Pub Date : 2024-05-17DOI: 10.1007/s10717-024-00640-x
{"title":"Glass and Ceramics Volume 80, Number 12","authors":"","doi":"10.1007/s10717-024-00640-x","DOIUrl":"10.1007/s10717-024-00640-x","url":null,"abstract":"","PeriodicalId":579,"journal":{"name":"Glass and Ceramics","volume":"80 11-12","pages":"500 - 502"},"PeriodicalIF":0.6,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142412185","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-17DOI: 10.1007/s10717-024-00632-x
{"title":"Glass and Ceramics Volume 80, Number 11","authors":"","doi":"10.1007/s10717-024-00632-x","DOIUrl":"10.1007/s10717-024-00632-x","url":null,"abstract":"","PeriodicalId":579,"journal":{"name":"Glass and Ceramics","volume":"80 11-12","pages":"453 - 454"},"PeriodicalIF":0.6,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142412188","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-04DOI: 10.1007/s10717-024-00642-9
V. S. Bessmertnyi, N. M. Zdorenko, M. A. Bondarenko, A. V. Makarov, S. V. Varfolomeeva, V. M. Vorontsov, A. V. Cherkasov
A technology for facing material based on mechanically activated cullet modified with potassium hydroxide was developed. The phase composition, macro- and microstructure of the facing material were studied. It was found that the structure of the composite modified with potassium hydroxide is represented in the interpore space by needle-shaped and columnar crystals of potassium silicates. Physicomechanical characteristics of facing material were investigated.
{"title":"Facing Building Material Based on Potassium-Hydroxide Modified Cullet","authors":"V. S. Bessmertnyi, N. M. Zdorenko, M. A. Bondarenko, A. V. Makarov, S. V. Varfolomeeva, V. M. Vorontsov, A. V. Cherkasov","doi":"10.1007/s10717-024-00642-9","DOIUrl":"10.1007/s10717-024-00642-9","url":null,"abstract":"<p>A technology for facing material based on mechanically activated cullet modified with potassium hydroxide was developed. The phase composition, macro- and microstructure of the facing material were studied. It was found that the structure of the composite modified with potassium hydroxide is represented in the interpore space by needle-shaped and columnar crystals of potassium silicates. Physicomechanical characteristics of facing material were investigated.</p>","PeriodicalId":579,"journal":{"name":"Glass and Ceramics","volume":"80 11-12","pages":"508 - 512"},"PeriodicalIF":0.6,"publicationDate":"2024-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140885387","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-03DOI: 10.1007/s10717-024-00636-7
R. D. Kapustin, V. I. Uvarov, A. O. Kirillov
An energy-efficient synthesis of highly porous ceramic materials based on Sc2O3 was conducted using a combination of compaction and technological combustion methods with the participation of active binders. Using XRF (x-ray phase analysis), SEM (scanning electron microscopy), and EDA (energy dispersive analysis) methods, it was found that the investigated material has a morphology based on Sc2O3 and thortveitite Sc2Si2O7 that is highly developed, multi-level, and microstructural. The basic characteristics of the material’s pore space (porosity, pore size, specific surface area, permeability, etc.) were determined by means of mercury porosimetry and alternative methods.
