首页 > 最新文献

Functional & Integrative Genomics最新文献

英文 中文
FANCD2 genome binding is nonrandom and is enriched at large transcriptionally active neural genes prone to copy number variation FANCD2 与基因组的结合是非随机的,并且富集在容易发生拷贝数变异的大型转录活跃神经基因上。
IF 3.9 4区 生物学 Q1 GENETICS & HEREDITY Pub Date : 2024-10-04 DOI: 10.1007/s10142-024-01453-5
Justin L. Blaize, Jada Lauren N. Garzon, Niall G. Howlett

Fanconi anemia (FA) is a rare genetic disease characterized by congenital abnormalities and increased risk for bone marrow failure and cancer. Central nervous system defects, including acute and irreversible loss of neurological function and white matter lesions with calcifications, have become increasingly recognized among FA patients, and are collectively referred to as Fanconi Anemia Neurological Syndrome or FANS. The molecular etiology of FANS is poorly understood. In this study, we have used a functional integrative genomics approach to further define the function of the FANCD2 protein and FA pathway. Combined analysis of new and existing FANCD2 ChIP-seq datasets demonstrates that FANCD2 binds nonrandomly throughout the genome with binding enriched at transcription start sites and in broad regions spanning protein-coding gene bodies. FANCD2 demonstrates a strong preference for large neural genes involved in neuronal differentiation, synapse function, and cell adhesion, with many of these genes implicated in neurodevelopmental and neuropsychiatric disorders. Furthermore, FANCD2 binds to regions of the genome that replicate late, undergo mitotic DNA synthesis (MiDAS) under conditions of replication stress, and are hotspots for copy number variation. Our analysis describes an important targeted role for FANCD2 and the FA pathway in the maintenance of large neural gene stability.

范可尼贫血(Fanconi anemia,FA)是一种罕见的遗传性疾病,其特点是先天畸形、骨髓衰竭和癌症风险增加。中枢神经系统缺陷,包括急性和不可逆的神经功能丧失以及伴有钙化的白质病变,在范可尼贫血患者中已被越来越多地发现,并统称为范可尼贫血神经综合征或FANS。人们对 FANS 的分子病因知之甚少。在本研究中,我们采用功能整合基因组学方法进一步明确了 FANCD2 蛋白和 FA 通路的功能。对新的和现有的 FANCD2 ChIP-seq 数据集的综合分析表明,FANCD2 在整个基因组中的结合是非随机的,其结合富集在转录起始位点和跨越蛋白编码基因体的广泛区域。FANCD2 对涉及神经元分化、突触功能和细胞粘附的大型神经基因表现出强烈的偏好,其中许多基因与神经发育和神经精神疾病有关。此外,FANCD2 与复制较晚的基因组区域结合,在复制压力条件下进行有丝分裂 DNA 合成(MiDAS),并且是拷贝数变异的热点。我们的分析描述了 FANCD2 和 FA 通路在维持大神经基因稳定性方面的重要靶向作用。
{"title":"FANCD2 genome binding is nonrandom and is enriched at large transcriptionally active neural genes prone to copy number variation","authors":"Justin L. Blaize,&nbsp;Jada Lauren N. Garzon,&nbsp;Niall G. Howlett","doi":"10.1007/s10142-024-01453-5","DOIUrl":"10.1007/s10142-024-01453-5","url":null,"abstract":"<div><p>Fanconi anemia (FA) is a rare genetic disease characterized by congenital abnormalities and increased risk for bone marrow failure and cancer. Central nervous system defects, including acute and irreversible loss of neurological function and white matter lesions with calcifications, have become increasingly recognized among FA patients, and are collectively referred to as Fanconi Anemia Neurological Syndrome or FANS. The molecular etiology of FANS is poorly understood. In this study, we have used a functional integrative genomics approach to further define the function of the FANCD2 protein and FA pathway. Combined analysis of new and existing FANCD2 ChIP-seq datasets demonstrates that FANCD2 binds nonrandomly throughout the genome with binding enriched at transcription start sites and in broad regions spanning protein-coding gene bodies. FANCD2 demonstrates a strong preference for large neural genes involved in neuronal differentiation, synapse function, and cell adhesion, with many of these genes implicated in neurodevelopmental and neuropsychiatric disorders. Furthermore, FANCD2 binds to regions of the genome that replicate late, undergo mitotic DNA synthesis (MiDAS) under conditions of replication stress, and are hotspots for copy number variation. Our analysis describes an important targeted role for FANCD2 and the FA pathway in the maintenance of large neural gene stability.</p></div>","PeriodicalId":574,"journal":{"name":"Functional & Integrative Genomics","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11452531/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142370673","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Complete chloroplast genome sequence of Artemisia littoricola (Asteraceae) from Dokdo Island Korea: genome structure, phylogenetic analysis, and biogeography study 韩国独岛蒿属植物的完整叶绿体基因组序列:基因组结构、系统发育分析和生物地理学研究。
IF 3.9 4区 生物学 Q1 GENETICS & HEREDITY Pub Date : 2024-10-04 DOI: 10.1007/s10142-024-01464-2
Suhas K. Kadam, Jin-Suk Youn, Asif S. Tamboli, JiYoung Yang, Jae Hong Pak, Yeon-Sik Choo

