首页 > 最新文献

生物设计研究(英文)最新文献

英文 中文
Towards Plant Synthetic Genomics. 走向植物合成基因组学。
Q2 Agricultural and Biological Sciences Pub Date : 2023-10-16 eCollection Date: 2023-01-01 DOI: 10.34133/bdr.0020
Yuling Jiao, Ying Wang
Rapid advances in DNA synthesis techniques have allowed the assembly and engineering of viral and microbial genomes. Multicellular eukaryotic organisms, with their larger genomes, abundant transposons, and prevalent epigenetic regulation, present a new frontier to synthetic genomics. Plant synthetic genomics have long been proposed, and exciting progress has been made using the top-down approach. In this perspective, we propose applying bottom-up genome synthesis in multicellular plants, starting from the model moss Physcomitrium patens, in which homologous recombination, DNA delivery, and regeneration are possible, although further optimizations are necessary. We then discuss technical barriers, including genome assembly and plant transformation, associated with synthetic genomics in seed plants.
DNA合成技术的快速发展使病毒和微生物基因组的组装和工程成为可能。多细胞真核生物具有更大的基因组、丰富的转座子和普遍的表观遗传学调控,为合成基因组学提供了一个新的前沿。植物合成基因组学早已被提出,并且使用自上而下的方法已经取得了令人兴奋的进展。从这个角度来看,我们建议在多细胞植物中应用自下而上的基因组合成,从模式苔藓Physcomitrium patens开始,其中同源重组、DNA递送和再生是可能的,尽管需要进一步的优化。然后,我们讨论了与种子植物合成基因组学相关的技术障碍,包括基因组组装和植物转化。
{"title":"Towards Plant Synthetic Genomics.","authors":"Yuling Jiao, Ying Wang","doi":"10.34133/bdr.0020","DOIUrl":"10.34133/bdr.0020","url":null,"abstract":"Rapid advances in DNA synthesis techniques have allowed the assembly and engineering of viral and microbial genomes. Multicellular eukaryotic organisms, with their larger genomes, abundant transposons, and prevalent epigenetic regulation, present a new frontier to synthetic genomics. Plant synthetic genomics have long been proposed, and exciting progress has been made using the top-down approach. In this perspective, we propose applying bottom-up genome synthesis in multicellular plants, starting from the model moss Physcomitrium patens, in which homologous recombination, DNA delivery, and regeneration are possible, although further optimizations are necessary. We then discuss technical barriers, including genome assembly and plant transformation, associated with synthetic genomics in seed plants.","PeriodicalId":56832,"journal":{"name":"生物设计研究(英文)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10578142/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41241306","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
CRISPR-Cas-Based Engineering of Probiotics. 基于CRISPR-Cas的益生菌工程。
Q2 Agricultural and Biological Sciences Pub Date : 2023-09-29 eCollection Date: 2023-01-01 DOI: 10.34133/bdr.0017
Ling Liu, Shimaa Elsayed Helal, Nan Peng

Probiotics are the treasure of the microbiology fields. They have been widely used in the food industry, clinical treatment, and other fields. The equivocal health-promoting effects and the unknown action mechanism were the largest obstacles for further probiotic's developed applications. In recent years, various genome editing techniques have been developed and applied to explore the mechanisms and functional modifications of probiotics. As important genome editing tools, CRISPR-Cas systems that have opened new improvements in genome editing dedicated to probiotics. The high efficiency, flexibility, and specificity are the advantages of using CRISPR-Cas systems. Here, we summarize the classification and distribution of CRISPR-Cas systems in probiotics, as well as the editing tools developed on the basis of them. Then, we discuss the genome editing of probiotics based on CRISPR-Cas systems and the applications of the engineered probiotics through CRISPR-Cas systems. Finally, we proposed a design route for CRISPR systems that related to the genetically engineered probiotics.