{"title":"Pore Space Characteristics and Morphology of Highly Porous Sc2O3 Ceramic Materials Synthesized","authors":"R. D. Kapustin, V. I. Uvarov, A. O. Kirillov","doi":"10.1007/s10717-024-00636-7","DOIUrl":"10.1007/s10717-024-00636-7","url":null,"abstract":"<p>An energy-efficient synthesis of highly porous ceramic materials based on Sc<sub>2</sub>O<sub>3</sub> was conducted using a combination of compaction and technological combustion methods with the participation of active binders. Using XRF (x-ray phase analysis), SEM (scanning electron microscopy), and EDA (energy dispersive analysis) methods, it was found that the investigated material has a morphology based on Sc<sub>2</sub>O<sub>3</sub> and thortveitite Sc<sub>2</sub>Si<sub>2</sub>O<sub>7</sub> that is highly developed, multi-level, and microstructural. The basic characteristics of the material’s pore space (porosity, pore size, specific surface area, permeability, etc.) were determined by means of mercury porosimetry and alternative methods.</p>","PeriodicalId":579,"journal":{"name":"Glass and Ceramics","volume":"80 11-12","pages":"472 - 478"},"PeriodicalIF":0.6,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140885682","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-02DOI: 10.1007/s10717-024-00641-w
A. A. Romanenko, V. I. Savinkov, E. M. Zinina, A. A. Buzov, V. P. Shuev, V. N. Sigaev
The influence of the technological glass-melting parameters of the selected composition in the SrO–Al2O3–P2O3–SiO2–F system on the value of the refractive index and the amount of fluorine remaining in the glass structure post-melting was investigated. The lowering of the melting temperature combined with tableting of the charge [batch] increases fluorine absorption in the glass up to 17 wt.% at the same time, and the value of the refractive index reduction to nD = 1.49. It was experimentally established that in the multicomponent glass selected for glass-ionomer cements with two glass-forming oxides (SiO2 and P2O2) and a high Al2O3 content, each wt.% of fluorine reduces the refractive index by about 3.5 × 10 –4 units.
{"title":"Technological Methods for Increasing the Fluorine Content in SrO–Al2O3–P2O3–SiO2–F Glass for Glass-Ionomer Cement","authors":"A. A. Romanenko, V. I. Savinkov, E. M. Zinina, A. A. Buzov, V. P. Shuev, V. N. Sigaev","doi":"10.1007/s10717-024-00641-w","DOIUrl":"10.1007/s10717-024-00641-w","url":null,"abstract":"<p>The influence of the technological glass-melting parameters of the selected composition in the SrO–Al<sub>2</sub>O<sub>3</sub>–P<sub>2</sub>O<sub>3</sub>–SiO<sub>2</sub>–F system on the value of the refractive index and the amount of fluorine remaining in the glass structure post-melting was investigated. The lowering of the melting temperature combined with tableting of the charge [batch] increases fluorine absorption in the glass up to 17 wt.% at the same time, and the value of the refractive index reduction to <i>n</i><sub><i>D</i></sub> = 1.49. It was experimentally established that in the multicomponent glass selected for glass-ionomer cements with two glass-forming oxides (SiO<sub>2</sub> and P<sub>2</sub>O<sub>2</sub>) and a high Al<sub>2</sub>O<sub>3</sub> content, each wt.% of fluorine reduces the refractive index by about 3.5 × 10 <sup>–4</sup> units.</p>","PeriodicalId":579,"journal":{"name":"Glass and Ceramics","volume":"80 11-12","pages":"503 - 507"},"PeriodicalIF":0.6,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140885400","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-30DOI: 10.1007/s10717-024-00638-5
L. A. Zhikina, A. M. Minkin, M. P. Krasnovskikh, E. A. Yatsenko, A. A. Ketov
A method has been developed for securing an optical fiber in a quartz connector by using sodium polysilicate hydrogel formed in a cylindrical gap between a connector and an optical fiber by means of alkaline decomposition of the quartz surfaces of manufactured components. The conditions for the thermal decomposition of hydrogel are determined, and it is shown that hydrogel decomposition with cellular structure formation is possible at temperatures below the thermal decomposition temperature of the polymer coating of the optical fiber. The hydrogel formation conditions and the thermal properties of the hydrogel are determined. Conclusions regarding the suitability of the proposed method for securing an optical fiber in a quartz connector are drawn.