The Asteraceae family, particularly the Artemisia genus, presents taxonomic challenges due to limited morphological characteristics and frequent natural hybridization. Molecular tools, such as chloroplast genome analysis, offer solutions for accurate species identification. In this study, we sequenced and annotated the chloroplast genome of Artemisia littoricola sourced from Dokdo Island, employing comparative analyses across six diverse Artemisia species. Our findings reveal conserved genome structures with variations in repeat sequences and junction boundaries. Notably, the chloroplast genome of A. littoricola spans 150,985 bp, consistent with other Artemisia species, and comprises 131 genes, including 86 protein-coding, 37 tRNA, and 8 rRNA genes. Among these genes, 16 possess a single intron, while clpP and ycf3 exhibit two introns each. Furthermore, 18 genes display duplicated copies within the IR regions. Moreover, the genome possesses 42 Simple Sequence Repeats (SSRs), predominantly abundant in A/T content and located within intergenic spacer regions. The analysis of codon usage revealed that the codons for leucine were the most frequent, with a preference for ending with A/U. While the chloroplast genome exhibited conservation overall, non-coding regions showed lower conservation compared to coding regions, with the Inverted Repeat (IR) region displaying higher conservation than single-copy regions. Phylogenetic analyses position A. littoricola within subgenus Dracunculus, indicating a close relationship with A. scoparia and A. desertorum. Additionally, biogeographic reconstructions suggest ancestral origins in East Asia, emphasizing Mongolia, China (North East and North Central and South Central China), and Korea. This study underscores the importance of chloroplast genomics in understanding Artemisia diversity and evolution, offering valuable insights into taxonomy, evolutionary patterns, and biogeographic history. These findings not only enhance our understanding of Artemisia’s intricate biology but also contribute to conservation efforts and facilitate the development of molecular markers for further research and applications in medicine and agriculture.

菊科植物,尤其是蒿属植物,由于形态特征有限和频繁的自然杂交,给分类学带来了挑战。叶绿体基因组分析等分子工具为准确的物种鉴定提供了解决方案。在这项研究中,我们对来自独岛的蒿属植物(Artemisia littoricola)的叶绿体基因组进行了测序和注释,并对六个不同的蒿属植物物种进行了比较分析。我们的研究结果表明,基因组结构是一致的,但重复序列和连接边界存在差异。值得注意的是,A. littoricola的叶绿体基因组跨度为150,985 bp,与其他蒿属植物一致,由131个基因组成,包括86个编码蛋白质的基因、37个tRNA基因和8个rRNA基因。在这些基因中,16 个基因有一个内含子,而 clpP 和 ycf3 则各有两个内含子。此外,18 个基因在内含子区域内有重复拷贝。此外,基因组中还有 42 个简单序列重复序列(SSR),主要以 A/T 含量为主,位于基因间间隔区。对密码子使用情况的分析表明,亮氨酸的密码子使用频率最高,且偏好以 A/U 结尾。虽然叶绿体基因组总体上表现出保护性,但与编码区相比,非编码区的保护性较低,其中反向重复区(IR)的保护性高于单拷贝区。系统发育分析将 A. littoricola 定位于龙舌兰亚属,表明它与 A. scoparia 和 A. desertorum 关系密切。此外,生物地理重建表明其祖先起源于东亚,重点是蒙古、中国(东北、华北中南)和韩国。这项研究强调了叶绿体基因组学在了解青蒿多样性和进化方面的重要性,为分类学、进化模式和生物地理历史提供了宝贵的见解。这些发现不仅加深了我们对青蒿错综复杂的生物学特性的了解,而且有助于保护工作,并促进了分子标记的开发,为进一步的研究以及在医药和农业领域的应用提供了便利。
{"title":"Complete chloroplast genome sequence of Artemisia littoricola (Asteraceae) from Dokdo Island Korea: genome structure, phylogenetic analysis, and biogeography study","authors":"Suhas K. Kadam,&nbsp;Jin-Suk Youn,&nbsp;Asif S. Tamboli,&nbsp;JiYoung Yang,&nbsp;Jae Hong Pak,&nbsp;Yeon-Sik Choo","doi":"10.1007/s10142-024-01464-2","DOIUrl":"10.1007/s10142-024-01464-2","url":null,"abstract":"<div><p>The Asteraceae family, particularly the <i>Artemisia</i> genus, presents taxonomic challenges due to limited morphological characteristics and frequent natural hybridization. Molecular tools, such as chloroplast genome analysis, offer solutions for accurate species identification. In this study, we sequenced and annotated the chloroplast genome of <i>Artemisia littoricola</i> sourced from Dokdo Island, employing comparative analyses across six diverse <i>Artemisia</i> species. Our findings reveal conserved genome structures with variations in repeat sequences and junction boundaries. Notably, the chloroplast genome of <i>A. littoricola</i> spans 150,985 bp, consistent with other <i>Artemisia</i> species, and comprises 131 genes, including 86 protein-coding, 37 tRNA, and 8 rRNA genes. Among these genes, 16 possess a single intron, while <i>clp</i>P and <i>ycf</i>3 exhibit two introns each. Furthermore, 18 genes display duplicated copies within the IR regions. Moreover, the genome possesses 42 Simple Sequence Repeats (SSRs), predominantly abundant in A/T content and located within intergenic spacer regions. The analysis of codon usage revealed that the codons for leucine were the most frequent, with a preference for ending with A/U. While the chloroplast genome exhibited conservation overall, non-coding regions showed lower conservation compared to coding regions, with the Inverted Repeat (IR) region displaying higher conservation than single-copy regions. Phylogenetic analyses position <i>A. littoricola</i> within subgenus <i>Dracunculus</i>, indicating a close relationship with <i>A. scoparia</i> and <i>A. desertorum</i>. Additionally, biogeographic reconstructions suggest ancestral origins in East Asia, emphasizing Mongolia, China (North East and North Central and South Central China), and Korea. This study underscores the importance of chloroplast genomics in understanding <i>Artemisia</i> diversity and evolution, offering valuable insights into taxonomy, evolutionary patterns, and biogeographic history. These findings not only enhance our understanding of <i>Artemisia’s</i> intricate biology but also contribute to conservation efforts and facilitate the development of molecular markers for further research and applications in medicine and agriculture.</p></div>","PeriodicalId":574,"journal":{"name":"Functional & Integrative Genomics","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142370672","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Machine learning in oncological pharmacogenomics: advancing personalized chemotherapy 肿瘤药物基因组学中的机器学习:推进个性化化疗。
IF 3.9 4区 生物学 Q1 GENETICS & HEREDITY Pub Date : 2024-10-04 DOI: 10.1007/s10142-024-01462-4
Cigir Biray Avci, Bakiye Goker Bagca, Behrouz Shademan, Leila Sabour Takanlou, Maryam Sabour Takanlou, Alireza Nourazarian