益生菌是微生物学领域的瑰宝。它们已被广泛应用于食品工业、临床治疗等领域。模棱两可的健康促进作用和未知的作用机制是益生菌进一步发展应用的最大障碍。近年来,人们开发并应用了各种基因组编辑技术来探索益生菌的作用机制和功能修饰。作为重要的基因组编辑工具,CRISPR-Cas系统为益生菌基因组编辑开辟了新的改进。CRISPR-Cas系统具有高效、灵活、特异等优点。在这里,我们总结了CRISPR-Cas系统在益生菌中的分类和分布,以及在此基础上开发的编辑工具。然后,我们讨论了基于CRISPR-Cas系统的益生菌基因组编辑以及通过CRISPR-Cas系统工程化益生菌的应用。最后,我们提出了一条与基因工程益生菌相关的CRISPR系统的设计路线。
{"title":"CRISPR-Cas-Based Engineering of Probiotics.","authors":"Ling Liu,&nbsp;Shimaa Elsayed Helal,&nbsp;Nan Peng","doi":"10.34133/bdr.0017","DOIUrl":"10.34133/bdr.0017","url":null,"abstract":"<p><p>Probiotics are the treasure of the microbiology fields. They have been widely used in the food industry, clinical treatment, and other fields. The equivocal health-promoting effects and the unknown action mechanism were the largest obstacles for further probiotic's developed applications. In recent years, various genome editing techniques have been developed and applied to explore the mechanisms and functional modifications of probiotics. As important genome editing tools, CRISPR-Cas systems that have opened new improvements in genome editing dedicated to probiotics. The high efficiency, flexibility, and specificity are the advantages of using CRISPR-Cas systems. Here, we summarize the classification and distribution of CRISPR-Cas systems in probiotics, as well as the editing tools developed on the basis of them. Then, we discuss the genome editing of probiotics based on CRISPR-Cas systems and the applications of the engineered probiotics through CRISPR-Cas systems. Finally, we proposed a design route for CRISPR systems that related to the genetically engineered probiotics.</p>","PeriodicalId":56832,"journal":{"name":"生物设计研究(英文)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10541000/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41241385","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Revealing the Host-Dependent Nature of an Engineered Genetic Inverter in Concordance with Physiology. 揭示与生理学相一致的工程遗传逆变器的宿主依赖性。
Q2 Agricultural and Biological Sciences Pub Date : 2023-08-16 eCollection Date: 2023-01-01 DOI: 10.34133/bdr.0016
Dennis Tin Chat Chan, Geoff S Baldwin, Hans C Bernstein

Broad-host-range synthetic biology is an emerging frontier that aims to expand our current engineerable domain of microbial hosts for biodesign applications. As more novel species are brought to "model status," synthetic biologists are discovering that identically engineered genetic circuits can exhibit different performances depending on the organism it operates within, an observation referred to as the "chassis effect." It remains a major challenge to uncover which genome-encoded and biological determinants will underpin chassis effects that govern the performance of engineered genetic devices. In this study, we compared model and novel bacterial hosts to ask whether phylogenomic relatedness or similarity in host physiology is a better predictor of genetic circuit performance. This was accomplished using a comparative framework based on multivariate statistical approaches to systematically demonstrate the chassis effect and characterize the performance dynamics of a genetic inverter circuit operating within 6 Gammaproteobacteria. Our results solidify the notion that genetic devices are strongly impacted by the host context. Furthermore, we formally determined that hosts exhibiting more similar metrics of growth and molecular physiology also exhibit more similar performance of the genetic inverter, indicating that specific bacterial physiology underpins measurable chassis effects. The result of this study contributes to the field of broad-host-range synthetic biology by lending increased predictive power to the implementation of genetic devices in less-established microbial hosts.