{"title":"Hydrogel Assisted Optical Fiber Attachment in a Connector","authors":"L. A. Zhikina, A. M. Minkin, M. P. Krasnovskikh, E. A. Yatsenko, A. A. Ketov","doi":"10.1007/s10717-024-00638-5","DOIUrl":"10.1007/s10717-024-00638-5","url":null,"abstract":"<p>A method has been developed for securing an optical fiber in a quartz connector by using sodium polysilicate hydrogel formed in a cylindrical gap between a connector and an optical fiber by means of alkaline decomposition of the quartz surfaces of manufactured components. The conditions for the thermal decomposition of hydrogel are determined, and it is shown that hydrogel decomposition with cellular structure formation is possible at temperatures below the thermal decomposition temperature of the polymer coating of the optical fiber. The hydrogel formation conditions and the thermal properties of the hydrogel are determined. Conclusions regarding the suitability of the proposed method for securing an optical fiber in a quartz connector are drawn.</p>","PeriodicalId":579,"journal":{"name":"Glass and Ceramics","volume":"80 11-12","pages":"487 - 490"},"PeriodicalIF":0.6,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140838442","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-29DOI: 10.1007/s10717-024-00643-8
E. M. Zinina, V. I. Savinkov, F. Posokhova, A. A. Buzov, V. P. Chuev, V. N. Sigaev
The influence of the modification of glass in the strontium-aluminum-boron-silicate system (SABS) on technological and physicochemical properties was investigated. Introducing two alkalis into the glass makeup significantly lowered the melting temperature, from 1500 to 1450°C, which effected changes in the properties of the glass. On introducing alkalis in amounts up to 5 mol.% the thermal linear expansion coefficient (LTEC) decreased from 58 to 50 (α × 10 – 7 K– 1) and the refractive index nD from 1.551 to 1.528. However, alkaline components adversely affect the hydrolytic resistance of the glass, transferring it from hydrolytic class I to II. The solution to this problem was to: (1) employ the polyalkaline effect, (2) maintain high radiopacity of the glass by introducing a small amount of highly effective radiopaque barium oxide into the makeup and significant strontium oxide reduction, and (3) increase the aluminum oxide content, which ordinarily increases the chemical resistance of the glass. The result was improved melting properties on lower melting temperatures and glass with high values of x-ray contrast (about 550%), light transmission (T = 90%), refractive index values nD = 1.530 and LTEC = 56 (α × 10 – 7 K– 1) were obtained while maintaining chemical stability with respect to water the corresponding hydrolytic class I.
{"title":"Effect of Alkaline Components on Dental Filling Glass","authors":"E. M. Zinina, V. I. Savinkov, F. Posokhova, A. A. Buzov, V. P. Chuev, V. N. Sigaev","doi":"10.1007/s10717-024-00643-8","DOIUrl":"10.1007/s10717-024-00643-8","url":null,"abstract":"<p>The influence of the modification of glass in the strontium-aluminum-boron-silicate system (SABS) on technological and physicochemical properties was investigated. Introducing two alkalis into the glass makeup significantly lowered the melting temperature, from 1500 to 1450°C, which effected changes in the properties of the glass. On introducing alkalis in amounts up to 5 mol.% the thermal linear expansion coefficient (LTEC) decreased from 58 to 50 (α × 10 <sup>– 7</sup> K<sup>– 1</sup>) and the refractive index <i>n</i><sub><i>D</i></sub> from 1.551 to 1.528. However, alkaline components adversely affect the hydrolytic resistance of the glass, transferring it from hydrolytic class I to II. The solution to this problem was to: (1) employ the polyalkaline effect, (2) maintain high radiopacity of the glass by introducing a small amount of highly effective radiopaque barium oxide into the makeup and significant strontium oxide reduction, and (3) increase the aluminum oxide content, which ordinarily increases the chemical resistance of the glass. The result was improved melting properties on lower melting temperatures and glass with high values of x-ray contrast (about 550%), light transmission (<i>T</i> = 90%), refractive index values <i>n</i><sub><i>D</i></sub> = 1.530 and LTEC = 56 (α × 10 <sup>– 7</sup> K<sup>– 1</sup>) were obtained while maintaining chemical stability with respect to water the corresponding hydrolytic class I.</p>","PeriodicalId":579,"journal":{"name":"Glass and Ceramics","volume":"80 11-12","pages":"513 - 516"},"PeriodicalIF":0.6,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140810330","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-29DOI: 10.1007/s10717-024-00645-6
S. Yu. Prilipko, G. K. Volkova, L. V. Loladze, I. I. Bryukhanova, G. N. Golovan, V. A. Glazunova
It was found that the high decomposition temperature of amorphous Al(OH)3 makes it possible to sinter corundum ceramics directly from aluminum hydroxide, bypassing the stage of its preliminary thermal dehydration. Using the cold isostatic pressing method at 200, 600, and 1000 MPa, compacts with densities of 62, 69, and 79% of the theoretical value were obtained. The temperature dependence of the shrinkage of amorphous Al(OH)3 compacts was studied as a function of the cold isostatic pressing pressure. An area of intense shrinkage was discovered in the range 1050 – 1150°C, which coincides with both the temperature of complete decomposition of amorphous Al(OH)3 and the transition γ → α-Al2O3.