This review analyzes the application of machine learning (ML) in oncological pharmacogenomics, focusing on customizing chemotherapy treatments. It explores how ML can analyze extensive genomic, proteomic, and other omics datasets to identify genetic patterns associated with drug responses. This, in turn, facilitates personalized therapies that are more effective and have fewer side effects. Recent studies have emphasized ML’s revolutionary role of ML in personalized oncology treatment by identifying genetic variability and understanding cancer pharmacodynamics. Integrating ML with electronic health records and clinical data shows promise in refining chemotherapy recommendations by considering the complex influencing factors. Although standard chemotherapy depends on population-based doses and treatment regimens, customized techniques use genetic information to tailor treatments for specific patients, potentially enhancing efficacy and reducing adverse effects.However, challenges, such as model interpretability, data quality, transparency, ethical issues related to data privacy, and health disparities, remain. Machine learning has been used to transform oncological pharmacogenomics by enabling personalized chemotherapy treatments. This review highlights ML’s potential of ML to enhance treatment effectiveness and minimize side effects through detailed genetic analysis. It also addresses ongoing challenges including improved model interpretability, data quality, and ethical considerations. The review concludes by emphasizing the importance of rigorous clinical trials and interdisciplinary collaboration in the ethical implementation of ML-driven personalized medicine, paving the way for improved outcomes in cancer patients and marking a new frontier in cancer treatment.

