Pub Date : 2021-10-12eCollection Date: 2021-01-01DOI: 10.34133/2021/9891082
Rubén Mateos-Fernández, Elena Moreno-Giménez, Silvia Gianoglio, Alfredo Quijano-Rubio, Jose Gavaldá-García, Lucía Estellés, Alba Rubert, José Luis Rambla, Marta Vazquez-Vilar, Estefanía Huet, Asunción Fernández-Del-Carmen, Ana Espinosa-Ruiz, Mojca Juteršek, Sandra Vacas, Ismael Navarro, Vicente Navarro-Llopis, Jaime Primo, Diego Orzáez
Plant-based bioproduction of insect sex pheromones has been proposed as an innovative strategy to increase the sustainability of pest control in agriculture. Here, we describe the engineering of transgenic plants producing (Z)-11-hexadecenol (Z11-16OH) and (Z)-11-hexadecenyl acetate (Z11-16OAc), two main volatile components in many Lepidoptera sex pheromone blends. We assembled multigene DNA constructs encoding the pheromone biosynthetic pathway and stably transformed them into Nicotiana benthamiana plants. The constructs contained the Amyelois transitella AtrΔ11 desaturase gene, the Helicoverpa armigera fatty acyl reductase HarFAR gene, and the Euonymus alatus diacylglycerol acetyltransferase EaDAct gene in different configurations. All the pheromone-producing plants showed dwarf phenotypes, the severity of which correlated with pheromone levels. All but one of the recovered lines produced high levels of Z11-16OH, but very low levels of Z11-16OAc, probably as a result of recurrent truncations at the level of the EaDAct gene. Only one plant line (SxPv1.2) was recovered that harboured an intact pheromone pathway and which produced moderate levels of Z11-16OAc (11.8 μg g-1 FW) and high levels of Z11-16OH (111.4 μg g-1). Z11-16OAc production was accompanied in SxPv1.2 by a partial recovery of the dwarf phenotype. SxPv1.2 was used to estimate the rates of volatile pheromone release, which resulted in 8.48 ng g-1 FW per day for Z11-16OH and 9.44 ng g-1 FW per day for Z11-16OAc. Our results suggest that pheromone release acts as a limiting factor in pheromone biodispenser strategies and establish a roadmap for biotechnological improvements.
以植物为基础的昆虫性信息素生物生产已被提议作为一种创新策略,以提高农业害虫控制的可持续性。在这里,我们描述了生产(Z)-11十六碳烯醇(Z11-16OH)和(Z)-11-乙酸十六碳烯酯(Z11-16-OAc)的转基因植物的工程,这是许多鳞翅目性信息素混合物中的两种主要挥发性成分。我们组装了编码信息素生物合成途径的多基因DNA构建体,并将其稳定转化为本氏烟草植物。构建体包含不同构型的Amyelois transitella AtrΔ11去饱和酶基因、棉铃虫脂肪酰基还原酶HarFAR基因和卫矛二酰基甘油乙酰转移酶EaDAct基因。所有产生信息素的植物都表现出矮化表型,其严重程度与信息素水平有关。除一个外,所有回收的品系都产生高水平的Z11-16OH,但Z11-16OAc的水平非常低,这可能是EaDAct基因水平反复截短的结果。只有一个植物系(SxPv1.2)被回收,它携带完整的信息素途径,并产生中等水平的Z11-16OAc(11.8 μg g-1 FW)和高水平的Z11-16OH(111.4 μg g-1)。Z11-16OAc的产生伴随着SxPv1.2矮化表型的部分恢复。SxPv1.2用于估算挥发性信息素的释放速率,结果为8.48 ng 对于Z11-16OH和9.44,每天g-1 FW ng 对于Z11-16OAc,每天g-1 FW。我们的研究结果表明,信息素的释放是信息素生物分散策略的限制因素,并为生物技术的改进制定了路线图。
{"title":"Production of Volatile Moth Sex Pheromones in Transgenic <i>Nicotiana benthamiana</i> Plants.","authors":"Rubén Mateos-Fernández, Elena Moreno-Giménez, Silvia Gianoglio, Alfredo Quijano-Rubio, Jose Gavaldá-García, Lucía Estellés, Alba Rubert, José Luis Rambla, Marta Vazquez-Vilar, Estefanía Huet, Asunción Fernández-Del-Carmen, Ana Espinosa-Ruiz, Mojca Juteršek, Sandra Vacas, Ismael Navarro, Vicente Navarro-Llopis, Jaime Primo, Diego Orzáez","doi":"10.34133/2021/9891082","DOIUrl":"10.34133/2021/9891082","url":null,"abstract":"<p><p>Plant-based bioproduction of insect sex pheromones has been proposed as an innovative strategy to increase the sustainability of pest control in agriculture. Here, we describe the engineering of transgenic plants producing <i>(Z)</i>-11-hexadecenol (Z11-16OH) and <i>(Z)</i>-11-hexadecenyl acetate (Z11-16OAc), two main