首页 > 最新文献

Journal of Agricultural Biological and Environmental Statistics最新文献

英文 中文
3D Point Cloud Semantic Segmentation Through Functional Data Analysis 基于功能数据分析的三维点云语义分割
4区 数学 Q1 Mathematics Pub Date : 2023-09-12 DOI: 10.1007/s13253-023-00567-w
Manuel Oviedo de la Fuente, Carlos Cabo, Javier Roca-Pardiñas, E. Louise Loudermilk, Celestino Ordóñez
Abstract Here, we propose a method for the semantic segmentation of 3D point clouds based on functional data analysis. For each point of a training set, a number of handcrafted features representing the local geometry around it are calculated at different scales, that is, varying the spatial extension of the local analysis. Calculating the scales at small intervals allows each feature to be accurately approximated using a smooth function and, for the problem of semantic segmentation, to be tackled using functional data analysis. We also present a step-wise method to select the optimal features to include in the model based on the calculation of the distance correlation between each feature and the response variable. The algorithm showed promising results when applied to simulated data. When applied to the semantic segmentation of a point cloud of a forested plot, the results proved better than when using a standard multiscale semantic segmentation method. The comparison with two popular deep learning models showed that our proposal requires smaller training samples sizes and that it can compete with these methods in terms of prediction.
本文提出了一种基于功能数据分析的三维点云语义分割方法。对于训练集的每个点,在不同的尺度上计算代表其周围局部几何形状的许多手工特征,即改变局部分析的空间扩展。以较小的间隔计算尺度,可以使用平滑函数准确地近似每个特征,并且对于语义分割问题,可以使用功能数据分析来解决。我们还提出了一种基于计算每个特征与响应变量之间的距离相关性来选择模型中最优特征的逐步方法。将该算法应用于模拟数据,取得了良好的效果。将该方法应用于森林样地点云的语义分割,结果优于标准的多尺度语义分割方法。与两种流行的深度学习模型的比较表明,我们的建议需要更小的训练样本量,并且在预测方面可以与这些方法竞争。
{"title":"3D Point Cloud Semantic Segmentation Through Functional Data Analysis","authors":"Manuel Oviedo de la Fuente, Carlos Cabo, Javier Roca-Pardiñas, E. Louise Loudermilk, Celestino Ordóñez","doi":"10.1007/s13253-023-00567-w","DOIUrl":"https://doi.org/10.1007/s13253-023-00567-w","url":null,"abstract":"Abstract Here, we propose a method for the semantic segmentation of 3D point clouds based on functional data analysis. For each point of a training set, a number of handcrafted features representing the local geometry around it are calculated at different scales, that is, varying the spatial extension of the local analysis. Calculating the scales at small intervals allows each feature to be accurately approximated using a smooth function and, for the problem of semantic segmentation, to be tackled using functional data analysis. We also present a step-wise method to select the optimal features to include in the model based on the calculation of the distance correlation between each feature and the response variable. The algorithm showed promising results when applied to simulated data. When applied to the semantic segmentation of a point cloud of a forested plot, the results proved better than when using a standard multiscale semantic segmentation method. The comparison with two popular deep learning models showed that our proposal requires smaller training samples sizes and that it can compete with these methods in terms of prediction.","PeriodicalId":56336,"journal":{"name":"Journal of Agricultural Biological and Environmental Statistics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135826880","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
J. A. Diehl and H. Kaur (Eds.): New Forms of Urban Agriculture: An Urban Ecology Perspective—A Book Review J. A. Diehl和H. Kaur(编):都市农业的新形式:城市生态学的视角——书评
IF 1.4 4区 数学 Q1 Mathematics Pub Date : 2023-09-05 DOI: 10.1007/s13253-023-00568-9
Prodipto Bishnu Angon
{"title":"J. A. Diehl and H. Kaur (Eds.): New Forms of Urban Agriculture: An Urban Ecology Perspective—A Book Review","authors":"Prodipto Bishnu Angon","doi":"10.1007/s13253-023-00568-9","DOIUrl":"https://doi.org/10.1007/s13253-023-00568-9","url":null,"abstract":"","PeriodicalId":56336,"journal":{"name":"Journal of Agricultural Biological and Environmental Statistics","volume":null,"pages":null},"PeriodicalIF":1.4,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77965414","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Bayesian Partial Membership Model for Multiple Exposures with Uncertain Group Memberships. 针对具有不确定群体成员资格的多重暴露的贝叶斯部分成员资格模型。
IF 1.4 4区 数学 Q3 BIOLOGY Pub Date : 2023-09-01 Epub Date: 2023-02-14 DOI: 10.1007/s13253-023-00528-3
Alexis E Zavez, Emeir M McSorley, Alison J Yeates, Sally W Thurston

We present a Bayesian partial membership model that estimates the associations between an outcome, a small number of latent variables, and multiple observed exposures where the number of latent variables is specified a priori. We assign one observed exposure as the sentinel marker for each latent variable. The model allows non-sentinel exposures to have complete membership in one latent group, or partial membership across two or more latent groups. MCMC sampling is used to determine latent group partial memberships for the non-sentinel exposures, and estimate all model parameters. We compare the performance of our model to competing approaches in a simulation study and apply our model to inflammatory marker data measured in a large mother-child cohort of the Seychelles Child Development Study (SCDS). In simulations, our model estimated model parameters with little bias, adequate coverage, and tighter credible intervals compared to competing approaches. Under our partial membership model with two latent groups, SCDS inflammatory marker classifications generally aligned with the scientific literature. Incorporating additional SCDS inflammatory markers and more latent groups produced similar groupings of markers that also aligned with the literature. Associations between covariates and birth weight were similar across latent variable models and were consistent with earlier work in this SCDS cohort.