广泛的宿主合成生物学是一个新兴的前沿领域,旨在扩大我们目前的微生物宿主工程领域,用于生物设计应用。随着越来越多的新物种被带到“模型状态”,合成生物学家发现,相同工程的遗传回路可以根据其运行的生物体表现出不同的性能,这一观察结果被称为“底盘效应”。“揭示哪些基因组编码和生物决定因素将支撑控制工程遗传设备性能的底盘效应仍然是一个重大挑战。在这项研究中,我们比较了模型和新型细菌宿主,以询问宿主生理学中的系统发育组学相关性或相似性是否是遗传回路性能的更好预测指标基于多变量统计方法的辅助框架,系统地证明了底盘效应,并表征了在6个伽马射线细菌中运行的遗传逆变器电路的性能动力学。我们的研究结果巩固了遗传装置受到宿主环境强烈影响的观点。此外,我们正式确定,表现出更相似的生长和分子生理指标的宿主也表现出更类似的遗传逆变器性能,这表明特定的细菌生理学是可测量的底盘效应的基础。这项研究的结果为在不太成熟的微生物宿主中实施遗传装置提供了更高的预测能力,从而为广泛的宿主合成生物学领域做出了贡献。
{"title":"Revealing the Host-Dependent Nature of an Engineered Genetic Inverter in Concordance with Physiology.","authors":"Dennis Tin Chat Chan,&nbsp;Geoff S Baldwin,&nbsp;Hans C Bernstein","doi":"10.34133/bdr.0016","DOIUrl":"https://doi.org/10.34133/bdr.0016","url":null,"abstract":"<p><p>Broad-host-range synthetic biology is an emerging frontier that aims to expand our current engineerable domain of microbial hosts for biodesign applications. As more novel species are brought to \"model status,\" synthetic biologists are discovering that identically engineered genetic circuits can exhibit different performances depending on the organism it operates within, an observation referred to as the \"chassis effect.\" It remains a major challenge to uncover which genome-encoded and biological determinants will underpin chassis effects that govern the performance of engineered genetic devices. In this study, we compared model and novel bacterial hosts to ask whether phylogenomic relatedness or similarity in host physiology is a better predictor of genetic circuit performance. This was accomplished using a comparative framework based on multivariate statistical approaches to systematically demonstrate the chassis effect and characterize the performance dynamics of a genetic inverter circuit operating within 6 Gammaproteobacteria. Our results solidify the notion that genetic devices are strongly impacted by the host context. Furthermore, we formally determined that hosts exhibiting more similar metrics of growth and molecular physiology also exhibit more similar performance of the genetic inverter, indicating that specific bacterial physiology underpins measurable chassis effects. The result of this study contributes to the field of broad-host-range synthetic biology by lending increased predictive power to the implementation of genetic devices in less-established microbial hosts.</p>","PeriodicalId":56832,"journal":{"name":"生物设计研究(英文)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10432152/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41241393","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Plant Promoters and Terminators for High-Precision Bioengineering. 高精度生物工程的植物启动子和终止子。
Q2 Agricultural and Biological Sciences Pub Date : 2023-07-07 eCollection Date: 2023-01-01 DOI: 10.34133/bdr.0013
Emily G Brooks, Estefania Elorriaga, Yang Liu, James R Duduit, Guoliang Yuan, Chung-Jui Tsai, Gerald A Tuskan, Thomas G Ranney, Xiaohan Yang, Wusheng Liu

High-precision bioengineering and synthetic biology require fine-tuning gene expression at both transcriptional and posttranscriptional levels. Gene transcription is tightly regulated by promoters and terminators. Promoters determine the timing, tissues and cells, and levels of the expression of genes. Terminators mediate transcription termination of genes and affect mRNA levels posttranscriptionally, e.g., the 3'-end processing, stability, translation efficiency, and nuclear to cytoplasmic export of mRNAs. The promoter and terminator combination affects gene expression. In the present article, we review the function and features of plant core promoters, proximal and distal promoters, and terminators, and their effects on and benchmarking strategies for regulating gene expression.

高精度生物工程和合成生物学需要在转录和转录后水平上微调基因表达。基因转录受到启动子和终止子的严格调控。启动子决定基因表达的时间、组织和细胞以及水平。终止子介导基因的转录终止,并在转录后影响信使核糖核酸水平,例如信使核糖核酸的3’端处理、稳定性、翻译效率和细胞核到细胞质的输出。启动子和终止子的组合影响基因表达。在本文中,我们综述了植物核心启动子、近端和远端启动子以及终止子的功能和特征,以及它们对调节基因表达的影响和基准策略。
{"title":"Plant Promoters and Terminators for High-Precision Bioengineering.","authors":"Emily G Brooks, Estefania Elorriaga, Yang Liu, James R Duduit, Guoliang Yuan, Chung-Jui Tsai, Gerald A Tuskan, Thomas G Ranney, Xiaohan Yang, Wusheng Liu","doi":"10.34133/bdr.0013","DOIUrl":"10.34133/bdr.0013","url":null,"abstract":"<p><p>High-precision bioengineering and synthetic biology require fine-tuning gene expression at both transcriptional and posttranscriptional levels. Gene transcription is tightly regulated by promoters and terminators. Promoters determine the timing, tissues and cells, and levels of the expression of genes. Terminators mediate transcription termination of genes and affect mRNA levels posttranscriptionally, e.g., the 3'-end processing, stability, translation efficiency, and nuclear to cytoplasmic export of mRNAs. The promoter and terminator combination affects gene expression. In the present article, we review the function and features of plant core promoters, proximal and distal promoters, and terminators, and their effects on and benchmarking strategies for regulating gene expression.</p>","PeriodicalId":56832,"journal":{"name":"生物设计研究(英文)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10328392/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41241391","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Atligator Web: A Graphical User Interface for Analysis and Design of Protein-Peptide Interactions. Atligator Web:用于分析和设计蛋白质-肽相互作用的图形用户界面。
Q2 Agricultural and Biological Sciences Pub Date : 2023-05-04 eCollection Date: 2023-01-01 DOI: 10.34133/bdr.0011
Josef Paul Kynast, Birte Höcker