volatile components in many Lepidoptera sex pheromone blends. We assembled multigene DNA constructs encoding the pheromone biosynthetic pathway and stably transformed them into <i>Nicotiana benthamiana</i> plants. The constructs contained the <i>Amyelois transitella AtrΔ11</i> desaturase gene, the <i>Helicoverpa armigera</i> fatty acyl reductase <i>HarFAR</i> gene, and the <i>Euonymus alatus</i> diacylglycerol acetyltransferase <i>EaDAct</i> gene in different configurations. All the pheromone-producing plants showed dwarf phenotypes, the severity of which correlated with pheromone levels. All but one of the recovered lines produced high levels of Z11-16OH, but very low levels of Z11-16OAc, probably as a result of recurrent truncations at the level of the <i>EaDAct</i> gene. Only one plant line (SxPv1.2) was recovered that harboured an intact pheromone pathway and which produced moderate levels of Z11-16OAc (11.8 <i>μ</i>g g<sup>-1</sup> FW) and high levels of Z11-16OH (111.4 <i>μ</i>g g<sup>-1</sup>). Z11-16OAc production was accompanied in SxPv1.2 by a partial recovery of the dwarf phenotype. SxPv1.2 was used to estimate the rates of volatile pheromone release, which resulted in 8.48 ng g<sup>-1</sup> FW per day for Z11-16OH and 9.44 ng g<sup>-1</sup> FW per day for Z11-16OAc. Our results suggest that pheromone release acts as a limiting factor in pheromone biodispenser strategies and establish a roadmap for biotechnological improvements.</p>","PeriodicalId":56832,"journal":{"name":"生物设计研究(英文)","volume":"2021 ","pages":"9891082"},"PeriodicalIF":0.0,"publicationDate":"2021-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10521740/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41241345","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-09-28eCollection Date: 2021-01-01DOI: 10.34133/2021/9857418
Daniel Camsund, Alfonso Jaramillo, Peter Lindblad
Light-regulated gene expression systems allow controlling gene expression in space and time with high accuracy. Contrary to previous synthetic light sensors that incorporate two-component systems which require localization at the plasma membrane, soluble one-component repression systems provide several advantageous characteristics. Firstly, they are soluble and able to diffuse across the cytoplasm. Secondly, they are smaller and of lower complexity, enabling less taxing expression and optimization of fewer parts. Thirdly, repression through steric hindrance is a widespread regulation mechanism that does not require specific interaction with host factors, potentially enabling implementation in different organisms. Herein, we present the design of the synthetic promoter PEL that in combination with the light-regulated dimer EL222 constitutes a one-component repression system. Inspired by previously engineered synthetic promoters and the Escherichia coli lacZYA promoter, we designed PEL with two EL222 operators positioned to hinder RNA polymerase binding when EL222 is bound. PEL is repressed by EL222 under conditions of white light with a light-regulated repression ratio of five. Further, alternating conditions of darkness and light in cycles as short as one hour showed that repression is reversible. The design of the PEL-EL222 system herein presented could aid the design and implementation of analogous one-component optogenetic repression systems. Finally, we compare the PEL-EL222 system with similar systems and suggest general improvements that could optimize and extend the functionality of EL222-based as well as other one-component repression systems.