我们提出了一种贝叶斯部分成员模型,该模型可以估计结果、少量潜变量和多个观测暴露之间的关联,其中潜变量的数量是事先指定的。我们为每个潜变量指定一个观测暴露作为哨点标记。该模型允许非哨点暴露完全属于一个潜变量组,或部分属于两个或多个潜变量组。MCMC 采样用于确定非前哨暴露的潜在组部分成员资格,并估计所有模型参数。我们在模拟研究中比较了我们的模型与其他方法的性能,并将我们的模型应用于塞舌尔儿童发育研究(SCDS)的大型母婴队列中测量的炎症标志物数据。在模拟研究中,与其他竞争方法相比,我们的模型估算出的模型参数偏差小、覆盖范围大、可信区间更窄。在我们的具有两个潜伏组的部分成员模型下,SCDS 炎症标志物分类与科学文献基本一致。加入更多的 SCDS 炎症标志物和更多的潜伏组后,标志物的分组也与文献一致。在不同的潜变量模型中,协变量与出生体重之间的关系相似,并且与该 SCDS 队列的早期研究结果一致。
{"title":"A Bayesian Partial Membership Model for Multiple Exposures with Uncertain Group Memberships.","authors":"Alexis E Zavez, Emeir M McSorley, Alison J Yeates, Sally W Thurston","doi":"10.1007/s13253-023-00528-3","DOIUrl":"10.1007/s13253-023-00528-3","url":null,"abstract":"<p><p>We present a Bayesian partial membership model that estimates the associations between an outcome, a small number of latent variables, and multiple observed exposures where the number of latent variables is specified <i>a priori</i>. We assign one observed exposure as the sentinel marker for each latent variable. The model allows non-sentinel exposures to have complete membership in one latent group, or partial membership across two or more latent groups. MCMC sampling is used to determine latent group partial memberships for the non-sentinel exposures, and estimate all model parameters. We compare the performance of our model to competing approaches in a simulation study and apply our model to inflammatory marker data measured in a large mother-child cohort of the Seychelles Child Development Study (SCDS). In simulations, our model estimated model parameters with little bias, adequate coverage, and tighter credible intervals compared to competing approaches. Under our partial membership model with two latent groups, SCDS inflammatory marker classifications generally aligned with the scientific literature. Incorporating additional SCDS inflammatory markers and more latent groups produced similar groupings of markers that also aligned with the literature. Associations between covariates and birth weight were similar across latent variable models and were consistent with earlier work in this SCDS cohort.</p>","PeriodicalId":56336,"journal":{"name":"Journal of Agricultural Biological and Environmental Statistics","volume":null,"pages":null},"PeriodicalIF":1.4,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11530226/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80008642","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Clustered and Unclustered Group Testing for Biosecurity 生物安全的聚类和非聚类组测试
IF 1.4 4区 数学 Q1 Mathematics Pub Date : 2023-08-26 DOI: 10.1007/s13253-023-00566-x
R. Clark, B. Barnes, M. Parsa
{"title":"Clustered and Unclustered Group Testing for Biosecurity","authors":"R. Clark, B. Barnes, M. Parsa","doi":"10.1007/s13253-023-00566-x","DOIUrl":"https://doi.org/10.1007/s13253-023-00566-x","url":null,"abstract":"","PeriodicalId":56336,"journal":{"name":"Journal of Agricultural Biological and Environmental Statistics","volume":null,"pages":null},"PeriodicalIF":1.4,"publicationDate":"2023-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77490475","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Environmental Public Policy Making Exposed, Cynthia H. Stahl, Alan J. Cimorelli, Switzerland: Springer Nature Switzerland AG (2020). 203 pp, ISBN 978-3-030–32130-7 (eBook) 《环境公共政策制定》,辛西娅·h·斯塔尔,艾伦·j·西莫雷利,瑞士:施普林格·自然瑞士股份有限公司(2020)。203 pp, ISBN 978-3-030-32130-7(电子书)