本综述分析了机器学习(ML)在肿瘤药物基因组学中的应用,重点关注定制化疗治疗。它探讨了机器学习如何分析广泛的基因组、蛋白质组和其他 omics 数据集,以确定与药物反应相关的遗传模式。这反过来又促进了更有效、副作用更小的个性化疗法。最近的研究强调了 ML 通过识别遗传变异和了解癌症药效学在个性化肿瘤治疗中的革命性作用。将 ML 与电子健康记录和临床数据相结合,通过考虑复杂的影响因素,在完善化疗建议方面大有可为。虽然标准化疗依赖于基于人群的剂量和治疗方案,但定制化技术利用基因信息为特定患者量身定制治疗方案,有可能提高疗效并减少不良反应。然而,模型的可解释性、数据质量、透明度、与数据隐私相关的伦理问题以及健康差异等挑战依然存在。机器学习已被用于改变肿瘤药物基因组学,实现个性化化疗。本综述强调了机器学习在通过详细的基因分析提高治疗效果和减少副作用方面的潜力。它还讨论了当前面临的挑战,包括提高模型的可解释性、数据质量和伦理考虑。综述最后强调了严格的临床试验和跨学科合作在以 ML 为驱动的个性化医疗的伦理实施中的重要性,为改善癌症患者的预后铺平了道路,并标志着癌症治疗进入了一个新的前沿领域。
{"title":"Machine learning in oncological pharmacogenomics: advancing personalized chemotherapy","authors":"Cigir Biray Avci,&nbsp;Bakiye Goker Bagca,&nbsp;Behrouz Shademan,&nbsp;Leila Sabour Takanlou,&nbsp;Maryam Sabour Takanlou,&nbsp;Alireza Nourazarian","doi":"10.1007/s10142-024-01462-4","DOIUrl":"10.1007/s10142-024-01462-4","url":null,"abstract":"<div><p>This review analyzes the application of machine learning (ML) in oncological pharmacogenomics, focusing on customizing chemotherapy treatments. It explores how ML can analyze extensive genomic, proteomic, and other omics datasets to identify genetic patterns associated with drug responses. This, in turn, facilitates personalized therapies that are more effective and have fewer side effects. Recent studies have emphasized ML’s revolutionary role of ML in personalized oncology treatment by identifying genetic variability and understanding cancer pharmacodynamics. Integrating ML with electronic health records and clinical data shows promise in refining chemotherapy recommendations by considering the complex influencing factors. Although standard chemotherapy depends on population-based doses and treatment regimens, customized techniques use genetic information to tailor treatments for specific patients, potentially enhancing efficacy and reducing adverse effects.However, challenges, such as model interpretability, data quality, transparency, ethical issues related to data privacy, and health disparities, remain. Machine learning has been used to transform oncological pharmacogenomics by enabling personalized chemotherapy treatments. This review highlights ML’s potential of ML to enhance treatment effectiveness and minimize side effects through detailed genetic analysis. It also addresses ongoing challenges including improved model interpretability, data quality, and ethical considerations. The review concludes by emphasizing the importance of rigorous clinical trials and interdisciplinary collaboration in the ethical implementation of ML-driven personalized medicine, paving the way for improved outcomes in cancer patients and marking a new frontier in cancer treatment.</p></div>","PeriodicalId":574,"journal":{"name":"Functional & Integrative Genomics","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142370674","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction to: QTL-seq identifies genomic region associated with the crown root development under Jasmonic acid response Correction to:QTL-seq鉴定了茉莉酸反应下与冠根发育相关的基因组区域。
IF 3.9 4区 生物学 Q1 GENETICS & HEREDITY Pub Date : 2024-10-02 DOI: 10.1007/s10142-024-01461-5
Tam Thi Thanh Tran, Liem Huu Minh Le, Trang Thi Nguyen, Thanh Chi Nguyen, Trang Thi Huyen Hoang, Phat Tien Do, Huong Thi Mai To
{"title":"Correction to: QTL-seq identifies genomic region associated with the crown root development under Jasmonic acid response","authors":"Tam Thi Thanh Tran,&nbsp;Liem Huu Minh Le,&nbsp;Trang Thi Nguyen,&nbsp;Thanh Chi Nguyen,&nbsp;Trang Thi Huyen Hoang,&nbsp;Phat Tien Do,&nbsp;Huong Thi Mai To","doi":"10.1007/s10142-024-01461-5","DOIUrl":"10.1007/s10142-024-01461-5","url":null,"abstract":"","PeriodicalId":574,"journal":{"name":"Functional & Integrative Genomics","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142363926","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The role of lipoprotein‑associated phospholipase A2 in inflammatory response and macrophage infiltration in sepsis and the regulatory mechanisms 脂蛋白相关磷脂酶 A2 在败血症炎症反应和巨噬细胞浸润中的作用及其调控机制。
IF 3.9 4区 生物学 Q1 GENETICS & HEREDITY Pub Date : 2024-09-30 DOI: 10.1007/s10142-024-01460-6
Li Jin, Mengxiao Jiang, Jun Qian, Zhihua Ge, Feng Xu, Wenjie Liao

Lipoproteinassociated phospholipase A2 (Lp-PLA2), encoded by the phospholipase A2 group VII (Pla2g7) gene, has been pertinent to inflammatory responses. This study investigates the correlation between Lp-PLA2 and inflammatory injury in septic mice and explores its regulatory mechanism. Lp-PLA2 was found to be upregulated in the serum of septic mice induced by cecal ligation and puncture and in the culture supernatant of RAW264.7 cells following lipopolysaccharide and adenosine triphosphate treatments. The contents of Lp-PLA2 were positively correlated with increased concentrations of proinflammatory cytokines in patients with sepsis. Both animal and cellular models showed increased concentrations of proinflammatory cytokines. Spi-1 proto-oncogene (Spi1), highly expressed in these models, was found to activate Pla2g7 transcription. Knockdown of Pla2g7 or Spi1 reduced the proinflammatory cytokine production, mitigated organ damage in mice, and suppressed macrophage migration in vitro. Retinoblastoma binding protein 6 (Rbbp6), poorly expressed in both models, was found to reduce Spi1 protein stability through ubiquitination modification. Rbbp6 overexpression similarly suppressed inflammatory activation of RAW264.7 cells, which was counteracted by Pla2g7 or Spi1 upregulation. In summary, this study demonstrates that the Pla2g7 loss and Spi1 upregulation participate in inflammatory responses in sepsis by elevating the Lp-PLA2 levels.