{"title":"Engineering of a Promoter Repressed by a Light-Regulated Transcription Factor in <i>Escherichia coli</i>.","authors":"Daniel Camsund, Alfonso Jaramillo, Peter Lindblad","doi":"10.34133/2021/9857418","DOIUrl":"10.34133/2021/9857418","url":null,"abstract":"<p><p>Light-regulated gene expression systems allow controlling gene expression in space and time with high accuracy. Contrary to previous synthetic light sensors that incorporate two-component systems which require localization at the plasma membrane, soluble one-component repression systems provide several advantageous characteristics. Firstly, they are soluble and able to diffuse across the cytoplasm. Secondly, they are smaller and of lower complexity, enabling less taxing expression and optimization of fewer parts. Thirdly, repression through steric hindrance is a widespread regulation mechanism that does not require specific interaction with host factors, potentially enabling implementation in different organisms. Herein, we present the design of the synthetic promoter P<i><sub>EL</sub></i> that in combination with the light-regulated dimer EL222 constitutes a one-component repression system. Inspired by previously engineered synthetic promoters and the <i>Escherichia coli lacZYA</i> promoter, we designed P<i><sub>EL</sub></i> with two EL222 operators positioned to hinder RNA polymerase binding when EL222 is bound. P<i><sub>EL</sub></i> is repressed by EL222 under conditions of white light with a light-regulated repression ratio of five. Further, alternating conditions of darkness and light in cycles as short as one hour showed that repression is reversible. The design of the P<i><sub>EL</sub></i>-EL222 system herein presented could aid the design and implementation of analogous one-component optogenetic repression systems. Finally, we compare the P<i><sub>EL</sub></i>-EL222 system with similar systems and suggest general improvements that could optimize and extend the functionality of EL222-based as well as other one-component repression systems.</p>","PeriodicalId":56832,"journal":{"name":"生物设计研究(英文)","volume":"2021 ","pages":"9857418"},"PeriodicalIF":0.0,"publicationDate":"2021-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10521638/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41241342","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-08-31eCollection Date: 2021-01-01DOI: 10.34133/2021/9898316
Hannes Löwe, Andreas Kremling
In the recent years, engineering new-to-nature CO2- and C1-fixing metabolic pathways made a leap forward. New, artificial pathways promise higher yields and activity than natural ones like the Calvin-Benson-Bassham (CBB) cycle. The question remains how to best predict their in vivo performance and what actually makes one pathway "better" than another. In this context, we explore aerobic carbon fixation pathways by a computational approach and compare them based on their specific activity and yield on methanol, formate, and CO2/H2 considering the kinetics and thermodynamics of the reactions. Besides pathways found in nature or implemented in the laboratory, this included two completely new cycles with favorable features: the reductive citramalyl-CoA cycle and the 2-hydroxyglutarate-reverse tricarboxylic acid cycle. A comprehensive kinetic data set was collected for all enzymes of all pathways, and missing kinetic data were sampled with the Parameter Balancing algorithm. Kinetic and thermodynamic data were fed to the Enzyme Cost Minimization algorithm to check for respective inconsistencies and calculate pathway-specific activities. The specific activities of the reductive glycine pathway, the CETCH cycle, and the new reductive citramalyl-CoA cycle were predicted to match the best natural cycles with superior product-substrate yield. However, the CBB cycle performed better in terms of activity compared to the alternative pathways than previously thought. We make an argument that stoichiometric yield is likely not the most important design criterion of the CBB cycle. Still, alternative carbon fixation pathways were paretooptimal for specific activity and product-substrate yield in simulations with C1 substrates and CO2/H2 and therefore hold great potential for future applications in Industrial Biotechnology and Synthetic Biology.
{"title":"In-Depth Computational Analysis of Natural and Artificial Carbon Fixation Pathways.","authors":"Hannes Löwe, Andreas Kremling","doi":"10.34133/2021/9898316","DOIUrl":"10.34133/2021/9898316","url":null,"abstract":"<p><p>In the recent years, engineering new-to-nature CO<sub>2</sub>- and C1-fixing metabolic pathways made a leap forward. New, artificial pathways promise higher yields and activity than natural ones like the Calvin-Benson-Bassham (CBB) cycle. The question remains how to best predict their <i>in vivo</i> performance and what actually makes one pathway \"better\" than another. In this context, we explore aerobic carbon fixation pathways by a computational approach and compare them based on their specific activity and yield on methanol, formate, and CO<sub>2</sub>/H<sub>2</sub> considering the kinetics and thermodynamics of the reactions. Besides pathways found in nature or implemented in the laboratory, this included two completely new cycles with favorable features: the reductive citramalyl-CoA cycle and the 2-hydroxyglutarate-reverse tricarboxylic acid cycle. A comprehensive kinetic data set was collected for all enzymes of all pathways, and missing kinetic data were sampled with the Parameter Balancing algorithm. Kinetic and thermodynamic data were fed to the Enzyme Cost Minimization algorithm to check for respective inconsistencies and calculate pathway-specific activities. The specific activities of the reductive glycine pathway, the CETCH cycle, and the new reductive citramalyl-CoA cycle were predicted to match the best natural cycles with superior product-substrate yield. However, the CBB cycle performed better in terms of activity compared to the alternative pathways than previously thought. We make an argument that stoichiometric yield is likely not the most important design criterion of the CBB cycle. Still, alternative carbon fixation pathways were paretooptimal for specific activity and product-substrate yield in simulations with C1 substrates and CO<sub>2</sub>/H<sub>2</sub> and therefore hold great potential for future applications in Industrial Biotechnology and Synthetic Biology.</p>","PeriodicalId":56832,"journal":{"name":"生物设计研究(英文)","volume":"2021 ","pages":"9898316"},"PeriodicalIF":0.0,"publicationDate":"2021-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10521678/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41241343","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-06-30eCollection Date: 2021-01-01DOI: 10.34133/2021/9815820
Muneaki Nakamura, Alexis E Ivec, Yuchen Gao, Lei S Qi
Development of CRISPR-based epigenome editing tools is important for the study and engineering of biological behavior. Here, we describe the design of a reporter system for quantifying the ability of CRISPR epigenome editors to produce a stable gene repression. We characterize the dynamics of durable gene silencing and reactivation, as well as the induced epigenetic changes of this system. We report the creation of single-protein CRISPR constructs bearing combinations of three epigenetic editing domains, termed KAL, that can stably repress the gene expression. This system should allow for the development of novel epigenome editing tools which will be useful in a wide array of biological research and engineering applications.