IF 1.4 4区 数学 Q1 Mathematics Pub Date : 2023-08-26 DOI: 10.1007/s13253-023-00556-z
Edyanto, L. Arifin, Syaharuddin
{"title":"Environmental Public Policy Making Exposed, Cynthia H. Stahl, Alan J. Cimorelli, Switzerland: Springer Nature Switzerland AG (2020). 203 pp, ISBN 978-3-030–32130-7 (eBook)","authors":"Edyanto, L. Arifin, Syaharuddin","doi":"10.1007/s13253-023-00556-z","DOIUrl":"https://doi.org/10.1007/s13253-023-00556-z","url":null,"abstract":"","PeriodicalId":56336,"journal":{"name":"Journal of Agricultural Biological and Environmental Statistics","volume":null,"pages":null},"PeriodicalIF":1.4,"publicationDate":"2023-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80832942","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Nonparametric Bootstrap Method for Heteroscedastic Functional Data 异方差泛函数据的非参数自举法
IF 1.4 4区 数学 Q1 Mathematics Pub Date : 2023-08-16 DOI: 10.1007/s13253-023-00561-2
R. Fernández-Casal, Sergio Castillo-Páez, Miguel Flores
{"title":"A Nonparametric Bootstrap Method for Heteroscedastic Functional Data","authors":"R. Fernández-Casal, Sergio Castillo-Páez, Miguel Flores","doi":"10.1007/s13253-023-00561-2","DOIUrl":"https://doi.org/10.1007/s13253-023-00561-2","url":null,"abstract":"","PeriodicalId":56336,"journal":{"name":"Journal of Agricultural Biological and Environmental Statistics","volume":null,"pages":null},"PeriodicalIF":1.4,"publicationDate":"2023-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81600964","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An Application of Spatio-temporal Modeling to Finite Population Abundance Prediction. 时空建模在有限种群丰度预测中的应用。
IF 1.4 4区 数学 Q3 BIOLOGY Pub Date : 2023-08-07 DOI: 10.1007/s13253-023-00565-y
Matt Higham, Michael Dumelle, Carly Hammond, Jay Ver Hoef, Jeff Wells

Spatio-temporal models can be used to analyze data collected at various spatial locations throughout multiple time points. However, even with a finite number of spatial locations, there may be a lack of resources to collect data from every spatial location at every time point. We develop a spatio-temporal finite-population block kriging (ST-FPBK) method to predict a quantity of interest, such as a mean or total, across a finite number of spatial locations. This ST-FPBK predictor incorporates an appropriate variance reduction for sampling from a finite population. Through an application to moose surveys in the east-central region of Alaska, we show that the predictor has a substantially smaller standard error compared to a predictor from the purely spatial model that is currently used to analyze moose surveys in the region. We also show how the model can be used to forecast a prediction for abundance in a time point for which spatial locations have not yet been surveyed. A separate simulation study shows that the spatio-temporal predictor is unbiased and that prediction intervals from the ST-FPBK predictor attain appropriate coverage. For ecological monitoring surveys completed with some regularity through time, use of ST-FPBK could improve precision. We also give an R package that ecologists and resource managers could use to incorporate data from past surveys in predicting a quantity from a current survey.

