In view of the burgeoning market of plant-based foods, there has been a vigorous increase in research studies on the application of different plant proteins for structuring food colloids. Plant-based proteins extracted from pulses or leguminous grains, plant seeds, nuts, kernels, or leaves have found their applications as emulsifiers in designing colloidal emulsions and gels for structuring functional foods. Different extraction techniques such as alkaline, deep eutectic solvent (DES), enzymatic, or salt-assisted extraction can modify plant protein structure. These alterations can enhance interfacial adsorption, foaming, and emulsifying properties of the proteins. They additionally affect the rheological properties of the formulated protein gels. Additional processing using ultrasound, pulsed electric field (PEF), microwave, high-pressure, supercritical CO2, or subcritical water at optimized conditions can enhance protein extraction yield and ameliorate its emulsifying and gelling properties by increasing protein unfolding and elevating its random structure. Conjugation of plant proteins with the polyphenols can alter the surface hydrophobicity, charge, and interfacial properties of the proteins, and elevate the viscosity and elasticity of emulsion gels. It additionally improves foaming properties of the proteins by adjusting their solubility. Plant protein-polyphenol conjugates have found their applications in formulating adhesives, fat replacers, and antioxidants in alternative protein foods. In this perspective, this review study discusses how plant protein extraction and conjugation with the polyphenols impact the structure of the proteins and the rheology of plant protein emulsions and gels. Potential applications of plant protein-polyphenol conjugates for formulating plant-based foods are also highlighted.