{"title":"Durable CRISPR-Based Epigenetic Silencing.","authors":"Muneaki Nakamura, Alexis E Ivec, Yuchen Gao, Lei S Qi","doi":"10.34133/2021/9815820","DOIUrl":"https://doi.org/10.34133/2021/9815820","url":null,"abstract":"<p><p>Development of CRISPR-based epigenome editing tools is important for the study and engineering of biological behavior. Here, we describe the design of a reporter system for quantifying the ability of CRISPR epigenome editors to produce a stable gene repression. We characterize the dynamics of durable gene silencing and reactivation, as well as the induced epigenetic changes of this system. We report the creation of single-protein CRISPR constructs bearing combinations of three epigenetic editing domains, termed KAL, that can stably repress the gene expression. This system should allow for the development of novel epigenome editing tools which will be useful in a wide array of biological research and engineering applications.</p>","PeriodicalId":56832,"journal":{"name":"生物设计研究(英文)","volume":"2021 ","pages":"9815820"},"PeriodicalIF":0.0,"publicationDate":"2021-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10521745/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41241341","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-05-14eCollection Date: 2021-01-01DOI: 10.34133/2021/9816485
Astrid Wendler, Nicholas James, Michael H Jones, Christian Pernstich
Many cells possess the ability to engulf and incorporate particles by phagocytosis. This active process is characteristic of microorganisms as well as higher order species. In mammals, monocytes, macrophages, and microglia are among the so-called professional phagocytes. In addition, cells such as fibroblast and chondrocytes are classified as nonprofessional phagocytes. Professional phagocytes play important roles in both the innate and adaptive immune responses, wound healing, and tissue homeostasis. Consequently, these cells are increasingly studied as targets and vectors of therapeutic intervention to treat a range of diseases. Professional phagocytes are notoriously difficult to transfect limiting their study and manipulation. Consequently, efforts have shifted towards the development of nanoparticles to deliver a cargo to phagocytic cells via phagocytosis. However, this approach carries significant technical challenges, particularly for protein cargos. We have focused on the development of nanoscale cocrystalline protein depots, known as PODS®, that contain protein cargos, including cytokines. Here, we show that PODS are readily phagocytosed by nonprofessional as well as professional phagocytic cells and have attributes, such as highly sustained release of cargo, that suggest potential utility for the study and exploitation of phagocytic cells for drug delivery. Monocytes and macrophages that ingest PODS retain normal characteristics including a robust chemotactic response. Moreover, the PODS-cytokine cargo is secreted by the loaded cell at a level sufficient to modulate the behavior of surrounding nonphagocytic cells. The results presented here demonstrate the potential of PODS nanoparticles as a novel molecular tool for the study and manipulation of phagocytic cells and for the development of Trojan horse immunotherapy strategies to treat cancer and other diseases.