由磷脂酶 A2 第 VII 组(Pla2g7)基因编码的脂蛋白相关磷脂酶 A2(Lp-PLA2)一直与炎症反应相关。本研究调查了 Lp-PLA2 与脓毒症小鼠炎症损伤之间的相关性,并探讨了其调控机制。研究发现,在盲肠结扎和穿刺诱导的败血症小鼠血清中,以及在脂多糖和三磷酸腺苷处理后的 RAW264.7 细胞培养上清液中,Lp-PLA2 均上调。在败血症患者中,脂蛋白磷酸化酶2的含量与促炎细胞因子浓度的增加呈正相关。动物模型和细胞模型均显示促炎细胞因子浓度增加。在这些模型中高度表达的 Spi-1 原癌基因(Spi1)可激活 Pla2g7 的转录。敲除 Pla2g7 或 Spi1 可减少促炎细胞因子的产生,减轻小鼠器官的损伤,并抑制巨噬细胞在体外的迁移。研究发现,视网膜母细胞瘤结合蛋白6(Rbbp6)在两种模型中的表达量都很低,它能通过泛素化修饰降低Spi1蛋白的稳定性。Rbbp6 的过表达同样抑制了 RAW264.7 细胞的炎症激活,而 Pla2g7 或 Spi1 的上调则抵消了这种抑制作用。总之,本研究表明,Pla2g7 的缺失和 Spi1 的上调通过提高 Lp-PLA2 水平参与了败血症的炎症反应。
{"title":"The role of lipoprotein‑associated phospholipase A2 in inflammatory response and macrophage infiltration in sepsis and the regulatory mechanisms","authors":"Li Jin,&nbsp;Mengxiao Jiang,&nbsp;Jun Qian,&nbsp;Zhihua Ge,&nbsp;Feng Xu,&nbsp;Wenjie Liao","doi":"10.1007/s10142-024-01460-6","DOIUrl":"10.1007/s10142-024-01460-6","url":null,"abstract":"<div><p>Lipoproteinassociated phospholipase A2 (Lp-PLA2), encoded by the phospholipase A2 group VII (<i>Pla2g7</i>) gene, has been pertinent to inflammatory responses. This study investigates the correlation between Lp-PLA2 and inflammatory injury in septic mice and explores its regulatory mechanism. Lp-PLA2 was found to be upregulated in the serum of septic mice induced by cecal ligation and puncture and in the culture supernatant of RAW264.7 cells following lipopolysaccharide and adenosine triphosphate treatments. The contents of Lp-PLA2 were positively correlated with increased concentrations of proinflammatory cytokines in patients with sepsis. Both animal and cellular models showed increased concentrations of proinflammatory cytokines. Spi-1 proto-oncogene (<i>Spi1</i>), highly expressed in these models, was found to activate <i>Pla2g7</i> transcription. Knockdown of <i>Pla2g7</i> or <i>Spi1</i> reduced the proinflammatory cytokine production, mitigated organ damage in mice, and suppressed macrophage migration in vitro. Retinoblastoma binding protein 6 (<i>Rbbp6</i>), poorly expressed in both models, was found to reduce Spi1 protein stability through ubiquitination modification. <i>Rbbp6</i> overexpression similarly suppressed inflammatory activation of RAW264.7 cells, which was counteracted by <i>Pla2g7</i> or <i>Spi1</i> upregulation. In summary, this study demonstrates that the <i>Pla2g7</i> loss and <i>Spi1</i> upregulation participate in inflammatory responses in sepsis by elevating the Lp-PLA2 levels.</p></div>","PeriodicalId":574,"journal":{"name":"Functional & Integrative Genomics","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142338903","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring the potential of nanomedicine for gene therapy across the physicochemical and cellular barriers 跨越物理化学和细胞障碍,探索纳米药物用于基因治疗的潜力。
IF 3.9 4区 生物学 Q1 GENETICS & HEREDITY Pub Date : 2024-09-28 DOI: 10.1007/s10142-024-01459-z
Huma Hameed, Hafiz Shoaib Sarwar, Komel Younas, Muhammad Zaman, Muhammad Jamshaid, Ali Irfan, Maha Khalid, Muhammad Farhan Sohail

After COVID-19, a turning point in the way of pharmaceutical technology is gene therapy with beneficial potential to start a new medical era. However, commercialization of such pharmaceuticals would never be possible without the help of nanotechnology. Nanomedicine can fulfill the growing needs linked to safety, efficiency, and site-specific targeted delivery of Gene therapy-based pharmaceuticals. This review's goal is to investigate how nanomedicine may be used to transfer nucleic acids by getting beyond cellular and physicochemical barriers. Firstly, we provide a full description of types of gene therapy, their mechanism, translation, transcription, expression, type, and details of diseases with possible mechanisms that can only be treated with genes-based pharmaceuticals. Additionally, we also reviewed different types of physicochemical barriers, physiological and cellular barriers in nucleic acids (DNA/RNA) based drug delivery. Finally, we highlight the need and importance of cationic lipid-based nanomedicine/nanocarriers in gene-linked drug delivery and how nanotechnology can help to overcome the above-discussed barrier in gene therapy and their biomedical applications.