时空模型可用于分析在多个时间点的各种空间位置收集的数据。然而,即使空间位置数量有限,也可能缺乏在每个时间点从每个空间位置收集数据的资源。我们开发了一种时空有限种群块克里格法(ST-FPBK)来预测有限数量空间位置上的感兴趣量,如平均值或总数。该ST-FPBK预测器结合了用于从有限总体采样的适当方差减少。通过应用于阿拉斯加中东部地区的驼鹿调查,我们表明,与目前用于分析该地区驼鹿调查的纯空间模型的预测因子相比,该预测因子的标准误差要小得多。我们还展示了如何使用该模型来预测尚未调查空间位置的时间点的丰度预测。另一项模拟研究表明,时空预测器是无偏的,并且ST-FPBK预测器的预测区间达到了适当的覆盖范围。对于随着时间的推移有一定规律地完成的生态监测调查,使用ST-FPBK可以提高精度。我们还提供了一个R包,生态学家和资源管理者可以使用它来结合过去调查的数据,预测当前调查的数量。
{"title":"An Application of Spatio-temporal Modeling to Finite Population Abundance Prediction.","authors":"Matt Higham, Michael Dumelle, Carly Hammond, Jay Ver Hoef, Jeff Wells","doi":"10.1007/s13253-023-00565-y","DOIUrl":"10.1007/s13253-023-00565-y","url":null,"abstract":"<p><p>Spatio-temporal models can be used to analyze data collected at various spatial locations throughout multiple time points. However, even with a finite number of spatial locations, there may be a lack of resources to collect data from every spatial location at every time point. We develop a spatio-temporal finite-population block kriging (ST-FPBK) method to predict a quantity of interest, such as a mean or total, across a finite number of spatial locations. This ST-FPBK predictor incorporates an appropriate variance reduction for sampling from a finite population. Through an application to moose surveys in the east-central region of Alaska, we show that the predictor has a substantially smaller standard error compared to a predictor from the purely spatial model that is currently used to analyze moose surveys in the region. We also show how the model can be used to forecast a prediction for abundance in a time point for which spatial locations have not yet been surveyed. A separate simulation study shows that the spatio-temporal predictor is unbiased and that prediction intervals from the ST-FPBK predictor attain appropriate coverage. For ecological monitoring surveys completed with some regularity through time, use of ST-FPBK could improve precision. We also give an R package that ecologists and resource managers could use to incorporate data from past surveys in predicting a quantity from a current survey.</p>","PeriodicalId":56336,"journal":{"name":"Journal of Agricultural Biological and Environmental Statistics","volume":null,"pages":null},"PeriodicalIF":1.4,"publicationDate":"2023-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10569113/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41241304","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Estimator of Agreement with Covariate Adjustment 协变量调整的一致性估计
IF 1.4 4区 数学 Q1 Mathematics Pub Date : 2023-08-05 DOI: 10.1007/s13253-023-00553-2
Katelyn A. McKenzie, J. Mahnken
{"title":"Estimator of Agreement with Covariate Adjustment","authors":"Katelyn A. McKenzie, J. Mahnken","doi":"10.1007/s13253-023-00553-2","DOIUrl":"https://doi.org/10.1007/s13253-023-00553-2","url":null,"abstract":"","PeriodicalId":56336,"journal":{"name":"Journal of Agricultural Biological and Environmental Statistics","volume":null,"pages":null},"PeriodicalIF":1.4,"publicationDate":"2023-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80005829","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spatially Clustered Survey Designs 空间聚类调查设计
IF 1.4 4区 数学 Q1 Mathematics Pub Date : 2023-07-28 DOI: 10.1007/s13253-023-00562-1
S. Foster, E. Lawrence, A. Hoskins
{"title":"Spatially Clustered Survey Designs","authors":"S. Foster, E. Lawrence, A. Hoskins","doi":"10.1007/s13253-023-00562-1","DOIUrl":"https://doi.org/10.1007/s13253-023-00562-1","url":null,"abstract":"","PeriodicalId":56336,"journal":{"name":"Journal of Agricultural Biological and Environmental Statistics","volume":null,"pages":null},"PeriodicalIF":1.4,"publicationDate":"2023-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87471664","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Presence-Only for Marked Point Process Under Preferential Sampling 优先抽样下标记点过程的只存在性
IF 1.4 4区 数学 Q1 Mathematics Pub Date : 2023-07-26 DOI: 10.1007/s13253-023-00558-x
Guido A. Moreira, R. Menezes, L. Wise
{"title":"Presence-Only for Marked Point Process Under Preferential Sampling","authors":"Guido A. Moreira, R. Menezes, L. Wise","doi":"10.1007/s13253-023-00558-x","DOIUrl":"https://doi.org/10.1007/s13253-023-00558-x","url":null,"abstract":"","PeriodicalId":56336,"journal":{"name":"Journal of Agricultural Biological and Environmental Statistics","volume":null,"pages":null},"PeriodicalIF":1.4,"publicationDate":"2023-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79429634","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Agricultural Biological and Environmental Statistics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1