A key functionality of proteins is based on their ability to form interactions with other proteins or peptides. These interactions are neither easily described nor fully understood, which is why the design of specific protein-protein interaction interfaces remains a challenge for protein engineering. We recently developed the software ATLIGATOR to extract common interaction patterns between different types of amino acids and store them in a database. The tool enables the user to better understand frequent interaction patterns and find groups of interactions. Furthermore, frequent motifs can be directly transferred from the database to a user-defined scaffold as a starting point for the engineering of new binding capabilities. Since three-dimensional visualization is a crucial part of ATLIGATOR, we created ATLIGATOR web-a web server offering an intuitive graphical user interface (GUI) available at https://atligator.uni-bayreuth.de. This new interface empowers users to apply ATLIGATOR by providing easy access with having all parts directly connected. Moreover, we extended the web by a design functionality so that, overall, ATLIGATOR web facilitates the use of ATLIGATOR with a more intuitive UI and advanced design options.

蛋白质的一个关键功能是基于它们与其他蛋白质或肽形成相互作用的能力。这些相互作用既不容易描述,也不完全理解,这就是为什么特定蛋白质-蛋白质相互作用界面的设计仍然是蛋白质工程的挑战。我们最近开发了ATLIGATOR软件,用于提取不同类型氨基酸之间的常见相互作用模式,并将其存储在数据库中。该工具使用户能够更好地理解频繁的交互模式并找到交互组。此外,频繁的基序可以直接从数据库转移到用户定义的支架上,作为新结合能力工程的起点。由于三维可视化是ATLIGATOR的重要组成部分,我们创建了ATLIGATORweb——一个提供直观图形用户界面(GUI)的web服务器,可在https://atligator.uni-bayreuth.de.这个新的接口使用户能够通过直接连接所有部件来轻松访问ATLIGATOR。此外,我们通过设计功能扩展了web,因此,总体而言,ATLIGATOR web通过更直观的UI和高级设计选项方便了ATLIGATOR的使用。
{"title":"Atligator Web: A Graphical User Interface for Analysis and Design of Protein-Peptide Interactions.","authors":"Josef Paul Kynast,&nbsp;Birte Höcker","doi":"10.34133/bdr.0011","DOIUrl":"https://doi.org/10.34133/bdr.0011","url":null,"abstract":"<p><p>A key functionality of proteins is based on their ability to form interactions with other proteins or peptides. These interactions are neither easily described nor fully understood, which is why the design of specific protein-protein interaction interfaces remains a challenge for protein engineering. We recently developed the software ATLIGATOR to extract common interaction patterns between different types of amino acids and store them in a database. The tool enables the user to better understand frequent interaction patterns and find groups of interactions. Furthermore, frequent motifs can be directly transferred from the database to a user-defined scaffold as a starting point for the engineering of new binding capabilities. Since three-dimensional visualization is a crucial part of ATLIGATOR, we created ATLIGATOR web-a web server offering an intuitive graphical user interface (GUI) available at https://atligator.uni-bayreuth.de. This new interface empowers users to apply ATLIGATOR by providing easy access with having all parts directly connected. Moreover, we extended the web by a design functionality so that, overall, ATLIGATOR web facilitates the use of ATLIGATOR with a more intuitive UI and advanced design options.</p>","PeriodicalId":56832,"journal":{"name":"生物设计研究(英文)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10521702/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41241384","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring the Trans-Cleavage Activity with Rolling Circle Amplification for Fast Detection of miRNA. 用滚环扩增技术探索miRNA的反式切割活性。
Q2 Agricultural and Biological Sciences Pub Date : 2023-03-27 eCollection Date: 2023-01-01 DOI: 10.34133/bdr.0010
Chenqi Niu, Juewen Liu, Xinhui Xing, Chong Zhang

MicroRNAs (miRNAs) are a class of endogenous short noncoding RNA. They regulate gene expression and function, essential to biological processes. It is necessary to develop an efficient detection method to determine these valuable biomarkers for the diagnosis of cancers. In this paper, we proposed a general and rapid method for sensitive and quantitative detection of miRNA by combining CRISPR-Cas12a and rolling circle amplification (RCA) with the precircularized probe. Eventually, the detection of miRNA-21 could be completed in 70 min with a limit of detection of 8.1 pM with high specificity. The reaction time was reduced by almost 4 h from more than 5 h to 70 min, which makes detection more efficient. This design improves the efficiency of CRISPR-Cas and RCA-based sensing strategy and shows great potential in lab-based detection and point-of-care test.