{"title":"Phagocytosed Polyhedrin-Cytokine Cocrystal Nanoparticles Provide Sustained Secretion of Bioactive Cytokines from Macrophages.","authors":"Astrid Wendler, Nicholas James, Michael H Jones, Christian Pernstich","doi":"10.34133/2021/9816485","DOIUrl":"10.34133/2021/9816485","url":null,"abstract":"<p><p>Many cells possess the ability to engulf and incorporate particles by phagocytosis. This active process is characteristic of microorganisms as well as higher order species. In mammals, monocytes, macrophages, and microglia are among the so-called professional phagocytes. In addition, cells such as fibroblast and chondrocytes are classified as nonprofessional phagocytes. Professional phagocytes play important roles in both the innate and adaptive immune responses, wound healing, and tissue homeostasis. Consequently, these cells are increasingly studied as targets and vectors of therapeutic intervention to treat a range of diseases. Professional phagocytes are notoriously difficult to transfect limiting their study and manipulation. Consequently, efforts have shifted towards the development of nanoparticles to deliver a cargo to phagocytic cells via phagocytosis. However, this approach carries significant technical challenges, particularly for protein cargos. We have focused on the development of nanoscale cocrystalline protein depots, known as PODS®, that contain protein cargos, including cytokines. Here, we show that PODS are readily phagocytosed by nonprofessional as well as professional phagocytic cells and have attributes, such as highly sustained release of cargo, that suggest potential utility for the study and exploitation of phagocytic cells for drug delivery. Monocytes and macrophages that ingest PODS retain normal characteristics including a robust chemotactic response. Moreover, the PODS-cytokine cargo is secreted by the loaded cell at a level sufficient to modulate the behavior of surrounding nonphagocytic cells. The results presented here demonstrate the potential of PODS nanoparticles as a novel molecular tool for the study and manipulation of phagocytic cells and for the development of Trojan horse immunotherapy strategies to treat cancer and other diseases.</p>","PeriodicalId":56832,"journal":{"name":"生物设计研究(英文)","volume":"2021 ","pages":"9816485"},"PeriodicalIF":0.0,"publicationDate":"2021-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10521757/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41241344","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-03-17eCollection Date: 2021-01-01DOI: 10.34133/2021/2968181
Zoe Swank, Sebastian J Maerkl
Forward engineering synthetic circuits are at the core of synthetic biology. Automated solutions will be required to facilitate circuit design and implementation. Circuit design is increasingly being automated with design software, but innovations in experimental automation are lagging behind. Microfluidic technologies made it possible to perform in vitro transcription-translation (tx-tl) reactions with increasing throughput and sophistication, enabling screening and characterization of individual circuit elements and complete circuit designs. Here, we developed an automated microfluidic cell-free processing unit (CFPU) that extends high-throughput screening capabilities to a steady-state reaction environment, which is essential for the implementation and analysis of more complex and dynamic circuits. The CFPU contains 280 chemostats that can be individually programmed with DNA circuits. Each chemostat is periodically supplied with tx-tl reagents, giving rise to sustained, long-term steady-state conditions. Using microfluidic pulse width modulation (PWM), the device is able to generate tx-tl reagent compositions in real time. The device has higher throughput, lower reagent consumption, and overall higher functionality than current chemostat devices. We applied this technology to map transcription factor-based repression under equilibrium conditions and implemented dynamic gene circuits switchable by small molecules. We expect the CFPU to help bridge the gap between circuit design and experimental automation for in vitro development of synthetic gene circuits.
{"title":"CFPU: A Cell-Free Processing Unit for High-Throughput, Automated In Vitro Circuit Characterization in Steady-State Conditions.","authors":"Zoe Swank, Sebastian J Maerkl","doi":"10.34133/2021/2968181","DOIUrl":"10.34133/2021/2968181","url":null,"abstract":"<p><p>Forward engineering synthetic circuits are at the core of synthetic biology. Automated solutions will be required to facilitate circuit design and implementation. Circuit design is increasingly being automated with design software, but innovations in experimental automation are lagging behind. Microfluidic technologies made it possible to perform <i>in vitro</i> transcription-translation (tx-tl) reactions with increasing throughput and sophistication, enabling screening and characterization of individual circuit elements and complete circuit designs. Here, we developed an automated microfluidic cell-free processing unit (CFPU) that extends high-throughput screening capabilities to a steady-state reaction environment, which is essential for the implementation and analysis of more complex and dynamic circuits. The CFPU contains 280 chemostats that can be individually programmed with DNA circuits. Each chemostat is periodically supplied with tx-tl reagents, giving rise to sustained, long-term steady-state conditions. Using microfluidic pulse width modulation (PWM), the device is able to generate tx-tl reagent compositions in real time. The device has higher throughput, lower reagent consumption, and overall higher functionality than current chemostat devices. We applied this technology to map transcription factor-based repression under equilibrium conditions and implemented dynamic gene circuits switchable by small molecules. We expect the CFPU to help bridge the gap between circuit design and experimental automation for <i>in vitro</i> development of synthetic gene circuits.</p>","PeriodicalId":56832,"journal":{"name":"生物设计研究(英文)","volume":"2021 ","pages":"2968181"},"PeriodicalIF":0.0,"publicationDate":"2021-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10521719/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41241339","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-12-05eCollection Date: 2020-01-01DOI: 10.34133/2020/8051764