Graphical abstract

继 COVID-19 之后,基因疗法成为制药技术的一个转折点,有望开启一个新的医学时代。然而,如果没有纳米技术的帮助,此类药物的商业化将永远无法实现。纳米医学可以满足以基因治疗为基础的药物在安全、高效和特定部位靶向给药方面日益增长的需求。本综述旨在探讨如何利用纳米医学超越细胞和物理化学障碍来传输核酸。首先,我们全面介绍了基因治疗的类型、机制、翻译、转录、表达、类型,以及只能用基于基因的药物治疗的具有可能机制的疾病详情。此外,我们还综述了基于核酸(DNA/RNA)的药物递送过程中不同类型的物理化学障碍、生理障碍和细胞障碍。最后,我们强调了以阳离子脂质为基础的纳米药物/纳米载体在基因链接药物递送中的必要性和重要性,以及纳米技术如何帮助克服基因治疗及其生物医学应用中的上述障碍。
{"title":"Exploring the potential of nanomedicine for gene therapy across the physicochemical and cellular barriers","authors":"Huma Hameed,&nbsp;Hafiz Shoaib Sarwar,&nbsp;Komel Younas,&nbsp;Muhammad Zaman,&nbsp;Muhammad Jamshaid,&nbsp;Ali Irfan,&nbsp;Maha Khalid,&nbsp;Muhammad Farhan Sohail","doi":"10.1007/s10142-024-01459-z","DOIUrl":"10.1007/s10142-024-01459-z","url":null,"abstract":"<div><p>After COVID-19, a turning point in the way of pharmaceutical technology is gene therapy with beneficial potential to start a new medical era. However, commercialization of such pharmaceuticals would never be possible without the help of nanotechnology. Nanomedicine can fulfill the growing needs linked to safety, efficiency, and site-specific targeted delivery of Gene therapy-based pharmaceuticals. This review's goal is to investigate how nanomedicine may be used to transfer nucleic acids by getting beyond cellular and physicochemical barriers. Firstly, we provide a full description of types of gene therapy, their mechanism, translation, transcription, expression, type, and details of diseases with possible mechanisms that can only be treated with genes-based pharmaceuticals. Additionally, we also reviewed different types of physicochemical barriers, physiological and cellular barriers in nucleic acids (DNA/RNA) based drug delivery. Finally, we highlight the need and importance of cationic lipid-based nanomedicine/nanocarriers in gene-linked drug delivery and how nanotechnology can help to overcome the above-discussed barrier in gene therapy and their biomedical applications.</p><h3>Graphical abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":574,"journal":{"name":"Functional & Integrative Genomics","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142338898","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Epigenetic gene silencing in plants: Insights from triplet repeat expansion in Arabidopsis 植物的表观遗传基因沉默:拟南芥三重重复扩增的启示
IF 3.9 4区 生物学 Q1 GENETICS & HEREDITY Pub Date : 2024-09-28 DOI: 10.1007/s10142-024-01463-3
Jieni Gu, Iqra Noor, Xiaodong Yang, Hamza Sohail
{"title":"Epigenetic gene silencing in plants: Insights from triplet repeat expansion in Arabidopsis","authors":"Jieni Gu,&nbsp;Iqra Noor,&nbsp;Xiaodong Yang,&nbsp;Hamza Sohail","doi":"10.1007/s10142-024-01463-3","DOIUrl":"10.1007/s10142-024-01463-3","url":null,"abstract":"","PeriodicalId":574,"journal":{"name":"Functional & Integrative Genomics","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142338883","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
LncRNAs orchestration of gastric cancer - particular emphasis on the etiology, diagnosis, and treatment resistance LncRNAs 与胃癌的关系--特别强调病因、诊断和耐药性。
IF 3.9 4区 生物学 Q1 GENETICS & HEREDITY Pub Date : 2024-09-26 DOI: 10.1007/s10142-024-01450-8
Hanan Elimam, Rewan Moussa, Abdullah F. Radwan, Abdulrahman Hatawsh, Nourhan Elfar, Nora A. A. Alhamshry, Mai A. Abd-Elmawla, Nora M. Aborehab, Mohamed Bakr Zaki, Sherif S. Abdel Mageed, Osama A. Mohammed, Mustafa Ahmed Abdel-Reheim, Ahmed S. Doghish

Gastric cancer (GC) remains a major public health challenge worldwide. Long non-coding RNAs (lncRNAs) play important roles in the development, progression, and resistance to the treatment of GC, as shown by recent developments in molecular characterization. Still, an in-depth investigation of the lncRNA landscape in GC is absent. However, The objective of this systematic review is to evaluate our present understanding of the role that lncRNA dysregulation plays in the etiology of GC and treatment resistance, with a focus on the underlying mechanisms and clinical implications. Research that described the functions of lncRNA in angiogenesis, stemness, epigenetics, metastasis, apoptosis, development, and resistance to key treatments was given priority. In GC, it has been discovered that a large number of lncRNAs, including MALAT1, HOTAIR, H19, and ANRIL, are aberrantly expressed and are connected with disease-related outcomes. Through various methods such as chromatin remodeling, signal transduction pathways, and microRNA sponging, they modulate hallmark cancer capabilities. Through the activation of stemness programs, epithelial-mesenchymal transition (EMT), and survival signaling, LncRNAs also control resistance to immunotherapy, chemotherapy, and targeted therapies. By clarifying their molecular roles further, we may be able to identify new treatment targets and ways to overcome resistance. This article aims to explore the interplay between lncRNAs, and GC. Specifically, the focus is on understanding how lncRNAs contribute to the etiology of GC and influence treatment resistance in patients with this disease.