微小RNA(miRNA)是一类内源性短非编码RNA。它们调节对生物过程至关重要的基因表达和功能。有必要开发一种有效的检测方法来确定这些对癌症诊断有价值的生物标志物。在本文中,我们提出了一种通用而快速的方法,通过将CRISPR-Cas12a和滚圈扩增(RCA)与预循环探针相结合来灵敏和定量地检测miRNA。最终,miRNA-21的检测可以在70分钟内完成,具有高特异性的检测极限为8.1pM。反应时间从超过5小时减少到70分钟,几乎减少了4小时,这使得检测更加有效。该设计提高了基于CRISPR-Cas和RCA的传感策略的效率,并在基于实验室的检测和护理点测试中显示出巨大的潜力。
{"title":"Exploring the Trans-Cleavage Activity with Rolling Circle Amplification for Fast Detection of miRNA.","authors":"Chenqi Niu,&nbsp;Juewen Liu,&nbsp;Xinhui Xing,&nbsp;Chong Zhang","doi":"10.34133/bdr.0010","DOIUrl":"https://doi.org/10.34133/bdr.0010","url":null,"abstract":"<p><p>MicroRNAs (miRNAs) are a class of endogenous short noncoding RNA. They regulate gene expression and function, essential to biological processes. It is necessary to develop an efficient detection method to determine these valuable biomarkers for the diagnosis of cancers. In this paper, we proposed a general and rapid method for sensitive and quantitative detection of miRNA by combining CRISPR-Cas12a and rolling circle amplification (RCA) with the precircularized probe. Eventually, the detection of miRNA-21 could be completed in 70 min with a limit of detection of 8.1 pM with high specificity. The reaction time was reduced by almost 4 h from more than 5 h to 70 min, which makes detection more efficient. This design improves the efficiency of CRISPR-Cas and RCA-based sensing strategy and shows great potential in lab-based detection and point-of-care test.</p>","PeriodicalId":56832,"journal":{"name":"生物设计研究(英文)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10085249/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41241388","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
SLICER: A Seamless Gene Deletion Method for Deinococcus radiodurans. SLICER:一种针对耐辐射球菌的无缝基因缺失方法。
Q2 Agricultural and Biological Sciences Pub Date : 2023-03-15 eCollection Date: 2023-01-01 DOI: 10.34133/bdr.0009
Stephanie L Brumwell, Katherine D Van Belois, Daniel P Nucifora, Bogumil J Karas

Deinococcus radiodurans' high resistance to various stressors combined with its ability to utilize sustainable carbon sources makes it an attractive bacterial chassis for synthetic biology and industrial bioproduction. However, to fully harness the capabilities of this microbe, further strain engineering and tool development are required. Methods for creating seamless genome modifications are an essential part of the microbial genetic toolkit to enable strain engineering. Here, we report the development of the SLICER method, which can be used to create seamless gene deletions in D. radiodurans. This process involves (a) integration of a seamless deletion cassette replacing a target gene, (b) introduction of the pSLICER plasmid to mediate cassette excision by I-SceI endonuclease cleavage and homologous recombination, and (c) curing of the helper plasmid. We demonstrate the utility of SLICER for creating multiple gene deletions in D. radiodurans by sequentially targeting 5 putative restriction-modification system genes, recycling the same selective and screening markers for each subsequent deletion. While we observed no significant increase in transformation efficiency for most of the knockout strains, we demonstrated SLICER as a promising method to create a fully restriction-minus strain to expand the synthetic biology applications of D. radiodurans, including its potential as an in vivo DNA assembly platform.