Xiaohan Yang, June I Medford, Kasey Markel, Patrick M Shih, Henrique C De Paoli, Cong T Trinh, Alistair J McCormick, Raphael Ployet, Steven G Hussey, Alexander A Myburg, Poul Erik Jensen, Md Mahmudul Hassan, Jin Zhang, Wellington Muchero, Udaya C Kalluri, Hengfu Yin, Renying Zhuo, Paul E Abraham, Jin-Gui Chen, David J Weston, Yinong Yang, Degao Liu, Yi Li, Jessy Labbe, Bing Yang, Jun Hyung Lee, Robert W Cottingham, Stanton Martin, Mengzhu Lu, Timothy J Tschaplinski, Guoliang Yuan, Haiwei Lu, Priya Ranjan, Julie C Mitchell, Stan D Wullschleger, Gerald A Tuskan
Human life intimately depends on plants for food, biomaterials, health, energy, and a sustainable environment. Various plants have been genetically improved mostly through breeding, along with limited modification via genetic engineering, yet they are still not able to meet the ever-increasing needs, in terms of both quantity and quality, resulting from the rapid increase in world population and expected standards of living. A step change that may address these challenges would be to expand the potential of plants using biosystems design approaches. This represents a shift in plant science research from relatively simple trial-and-error approaches to innovative strategies based on predictive models of biological systems. Plant biosystems design seeks to accelerate plant genetic improvement using genome editing and genetic circuit engineering or create novel plant systems through de novo synthesis of plant genomes. From this perspective, we present a comprehensive roadmap of plant biosystems design covering theories, principles, and technical methods, along with potential applications in basic and applied plant biology research. We highlight current challenges, future opportunities, and research priorities, along with a framework for international collaboration, towards rapid advancement of this emerging interdisciplinary area of research. Finally, we discuss the importance of social responsibility in utilizing plant biosystems design and suggest strategies for improving public perception, trust, and acceptance.
{"title":"Plant Biosystems Design Research Roadmap 1.0.","authors":"Xiaohan Yang, June I Medford, Kasey Markel, Patrick M Shih, Henrique C De Paoli, Cong T Trinh, Alistair J McCormick, Raphael Ployet, Steven G Hussey, Alexander A Myburg, Poul Erik Jensen, Md Mahmudul Hassan, Jin Zhang, Wellington Muchero, Udaya C Kalluri, Hengfu Yin, Renying Zhuo, Paul E Abraham, Jin-Gui Chen, David J Weston, Yinong Yang, Degao Liu, Yi Li, Jessy Labbe, Bing Yang, Jun Hyung Lee, Robert W Cottingham, Stanton Martin, Mengzhu Lu, Timothy J Tschaplinski, Guoliang Yuan, Haiwei Lu, Priya Ranjan, Julie C Mitchell, Stan D Wullschleger, Gerald A Tuskan","doi":"10.34133/2020/8051764","DOIUrl":"10.34133/2020/8051764","url":null,"abstract":"<p><p>Human life intimately depends on plants for food, biomaterials, health, energy, and a sustainable environment. Various plants have been genetically improved mostly through breeding, along with limited modification via genetic engineering, yet they are still not able to meet the ever-increasing needs, in terms of both quantity and quality, resulting from the rapid increase in world population and expected standards of living. A step change that may address these challenges would be to expand the potential of plants using biosystems design approaches. This represents a shift in plant science research from relatively simple trial-and-error approaches to innovative strategies based on predictive models of biological systems. Plant biosystems design seeks to accelerate plant genetic improvement using genome editing and genetic circuit engineering or create novel plant systems through <i>de novo</i> synthesis of plant genomes. From this perspective, we present a comprehensive roadmap of plant biosystems design covering theories, principles, and technical methods, along with potential applications in basic and applied plant biology research. We highlight current challenges, future opportunities, and research priorities, along with a framework for international collaboration, towards rapid advancement of this emerging interdisciplinary area of research. Finally, we discuss the importance of social responsibility in utilizing plant biosystems design and suggest strategies for improving public perception, trust, and acceptance.</p>","PeriodicalId":56832,"journal":{"name":"生物设计研究(英文)","volume":"2020 ","pages":"8051764"},"PeriodicalIF":0.0,"publicationDate":"2020-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10521729/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41241333","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-10-10eCollection Date: 2020-01-01DOI: 10.34133/2020/3686791
Guoliang Yuan, Md Mahmudul Hassan, Degao Liu, Sung Don Lim, Won Cheol Yim, John C Cushman, Kasey Markel, Patrick M Shih, Haiwei Lu, David J Weston, Jin-Gui Chen, Timothy J Tschaplinski, Gerald A Tuskan, Xiaohan Yang
Global demand for food and bioenergy production has increased rapidly, while the area of arable land has been declining for decades due to damage caused by erosion, pollution, sea level rise, urban development, soil salinization, and water scarcity driven by global climate change. In order to overcome this conflict, there is an urgent need to adapt conventional agriculture to water-limited and hotter conditions with plant crop systems that display higher water-use efficiency (WUE). Crassulacean acid metabolism (CAM) species have substantially higher WUE than species performing C3 or C4 photosynthesis. CAM plants are derived from C3 photosynthesis ancestors. However, it is extremely unlikely that the C3 or C4 crop plants would evolve rapidly into CAM photosynthesis without human intervention. Currently, there is growing interest in improving WUE through transferring CAM into C3 crops. However, engineering a major metabolic plant pathway, like CAM, is challenging and requires a comprehensive deep understanding of the enzymatic reactions and regulatory networks in both C3 and CAM photosynthesis, as well as overcoming physiometabolic limitations such as diurnal stomatal regulation. Recent advances in CAM evolutionary genomics research, genome editing, and synthetic biology have increased the likelihood of successful acceleration of C3-to-CAM progression. Here, we first summarize the systems biology-level understanding of the molecular processes in the CAM pathway. Then, we review the principles of CAM engineering in an evolutionary context. Lastly, we discuss the technical approaches to accelerate the C3-to-CAM transition in plants using synthetic biology toolboxes.