胃癌(GC)仍然是全球公共卫生面临的一大挑战。分子特征描述的最新进展表明,长非编码 RNA(lncRNA)在胃癌的发生、发展和耐药性方面发挥着重要作用。然而,目前还没有对 GC 中的 lncRNA 情况进行深入研究。然而,本系统综述的目的是评估我们目前对 lncRNA 失调在 GC 病因学和耐药性中所扮演角色的理解,重点关注其潜在机制和临床影响。本综述优先考虑描述 lncRNA 在血管生成、干性、表观遗传学、转移、凋亡、发育以及对主要治疗方法的耐药性等方面功能的研究。在基因组学中,人们发现包括 MALAT1、HOTAIR、H19 和 ANRIL 在内的大量 lncRNA 表达异常,并与疾病相关的结果有关。通过染色质重塑、信号转导途径和微RNA海绵化等各种方法,它们调节了标志性癌症能力。通过激活干性程序、上皮-间质转化(EMT)和生存信号转导,LncRNA 还能控制对免疫疗法、化疗和靶向疗法的抗药性。通过进一步阐明它们的分子作用,我们或许能确定新的治疗靶点和克服耐药性的方法。本文旨在探讨 lncRNA 与 GC 之间的相互作用。具体来说,重点是了解 lncRNA 如何促进 GC 的病因学并影响该病患者的耐药性。
{"title":"LncRNAs orchestration of gastric cancer - particular emphasis on the etiology, diagnosis, and treatment resistance","authors":"Hanan Elimam,&nbsp;Rewan Moussa,&nbsp;Abdullah F. Radwan,&nbsp;Abdulrahman Hatawsh,&nbsp;Nourhan Elfar,&nbsp;Nora A. A. Alhamshry,&nbsp;Mai A. Abd-Elmawla,&nbsp;Nora M. Aborehab,&nbsp;Mohamed Bakr Zaki,&nbsp;Sherif S. Abdel Mageed,&nbsp;Osama A. Mohammed,&nbsp;Mustafa Ahmed Abdel-Reheim,&nbsp;Ahmed S. Doghish","doi":"10.1007/s10142-024-01450-8","DOIUrl":"10.1007/s10142-024-01450-8","url":null,"abstract":"<div><p>Gastric cancer (GC) remains a major public health challenge worldwide. Long non-coding RNAs (lncRNAs) play important roles in the development, progression, and resistance to the treatment of GC, as shown by recent developments in molecular characterization. Still, an in-depth investigation of the lncRNA landscape in GC is absent. However, The objective of this systematic review is to evaluate our present understanding of the role that lncRNA dysregulation plays in the etiology of GC and treatment resistance, with a focus on the underlying mechanisms and clinical implications. Research that described the functions of lncRNA in angiogenesis, stemness, epigenetics, metastasis, apoptosis, development, and resistance to key treatments was given priority. In GC, it has been discovered that a large number of lncRNAs, including MALAT1, HOTAIR, H19, and ANRIL, are aberrantly expressed and are connected with disease-related outcomes. Through various methods such as chromatin remodeling, signal transduction pathways, and microRNA sponging, they modulate hallmark cancer capabilities. Through the activation of stemness programs, epithelial-mesenchymal transition (EMT), and survival signaling, LncRNAs also control resistance to immunotherapy, chemotherapy, and targeted therapies. By clarifying their molecular roles further, we may be able to identify new treatment targets and ways to overcome resistance. This article aims to explore the interplay between lncRNAs, and GC. Specifically, the focus is on understanding how lncRNAs contribute to the etiology of GC and influence treatment resistance in patients with this disease.</p></div>","PeriodicalId":574,"journal":{"name":"Functional & Integrative Genomics","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142338900","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Transcription factor YY1 adversely governs ovarian granulosa cell growth in PCOS by transcription activation-mediated CDKN1C upregulation 转录因子 YY1 通过转录激活介导的 CDKN1C 上调,对多囊卵巢综合征的卵巢颗粒细胞生长产生不利影响。
IF 3.9 4区 生物学 Q1 GENETICS & HEREDITY Pub Date : 2024-09-25 DOI: 10.1007/s10142-024-01448-2
Shitao Dong, Youbin Liu, Zhimin Yang

Background

Polycystic ovary syndrome (PCOS) is a common endocrine and metabolic disease in women of childbearing age, making it imperative to explore more biomarkers for PCOS. Furthermore, previous studies have reported that cyclin dependent kinase inhibitor 1 C (CDKN1C) might be associated with PCOS progression. However, the molecular mechanism of CDKN1C involved in PCOS is poorly defined.

Methods

CDKN1C and Yin-Yang-1 (YY1) expression levels were determined using real-time quantitative polymerase chain reaction (RT-qPCR) and Western blot assay. Cell viability, proliferation, cell cycle progression, and cell apoptosis were analyzed using 3-(4, 5-dimethyl-2-thiazolyl)-2, 5-diphenyl-2-H-tetrazolium bromide (MTT), 5-ethynyl-2’-deoxyuridine (EdU), and flow cytometry assays. Caspase 3 activity was examined using a commercial kit. Binding between YY1 and CDKN1C promoter was predicted by JASPAR and verified using Chromatin immunoprecipitation (ChIP) and dual-luciferase reporter assays.

Results

CDKN1C and YY1 were highly expressed in PCOS granulosa cells (GCs). Furthermore, CDKN1C silencing could promote cell proliferation and cell cycle process and repress cell apoptosis in human ovarian granulosa cell line KGN cells. For mechanistic analysis, YY1 is directly bound to the promoter of CDKN1C and transcriptional-regulated CDKN1C expression.