耐辐射球菌对各种压力源的高抵抗力,加上其利用可持续碳源的能力,使其成为合成生物学和工业生物生产的有吸引力的细菌底盘。然而,要充分利用这种微生物的能力,还需要进一步的菌株工程和工具开发。创建无缝基因组修饰的方法是实现菌株工程的微生物遗传工具包的重要组成部分。在这里,我们报道了SLICER方法的发展,该方法可用于在耐辐射D.中产生无缝基因缺失。该过程包括(a)整合取代靶基因的无缝缺失盒,(b)引入pSLICER质粒以通过I-SceI核酸内切酶切割和同源重组介导盒切除,以及(c)固化辅助质粒。我们通过顺序靶向5个假定的限制性修饰系统基因,为每个后续的缺失回收相同的选择性和筛选标记,证明了SLICER在耐辐射D.中产生多个基因缺失的实用性。虽然我们没有观察到大多数敲除菌株的转化效率显著提高,但我们证明SLICER是一种很有前途的方法,可以创建一种完全限制性的负菌株,以扩大耐辐射D.radiodurans的合成生物学应用,包括其作为体内DNA组装平台的潜力。
{"title":"SLICER: A Seamless Gene Deletion Method for <i>Deinococcus radiodurans</i>.","authors":"Stephanie L Brumwell,&nbsp;Katherine D Van Belois,&nbsp;Daniel P Nucifora,&nbsp;Bogumil J Karas","doi":"10.34133/bdr.0009","DOIUrl":"10.34133/bdr.0009","url":null,"abstract":"<p><p><i>Deinococcus radiodurans'</i> high resistance to various stressors combined with its ability to utilize sustainable carbon sources makes it an attractive bacterial chassis for synthetic biology and industrial bioproduction. However, to fully harness the capabilities of this microbe, further strain engineering and tool development are required. Methods for creating seamless genome modifications are an essential part of the microbial genetic toolkit to enable strain engineering. Here, we report the development of the SLICER method, which can be used to create seamless gene deletions in <i>D. radiodurans.</i> This process involves (a) integration of a seamless deletion cassette replacing a target gene, (b) introduction of the pSLICER plasmid to mediate cassette excision by I-<i>Sce</i>I endonuclease cleavage and homologous recombination, and (c) curing of the helper plasmid<i>.</i> We demonstrate the utility of SLICER for creating multiple gene deletions in <i>D. radiodurans</i> by sequentially targeting 5 putative restriction-modification system genes, recycling the same selective and screening markers for each subsequent deletion. While we observed no significant increase in transformation efficiency for most of the knockout strains, we demonstrated SLICER as a promising method to create a fully restriction-minus strain to expand the synthetic biology applications of <i>D. radiodurans,</i> including its potential as an in vivo DNA assembly platform.</p>","PeriodicalId":56832,"journal":{"name":"生物设计研究(英文)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10085245/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41241394","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Peptide Variant Detection by a Living Yeast Biosensor via an Epitope-Selective Protease. 活酵母生物传感器通过表位选择性蛋白酶检测肽变体。
Q2 Agricultural and Biological Sciences Pub Date : 2023-03-15 eCollection Date: 2023-01-01 DOI: 10.34133/bdr.0003
Tea Crnković, Benjamin J Bokor, Mead E Lockwood, Virginia W Cornish

We previously demonstrated that we could hijack the fungal pheromone signaling pathway to provide a living yeast biosensor where peptide biomarkers were recognized by G-protein-coupled receptors and engineered to transcribe a readout. Here, we demonstrated that the protease could be reintroduced to the biosensor to provide a simple mechanism for distinguishing single-amino-acid changes in peptide ligands that, otherwise, would likely be difficult to detect using binding-based assays. We characterized the dose-response curves for five fungal pheromone G-protein-coupled receptors, peptides, and proteases-Saccharomyces cerevisiae, Candida albicans, Schizosaccharomyces pombe, Schizosaccharomyces octosporus, and Schizosaccharomyces japonicus. Alanine scanning was carried out for the most selective of these-S. cerevisiae and C. albicans-with and without the protease. Two peptide variants were discovered, which showed diminished cleavage by the protease (CaPep2A and CaPep2A13A). Those peptides were then distinguished by utilizing the biosensor strains with and without the protease, which selectively cleaved and altered the apparent concentration of peptide required for half-maximal activation for 2 peptides-CaPep and CaPep13A, respectively-by more than one order of magnitude. These results support the hypothesis that the living yeast biosensor with a sequence-specific protease can translate single-amino-acid changes into more than one order of magnitude apparent shift in the concentration of peptide required for half-maximal activation. With further engineering by computational modeling and directed evolution, the biosensor could likely distinguish a wide variety of peptide sequences beyond the alanine scanning carried out here. In the future, we envision incorporating proteases into our living yeast biosensor for use as a point of care diagnostic, a scalable communication language, and other applications.