{"title":"Biosystems Design to Accelerate C<sub>3</sub>-to-CAM Progression.","authors":"Guoliang Yuan, Md Mahmudul Hassan, Degao Liu, Sung Don Lim, Won Cheol Yim, John C Cushman, Kasey Markel, Patrick M Shih, Haiwei Lu, David J Weston, Jin-Gui Chen, Timothy J Tschaplinski, Gerald A Tuskan, Xiaohan Yang","doi":"10.34133/2020/3686791","DOIUrl":"10.34133/2020/3686791","url":null,"abstract":"<p><p>Global demand for food and bioenergy production has increased rapidly, while the area of arable land has been declining for decades due to damage caused by erosion, pollution, sea level rise, urban development, soil salinization, and water scarcity driven by global climate change. In order to overcome this conflict, there is an urgent need to adapt conventional agriculture to water-limited and hotter conditions with plant crop systems that display higher water-use efficiency (WUE). Crassulacean acid metabolism (CAM) species have substantially higher WUE than species performing C<sub>3</sub> or C<sub>4</sub> photosynthesis. CAM plants are derived from C<sub>3</sub> photosynthesis ancestors. However, it is extremely unlikely that the C<sub>3</sub> or C<sub>4</sub> crop plants would evolve rapidly into CAM photosynthesis without human intervention. Currently, there is growing interest in improving WUE through transferring CAM into C<sub>3</sub> crops. However, engineering a major metabolic plant pathway, like CAM, is challenging and requires a comprehensive deep understanding of the enzymatic reactions and regulatory networks in both C<sub>3</sub> and CAM photosynthesis, as well as overcoming physiometabolic limitations such as diurnal stomatal regulation. Recent advances in CAM evolutionary genomics research, genome editing, and synthetic biology have increased the likelihood of successful acceleration of C<sub>3</sub>-to-CAM progression. Here, we first summarize the systems biology-level understanding of the molecular processes in the CAM pathway. Then, we review the principles of CAM engineering in an evolutionary context. Lastly, we discuss the technical approaches to accelerate the C<sub>3</sub>-to-CAM transition in plants using synthetic biology toolboxes.</p>","PeriodicalId":56832,"journal":{"name":"生物设计研究(英文)","volume":"2020 ","pages":"3686791"},"PeriodicalIF":0.0,"publicationDate":"2020-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10521703/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41241329","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-09-12eCollection Date: 2020-01-01DOI: 10.34133/2020/1916789
William Rostain, Shensi Shen, Teresa Cordero, Guillermo Rodrigo, Alfonso Jaramillo
RNAs of different shapes and sizes, natural or synthetic, can regulate gene expression in prokaryotes and eukaryotes. Circular RNAs have recently appeared to be more widespread than previously thought, but their role in prokaryotes remains elusive. Here, by inserting a riboregulatory sequence within a group I permuted intron-exon ribozyme, we created a small noncoding RNA that self-splices to produce a circular riboregulator in Escherichia coli. We showed that the resulting riboregulator can trans-activate gene expression by interacting with a cis-repressed messenger RNA. We characterized the system with a fluorescent reporter and with an antibiotic resistance marker, and we modeled this novel posttranscriptional mechanism. This first reported example of a circular RNA regulating gene expression in E. coli adds to an increasing repertoire of RNA synthetic biology parts, and it highlights that topological molecules can play a role in the case of prokaryotic regulation.
