同同余度量确定权力先验的方法比较
4区 数学 Q1 Mathematics Pub Date : 2023-11-02 DOI: 10.1007/s13253-023-00579-6
Jing Zhang, Ainsley Helling, A. John Bailer
{"title":"Comparing Methods for Determining Power Priors Based on Different Congruence Measures","authors":"Jing Zhang, Ainsley Helling, A. John Bailer","doi":"10.1007/s13253-023-00579-6","DOIUrl":"https://doi.org/10.1007/s13253-023-00579-6","url":null,"abstract":"","PeriodicalId":56336,"journal":{"name":"Journal of Agricultural Biological and Environmental Statistics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135973180","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Environmental Effects on the Spatiotemporal Variability of Sardine Distribution Along the Portuguese Continental Coast 葡萄牙大陆海岸沙丁鱼分布时空变化的环境影响
4区 数学 Q1 Mathematics Pub Date : 2023-10-27 DOI: 10.1007/s13253-023-00577-8
Daniela Silva, Raquel Menezes, Ana Moreno, Ana Teles-Machado, Susana Garrido
Abstract Scientific tools capable of identifying distribution patterns of species are important as they contribute to improve knowledge about biodiversity and species dynamics. The present study aims to estimate the spatiotemporal distribution of sardine ( Sardina pilchardus , Walbaum 1792) in the Portuguese continental waters, relating the spatiotemporal variability of biomass index with the environmental conditions. Acoustic data was collected during Portuguese spring acoustic surveys (PELAGO) over a total of 16,370 hauls from 2000 to 2020 (gap in 2012). We propose a spatiotemporal species distribution model that relies on a two-part model for species presence and biomass under presence, such that the biomass process is defined as the product of these two processes. Environmental information is incorporated with time lags, allowing a set of lags with associated weights to be suggested for each explanatory variable. This approach makes the model more complete and realistic, capable of reducing prediction bias and mitigating outliers in covariates caused by extreme events. In addition, based on the posterior predictive distributions obtained, we propose a method of classifying the occupancy areas by the target species within the study region. This classification provides a quite helpful tool for decision makers aiming at marine sustainability and conservation. Supplementary materials accompanying this paper appear on-line.
能够识别物种分布模式的科学工具对于提高对生物多样性和物种动态的认识具有重要意义。本研究旨在估算葡萄牙大陆水域沙丁鱼(Sardina pilchardus, Walbaum 1792)的时空分布,并将生物量指数的时空变异与环境条件联系起来。声学数据是在葡萄牙春季声学调查(PELAGO)期间收集的,从2000年到2020年(2012年空白)共进行了16,370次运输。我们提出了一个时空物种分布模型,该模型依赖于物种存在和存在下生物量的两部分模型,从而将生物量过程定义为这两个过程的产物。环境信息与时间滞后相结合,允许为每个解释变量建议一组具有相关权重的滞后。这种方法使模型更加完整和真实,能够减少预测偏差,减轻极端事件引起的协变量异常值。此外,基于得到的后验预测分布,我们提出了一种在研究区域内按目标物种划分占用区域的方法。这种分类为致力于海洋可持续性和保护的决策者提供了一个非常有用的工具。本文附带的补充材料出现在网上。
{"title":"Environmental Effects on the Spatiotemporal Variability of Sardine Distribution Along the Portuguese Continental Coast","authors":"Daniela Silva, Raquel Menezes, Ana Moreno, Ana Teles-Machado, Susana Garrido","doi":"10.1007/s13253-023-00577-8","DOIUrl":"https://doi.org/10.1007/s13253-023-00577-8","url":null,"abstract":"Abstract Scientific tools capable of identifying distribution patterns of species are important as they contribute to improve knowledge about biodiversity and species dynamics. The present study aims to estimate the spatiotemporal distribution of sardine ( Sardina pilchardus , Walbaum 1792) in the Portuguese continental waters, relating the spatiotemporal variability of biomass index with the environmental conditions. Acoustic data was collected during Portuguese spring acoustic surveys (PELAGO) over a total of 16,370 hauls from 2000 to 2020 (gap in 2012). We propose a spatiotemporal species distribution model that relies on a two-part model for species presence and biomass under presence, such that the biomass process is defined as the product of these two processes. Environmental information is incorporated with time lags, allowing a set of lags with associated weights to be suggested for each explanatory variable. This approach makes the model more complete and realistic, capable of reducing prediction bias and mitigating outliers in covariates caused by extreme events. In addition, based on the posterior predictive distributions obtained, we propose a method of classifying the occupancy areas by the target species within the study region. This classification provides a quite helpful tool for decision makers aiming at marine sustainability and conservation. Supplementary materials accompanying this paper appear on-line.","PeriodicalId":56336,"journal":{"name":"Journal of Agricultural Biological and Environmental Statistics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136235021","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design and Analysis of a Microplate Assay in the Presence of Multiple Restrictions on the Randomization 随机化多重限制条件下微孔板试验的设计与分析