我们之前证明,我们可以劫持真菌信息素信号通路,以提供一种活酵母生物传感器,在该生物传感器中,肽生物标志物被G蛋白偶联受体识别,并被改造为转录读数。在这里,我们证明了蛋白酶可以重新引入生物传感器,以提供一种简单的机制来区分肽配体中的单个氨基酸变化,否则,使用基于结合的分析可能很难检测到这些变化。我们表征了五种真菌信息素G蛋白偶联受体、肽和蛋白酶的剂量-反应曲线——酿酒酵母、白色念珠菌、绒球裂殖酵母、八孢裂殖酵母和日本裂殖酵母。对这些S中最具选择性的进行丙氨酸扫描。酿酒酵母和白色念珠菌。发现了两种肽变体,其显示出蛋白酶的切割减少(CaPep2A和CaPep2A13A)。然后,通过利用具有和不具有蛋白酶的生物传感器菌株来区分这些肽,蛋白酶选择性地切割并将2个肽CaPep和CaPep13A的半最大激活所需的肽的表观浓度分别改变超过一个数量级。这些结果支持这样一种假设,即具有序列特异性蛋白酶的活酵母生物传感器可以将单个氨基酸的变化转化为半最大激活所需的肽浓度的一个以上数量级的明显变化。通过计算建模和定向进化进行进一步的工程设计,生物传感器可能会区分这里进行的丙氨酸扫描之外的各种肽序列。未来,我们设想将蛋白酶结合到我们的活酵母生物传感器中,用作护理点诊断、可扩展的通信语言和其他应用。
{"title":"Peptide Variant Detection by a Living Yeast Biosensor via an Epitope-Selective Protease.","authors":"Tea Crnković,&nbsp;Benjamin J Bokor,&nbsp;Mead E Lockwood,&nbsp;Virginia W Cornish","doi":"10.34133/bdr.0003","DOIUrl":"https://doi.org/10.34133/bdr.0003","url":null,"abstract":"<p><p>We previously demonstrated that we could hijack the fungal pheromone signaling pathway to provide a living yeast biosensor where peptide biomarkers were recognized by G-protein-coupled receptors and engineered to transcribe a readout. Here, we demonstrated that the protease could be reintroduced to the biosensor to provide a simple mechanism for distinguishing single-amino-acid changes in peptide ligands that, otherwise, would likely be difficult to detect using binding-based assays. We characterized the dose-response curves for five fungal pheromone G-protein-coupled receptors, peptides, and proteases<i>-Saccharomyces cerevisiae</i>, <i>Candida albicans</i>, <i>Schizosaccharomyces pombe</i>, <i>Schizosaccharomyces octosporus</i>, and <i>Schizosaccharomyces japonicus</i>. Alanine scanning was carried out for the most selective of these-<i>S. cerevisiae</i> and <i>C. albicans</i>-with and without the protease. Two peptide variants were discovered, which showed diminished cleavage by the protease (CaPep2A and CaPep2A13A). Those peptides were then distinguished by utilizing the biosensor strains with and without the protease, which selectively cleaved and altered the apparent concentration of peptide required for half-maximal activation for 2 peptides-CaPep and CaPep13A, respectively-by more than one order of magnitude. These results support the hypothesis that the living yeast biosensor with a sequence-specific protease can translate single-amino-acid changes into more than one order of magnitude apparent shift in the concentration of peptide required for half-maximal activation. With further engineering by computational modeling and directed evolution, the biosensor could likely distinguish a wide variety of peptide sequences beyond the alanine scanning carried out here. In the future, we envision incorporating proteases into our living yeast biosensor for use as a point of care diagnostic, a scalable communication language, and other applications.</p>","PeriodicalId":56832,"journal":{"name":"生物设计研究(英文)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10084949/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41241389","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Need for Biosecurity Education in Biotechnology Curricula. 生物技术课程中生物安全教育的必要性。
Q2 Agricultural and Biological Sciences Pub Date : 2023-03-14 eCollection Date: 2023-01-01 DOI: 10.34133/bdr.0008
Ying-Chiang J Lee, Xuanqi Chen, Siddharth Marwaha

The growth of biotechnology in recent decades and the dual-use nature of most bioscience research are making their misuse, or accidental misuse or release, more likely and present as threats to biosecurity. A proactive approach is through educating the next generation of scientists to be more security conscious. However, current educational and professional programs in biosecurity are lacking. In this perspective, we recommend that biosecurity educational opportunities should be implemented and expanded for undergraduate and graduate students who will likely use one or more methods in the field of biotechnology. We then propose that biosecurity education is a key factor in a path toward sustainable and safe research. Finally, a set of 17 biosecurity competencies organized into 6 distinct themes is outlined.