{"title":"Engineering a Circular Riboregulator in <i>Escherichia coli</i>.","authors":"William Rostain, Shensi Shen, Teresa Cordero, Guillermo Rodrigo, Alfonso Jaramillo","doi":"10.34133/2020/1916789","DOIUrl":"10.34133/2020/1916789","url":null,"abstract":"<p><p>RNAs of different shapes and sizes, natural or synthetic, can regulate gene expression in prokaryotes and eukaryotes. Circular RNAs have recently appeared to be more widespread than previously thought, but their role in prokaryotes remains elusive. Here, by inserting a riboregulatory sequence within a group I permuted intron-exon ribozyme, we created a small noncoding RNA that self-splices to produce a circular riboregulator in <i>Escherichia coli</i>. We showed that the resulting riboregulator can <i>trans</i>-activate gene expression by interacting with a <i>cis</i>-repressed messenger RNA. We characterized the system with a fluorescent reporter and with an antibiotic resistance marker, and we modeled this novel posttranscriptional mechanism. This first reported example of a circular RNA regulating gene expression in <i>E. coli</i> adds to an increasing repertoire of RNA synthetic biology parts, and it highlights that topological molecules can play a role in the case of prokaryotic regulation.</p>","PeriodicalId":56832,"journal":{"name":"生物设计研究(英文)","volume":"2020 ","pages":"1916789"},"PeriodicalIF":0.0,"publicationDate":"2020-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10521646/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41241331","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-08-04eCollection Date: 2020-01-01DOI: 10.34133/2020/9078303
Haiwei Lu, Guoliang Yuan, Steven H Strauss, Timothy J Tschaplinski, Gerald A Tuskan, Jin-Gui Chen, Xiaohan Yang
For decades, plants have been the subject of genetic engineering to synthesize novel, value-added compounds. Polyhydroxyalkanoates (PHAs), a large class of biodegradable biopolymers naturally synthesized in eubacteria, are among the novel products that have been introduced to make use of plant acetyl-CoA metabolic pathways. It was hoped that renewable PHA production would help address environmental issues associated with the accumulation of nondegradable plastic wastes. However, after three decades of effort synthesizing PHAs, and in particular the simplest form polyhydroxybutyrate (PHB), and seeking to improve their production in plants, it has proven very difficult to reach a commercially profitable rate in a normally growing plant. This seems to be due to the growth defects associated with PHA production and accumulation in plant cells. Here, we review major breakthroughs that have been made in plant-based PHA synthesis using traditional genetic engineering approaches and discuss challenges that have been encountered. Then, from the point of view of plant synthetic biology, we provide perspectives on reprograming plant acetyl-CoA pathways for PHA production, with the goal of maximizing PHA yield while minimizing growth inhibition. Specifically, we suggest genetic elements that can be considered in genetic circuit design, approaches for nuclear genome and plastome modification, and the use of multiomics and mathematical modeling in understanding and restructuring plant metabolic pathways.
{"title":"Reconfiguring Plant Metabolism for Biodegradable Plastic Production.","authors":"Haiwei Lu, Guoliang Yuan, Steven H Strauss, Timothy J Tschaplinski, Gerald A Tuskan, Jin-Gui Chen, Xiaohan Yang","doi":"10.34133/2020/9078303","DOIUrl":"10.34133/2020/9078303","url":null,"abstract":"<p><p>For decades, plants have been the subject of genetic engineering to synthesize novel, value-added compounds. Polyhydroxyalkanoates (PHAs), a large class of biodegradable biopolymers naturally synthesized in eubacteria, are among the novel products that have been introduced to make use of plant acetyl-CoA metabolic pathways. It was hoped that renewable PHA production would help address environmental issues associated with the accumulation of nondegradable plastic wastes. However, after three decades of effort synthesizing PHAs, and in particular the simplest form polyhydroxybutyrate (PHB), and seeking to improve their production in plants, it has proven very difficult to reach a commercially profitable rate in a normally growing plant. This seems to be due to the growth defects associated with PHA production and accumulation in plant cells. Here, we review major breakthroughs that have been made in plant-based PHA synthesis using traditional genetic engineering approaches and discuss challenges that have been encountered. Then, from the point of view of plant synthetic biology, we provide perspectives on reprograming plant acetyl-CoA pathways for PHA production, with the goal of maximizing PHA yield while minimizing growth inhibition. Specifically, we suggest genetic elements that can be considered in genetic circuit design, approaches for nuclear genome and plastome modification, and the use of multiomics and mathematical modeling in understanding and restructuring plant metabolic pathways.</p>","PeriodicalId":56832,"journal":{"name":"生物设计研究(英文)","volume":"2020 ","pages":"9078303"},"PeriodicalIF":0.0,"publicationDate":"2020-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10530661/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41241336","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}