4区 数学 Q1 Mathematics Pub Date : 2023-10-16 DOI: 10.1007/s13253-023-00570-1
Alexandre Bohyn, Eric D. Schoen, Chee Ping Ng, Kristina Bishard, Manon Haarmans, Sebastian J. Trietsch, Peter Goos
{"title":"Design and Analysis of a Microplate Assay in the Presence of Multiple Restrictions on the Randomization","authors":"Alexandre Bohyn, Eric D. Schoen, Chee Ping Ng, Kristina Bishard, Manon Haarmans, Sebastian J. Trietsch, Peter Goos","doi":"10.1007/s13253-023-00570-1","DOIUrl":"https://doi.org/10.1007/s13253-023-00570-1","url":null,"abstract":"","PeriodicalId":56336,"journal":{"name":"Journal of Agricultural Biological and Environmental Statistics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136113871","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Covariance Clustering: Modelling Covariance in Designed Experiments When the Number of Variables is Greater than Experimental Units 协方差聚类:当变量数量大于实验单元时,对设计实验中的协方差进行建模
4区 数学 Q1 Mathematics Pub Date : 2023-10-11 DOI: 10.1007/s13253-023-00574-x
Clayton R. Forknall, Arūnas P. Verbyla, Yoni Nazarathy, Adel Yousif, Sarah Osama, Shirley H. Jones, Edward Kerr, Benjamin L. Schulz, Glen P. Fox, Alison M. Kelly
Abstract The size and complexity of datasets resulting from comparative research experiments in the agricultural domain is constantly increasing. Often the number of variables measured in an experiment exceeds the number of experimental units composing the experiment. When there is a necessity to model the covariance relationships that exist between variables in these experiments, estimation difficulties can arise due to the resulting covariance structure being of reduced rank. A statistical method, based in a linear mixed model framework, is presented for the analysis of designed experiments where datasets are characterised by a greater number of variables than experimental units, and for which the modelling of complex covariance structures between variables is desired. Aided by a clustering algorithm, the method enables the estimation of covariance through the introduction of covariance clusters as random effects into the modelling framework, providing an extension of the traditional variance components model for building covariance structures. The method was applied to a multi-phase mass spectrometry-based proteomics experiment, with the aim of exploring changes in the proteome of barley grain over time during the malting process. The modelling approach provides a new linear mixed model-based method for the estimation of covariance structures between variables measured from designed experiments, when there are a small number of experimental units, or observations, informing covariance parameter estimates.
农业领域比较研究实验产生的数据集的规模和复杂性不断增加。在实验中测量的变量的数量经常超过组成实验的实验单元的数量。当需要对这些实验中存在的变量之间的协方差关系进行建模时,由于所得到的协方差结构的秩降低,可能会出现估计困难。本文提出了一种基于线性混合模型框架的统计方法,用于分析设计好的实验,其中数据集的特征是由比实验单元更多的变量组成,并且需要对变量之间的复杂协方差结构进行建模。在聚类算法的辅助下,该方法通过将协方差聚类作为随机效应引入建模框架来估计协方差,为构建协方差结构提供了传统方差分量模型的扩展。该方法应用于一项基于多相质谱的蛋白质组学实验,旨在探索大麦籽粒蛋白质组在酿造过程中随时间的变化。建模方法提供了一种新的基于线性混合模型的方法,用于估计设计实验中测量的变量之间的协方差结构,当有少量的实验单元或观测值时,通知协方差参数估计。
{"title":"Covariance Clustering: Modelling Covariance in Designed Experiments When the Number of Variables is Greater than Experimental Units","authors":"Clayton R. Forknall, Arūnas P. Verbyla, Yoni Nazarathy, Adel Yousif, Sarah Osama, Shirley H. Jones, Edward Kerr, Benjamin L. Schulz, Glen P. Fox, Alison M. Kelly","doi":"10.1007/s13253-023-00574-x","DOIUrl":"https://doi.org/10.1007/s13253-023-00574-x","url":null,"abstract":"Abstract The size and complexity of datasets resulting from comparative research experiments in the agricultural domain is constantly increasing. Often the number of variables measured in an experiment exceeds the number of experimental units composing the experiment. When there is a necessity to model the covariance relationships that exist between variables in these experiments, estimation difficulties can arise due to the resulting covariance structure being of reduced rank. A statistical method, based in