近几十年来生物技术的发展和大多数生物科学研究的双重用途使其滥用或意外滥用或释放更有可能成为对生物安全的威胁。一种积极主动的方法是通过教育下一代科学家提高安全意识。然而,目前缺乏生物安全方面的教育和专业方案。从这个角度来看,我们建议为可能在生物技术领域使用一种或多种方法的本科生和研究生提供并扩大生物安全教育机会。然后,我们提出,生物安全教育是实现可持续和安全研究的关键因素。最后,概述了一套17项生物安全能力,分为6个不同的主题。
{"title":"The Need for Biosecurity Education in Biotechnology Curricula.","authors":"Ying-Chiang J Lee,&nbsp;Xuanqi Chen,&nbsp;Siddharth Marwaha","doi":"10.34133/bdr.0008","DOIUrl":"https://doi.org/10.34133/bdr.0008","url":null,"abstract":"<p><p>The growth of biotechnology in recent decades and the dual-use nature of most bioscience research are making their misuse, or accidental misuse or release, more likely and present as threats to biosecurity. A proactive approach is through educating the next generation of scientists to be more security conscious. However, current educational and professional programs in biosecurity are lacking. In this perspective, we recommend that biosecurity educational opportunities should be implemented and expanded for undergraduate and graduate students who will likely use one or more methods in the field of biotechnology. We then propose that biosecurity education is a key factor in a path toward sustainable and safe research. Finally, a set of 17 biosecurity competencies organized into 6 distinct themes is outlined.</p>","PeriodicalId":56832,"journal":{"name":"生物设计研究(英文)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10085291/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41241395","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Engineering Nitrogenases for Synthetic Nitrogen Fixation: From Pathway Engineering to Directed Evolution. 用于合成固氮的工程固氮酶:从路径工程到定向进化。
Q2 Agricultural and Biological Sciences Pub Date : 2023-02-07 eCollection Date: 2023-01-01 DOI: 10.34133/bdr.0005
Emily M Bennett, James W Murray, Mark Isalan

Globally, agriculture depends on industrial nitrogen fertilizer to improve crop growth. Fertilizer production consumes fossil fuels and contributes to environmental nitrogen pollution. A potential solution would be to harness nitrogenases-enzymes capable of converting atmospheric nitrogen N2 to NH3 in ambient conditions. It is therefore a major goal of synthetic biology to engineer functional nitrogenases into crop plants, or bacteria that form symbiotic relationships with crops, to support growth and reduce dependence on industrially produced fertilizer. This review paper highlights recent work toward understanding the functional requirements for nitrogenase expression and manipulating nitrogenase gene expression in heterologous hosts to improve activity and oxygen tolerance and potentially to engineer synthetic symbiotic relationships with plants.

在全球范围内,农业依赖工业氮肥来改善作物生长。化肥生产消耗化石燃料,造成环境氮污染。一种潜在的解决方案是利用能够在环境条件下将大气中的氮气N2转化为NH3的固氮酶。因此,合成生物学的一个主要目标是将功能性固氮酶转化为作物植物或与作物形成共生关系的细菌,以支持生长并减少对工业生产肥料的依赖。这篇综述文章强调了最近在理解固氮酶表达的功能要求和操纵异源宿主中的固氮酶基因表达以提高活性和耐氧性方面的工作,并有可能设计与植物的合成共生关系。
{"title":"Engineering Nitrogenases for Synthetic Nitrogen Fixation: From Pathway Engineering to Directed Evolution.","authors":"Emily M Bennett,&nbsp;James W Murray,&nbsp;Mark Isalan","doi":"10.34133/bdr.0005","DOIUrl":"https://doi.org/10.34133/bdr.0005","url":null,"abstract":"<p><p>Globally, agriculture depends on industrial nitrogen fertilizer to improve crop growth. Fertilizer production consumes fossil fuels and contributes to environmental nitrogen pollution. A potential solution would be to harness nitrogenases-enzymes capable of converting atmospheric nitrogen N<sub>2</sub> to NH<sub>3</sub> in ambient conditions. It is therefore a major goal of synthetic biology to engineer functional nitrogenases into crop plants, or bacteria that form symbiotic relationships with crops, to support growth and reduce dependence on industrially produced fertilizer. This review paper highlights recent work toward understanding the functional requirements for nitrogenase expression and manipulating nitrogenase gene expression in heterologous hosts to improve activity and oxygen tolerance and potentially to engineer synthetic symbiotic relationships with plants.</p>","PeriodicalId":56832,"journal":{"name":"生物设计研究(英文)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10521693/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41241387","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
期刊
生物设计研究(英文)
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1