Conclusion

YY1-activated CDKN1C might block KGN cell proliferation and induce cell apoptosis, providing a possible therapeutic target for PCOS treatment.

背景:多囊卵巢综合征(PCOS)是育龄妇女常见的内分泌和代谢疾病,因此探索更多的多囊卵巢综合征生物标志物势在必行。此外,之前有研究报告称,细胞周期蛋白依赖性激酶抑制剂 1 C(CDKN1C)可能与多囊卵巢综合征的进展有关。然而,CDKN1C参与多囊卵巢综合症的分子机制尚未明确:方法:采用实时定量聚合酶链式反应(RT-qPCR)和 Western 印迹法测定 CDKN1C 和阴阳-1(YY1)的表达水平。使用 3-(4,5-二甲基-2-噻唑基)-2,5-二苯基-2-H-溴化四氮唑(MTT)、5-乙炔基-2'-脱氧尿苷(EdU)和流式细胞仪分析细胞活力、增殖、细胞周期进展和细胞凋亡。使用商业试剂盒检测 Caspase 3 的活性。通过 JASPAR 预测了 YY1 与 CDKN1C 启动子之间的结合,并使用染色质免疫沉淀(ChIP)和双荧光素酶报告实验进行了验证:结果:CDKN1C和YY1在多囊卵巢综合征颗粒细胞(GCs)中高表达。此外,在人卵巢颗粒细胞系 KGN 细胞中,CDKN1C 沉默可促进细胞增殖和细胞周期进程,抑制细胞凋亡。在机理分析方面,YY1直接与CDKN1C的启动子结合并转录调控CDKN1C的表达:结论:YY1激活CDKN1C可能会阻止KGN细胞增殖并诱导细胞凋亡,为治疗多囊卵巢综合征提供了一个可能的治疗靶点。
{"title":"Transcription factor YY1 adversely governs ovarian granulosa cell growth in PCOS by transcription activation-mediated CDKN1C upregulation","authors":"Shitao Dong,&nbsp;Youbin Liu,&nbsp;Zhimin Yang","doi":"10.1007/s10142-024-01448-2","DOIUrl":"10.1007/s10142-024-01448-2","url":null,"abstract":"<div><h3>Background</h3><p>Polycystic ovary syndrome (PCOS) is a common endocrine and metabolic disease in women of childbearing age, making it imperative to explore more biomarkers for PCOS. Furthermore, previous studies have reported that cyclin dependent kinase inhibitor 1 C (CDKN1C) might be associated with PCOS progression. However, the molecular mechanism of CDKN1C involved in PCOS is poorly defined.</p><h3>Methods</h3><p>CDKN1C and Yin-Yang-1 (YY1) expression levels were determined using real-time quantitative polymerase chain reaction (RT-qPCR) and Western blot assay. Cell viability, proliferation, cell cycle progression, and cell apoptosis were analyzed using 3-(4, 5-dimethyl-2-thiazolyl)-2, 5-diphenyl-2-H-tetrazolium bromide (MTT), 5-ethynyl-2’-deoxyuridine (EdU), and flow cytometry assays. Caspase 3 activity was examined using a commercial kit. Binding between YY1 and CDKN1C promoter was predicted by JASPAR and verified using Chromatin immunoprecipitation (ChIP) and dual-luciferase reporter assays.</p><h3>Results</h3><p>CDKN1C and YY1 were highly expressed in PCOS granulosa cells (GCs). Furthermore, CDKN1C silencing could promote cell proliferation and cell cycle process and repress cell apoptosis in human ovarian granulosa cell line KGN cells. For mechanistic analysis, YY1 is directly bound to the promoter of CDKN1C and transcriptional-regulated CDKN1C expression.</p><h3>Conclusion</h3><p>YY1-activated CDKN1C might block KGN cell proliferation and induce cell apoptosis, providing a possible therapeutic target for PCOS treatment.</p></div>","PeriodicalId":574,"journal":{"name":"Functional & Integrative Genomics","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142338904","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction to: Identification of predictors for neurological outcome after cardiac arrest in peripheral blood mononuclear cells through integrated bioinformatics analysis and machine learning 更正:通过综合生物信息学分析和机器学习,确定外周血单核细胞中心脏骤停后神经功能预后的预测因子。
IF 3.9 4区 生物学 Q1 GENETICS & HEREDITY Pub Date : 2024-09-25 DOI: 10.1007/s10142-024-01440-w
Zhonghao Li, Ying Qin, Xiaoyu Liu, Jie Chen, Aling Tang, Shengtao Yan, Guoqiang Zhang
{"title":"Correction to: Identification of predictors for neurological outcome after cardiac arrest in peripheral blood mononuclear cells through integrated bioinformatics analysis and machine learning","authors":"Zhonghao Li,&nbsp;Ying Qin,&nbsp;Xiaoyu Liu,&nbsp;Jie Chen,&nbsp;Aling Tang,&nbsp;Shengtao Yan,&nbsp;Guoqiang Zhang","doi":"10.1007/s10142-024-01440-w","DOIUrl":"10.1007/s10142-024-01440-w","url":null,"abstract":"","PeriodicalId":574,"journal":{"name":"Functional & Integrative Genomics","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11424692/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142338882","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Functional & Integrative Genomics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1