a linear mixed model framework, is presented for the analysis of designed experiments where datasets are characterised by a greater number of variables than experimental units, and for which the modelling of complex covariance structures between variables is desired. Aided by a clustering algorithm, the method enables the estimation of covariance through the introduction of covariance clusters as random effects into the modelling framework, providing an extension of the traditional variance components model for building covariance structures. The method was applied to a multi-phase mass spectrometry-based proteomics experiment, with the aim of exploring changes in the proteome of barley grain over time during the malting process. The modelling approach provides a new linear mixed model-based method for the estimation of covariance structures between variables measured from designed experiments, when there are a small number of experimental units, or observations, informing covariance parameter estimates.","PeriodicalId":56336,"journal":{"name":"Journal of Agricultural Biological and Environmental Statistics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136210152","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Locally Anisotropic Nonstationary Covariance Functions on the Sphere 球上局部各向异性非平稳协方差函数
4区 数学 Q1 Mathematics Pub Date : 2023-10-08 DOI: 10.1007/s13253-023-00573-y
Jian Cao, Jingjie ZHANG, Zhuoer SUN, Matthias Katzfuss
{"title":"Locally Anisotropic Nonstationary Covariance Functions on the Sphere","authors":"Jian Cao, Jingjie ZHANG, Zhuoer SUN, Matthias Katzfuss","doi":"10.1007/s13253-023-00573-y","DOIUrl":"https://doi.org/10.1007/s13253-023-00573-y","url":null,"abstract":"","PeriodicalId":56336,"journal":{"name":"Journal of Agricultural Biological and Environmental Statistics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135199477","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The $$beta $$-divergence for Bandwidth Selection in Circular Kernel Density Estimation 圆核密度估计中带宽选择的$$beta $$ -散度
4区 数学 Q1 Mathematics Pub Date : 2023-09-27 DOI: 10.1007/s13253-023-00572-z
Babacar Diakhate, Hamza Dhaker, Papa Ngom
{"title":"The $$beta $$-divergence for Bandwidth Selection in Circular Kernel Density Estimation","authors":"Babacar Diakhate, Hamza Dhaker, Papa Ngom","doi":"10.1007/s13253-023-00572-z","DOIUrl":"https://doi.org/10.1007/s13253-023-00572-z","url":null,"abstract":"","PeriodicalId":56336,"journal":{"name":"Journal of Agricultural Biological and Environmental Statistics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135579263","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Model-Based Geostatistics Under Spatially Varying Preferential Sampling 空间变化优先抽样下基于模型的地质统计
4区 数学 Q1 Mathematics Pub Date : 2023-09-26 DOI: 10.1007/s13253-023-00571-0
André Victor Ribeiro Amaral, Elias Teixeira Krainski, Ruiman Zhong, Paula Moraga
{"title":"Model-Based Geostatistics Under Spatially Varying Preferential Sampling","authors":"André Victor Ribeiro Amaral, Elias Teixeira Krainski, Ruiman Zhong, Paula Moraga","doi":"10.1007/s13253-023-00571-0","DOIUrl":"https://doi.org/10.1007/s13253-023-00571-0","url":null,"abstract":"","PeriodicalId":56336,"journal":{"name":"Journal of Agricultural Biological and Environmental Statistics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134886241","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Review of “Prediction Techniques for Renewable Energy Generation and Load Demand Forecasting” by Anuradha Tomar, Prerna Gaur, and Xiaolong Jin (Editors) 《可再生能源发电和负荷需求预测技术》综述(编者:Anuradha Tomar, Prerna Gaur, xiadragon Jin)
4区 数学 Q1 Mathematics Pub Date : 2023-09-19 DOI: 10.1007/s13253-023-00569-8
Dani Pasaribu, Alrend Roy Peterson Kaputing, Delvianus Kaesmentan
{"title":"Review of “Prediction Techniques for Renewable Energy Generation and Load Demand Forecasting” by Anuradha Tomar, Prerna Gaur, and Xiaolong Jin (Editors)","authors":"Dani Pasaribu, Alrend Roy Peterson Kaputing, Delvianus Kaesmentan","doi":"10.1007/s13253-023-00569-8","DOIUrl":"https://doi.org/10.1007/s13253-023-00569-8","url":null,"abstract":"","PeriodicalId":56336,"journal":{"name":"Journal of Agricultural Biological and Environmental Statistics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135060646","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Agricultural Biological and Environmental Statistics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1