{"title":"Sintering of Amorphous Al(OH)3 Using Cold Isostatic Pressing","authors":"S. Yu. Prilipko, G. K. Volkova, L. V. Loladze, I. I. Bryukhanova, G. N. Golovan, V. A. Glazunova","doi":"10.1007/s10717-024-00645-6","DOIUrl":"10.1007/s10717-024-00645-6","url":null,"abstract":"<p>It was found that the high decomposition temperature of amorphous Al(OH)<sub>3</sub> makes it possible to sinter corundum ceramics directly from aluminum hydroxide, bypassing the stage of its preliminary thermal dehydration. Using the cold isostatic pressing method at 200, 600, and 1000 MPa, compacts with densities of 62, 69, and 79% of the theoretical value were obtained. The temperature dependence of the shrinkage of amorphous Al(OH)<sub>3</sub> compacts was studied as a function of the cold isostatic pressing pressure. An area of intense shrinkage was discovered in the range 1050 – 1150°C, which coincides with both the temperature of complete decomposition of amorphous Al(OH)<sub>3</sub> and the transition γ → α-Al<sub>2</sub>O<sub>3</sub>.</p>","PeriodicalId":579,"journal":{"name":"Glass and Ceramics","volume":"80 11-12","pages":"521 - 523"},"PeriodicalIF":0.6,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140810335","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-29DOI: 10.1007/s10717-024-00634-9
S. S. Fedotov, V. I. Savinkov, Yu. I. Mashir, A. I. Ozerova, A. S. Naumov, I. A. Veselov, E. H. Mamadzhanova, M. Z. Ziyatdinova, V. N. Sigaev
The local Abrio method of birefringence assessment was applied for the first time to strengthened glasses, and it was used to investigate the micro-stress distribution in float glass subjected to ion-exchange strengthening. It is demonstrated that the thickness of the stressed layer can be determined with great precision, and a correlation is found between the depth of the stressed layer and the penetration depth of potassium cations in the course of ion exchange.
{"title":"Local Analysis of Birefringence in Ion-Exchange Strengthened Glass","authors":"S. S. Fedotov, V. I. Savinkov, Yu. I. Mashir, A. I. Ozerova, A. S. Naumov, I. A. Veselov, E. H. Mamadzhanova, M. Z. Ziyatdinova, V. N. Sigaev","doi":"10.1007/s10717-024-00634-9","DOIUrl":"10.1007/s10717-024-00634-9","url":null,"abstract":"<p>The local Abrio method of birefringence assessment was applied for the first time to strengthened glasses, and it was used to investigate the micro-stress distribution in float glass subjected to ion-exchange strengthening. It is demonstrated that the thickness of the stressed layer can be determined with great precision, and a correlation is found between the depth of the stressed layer and the penetration depth of potassium cations in the course of ion exchange.</p>","PeriodicalId":579,"journal":{"name":"Glass and Ceramics","volume":"80 11-12","pages":"460 - 463"},"PeriodicalIF":0.6,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140810292","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-29DOI: 10.1007/s10717-024-00633-w
V. D. Stolyarov, O. E. Shubabko, D. I. Vershinin
The effect of the eutectic additive of the system Li2O–B2O3 on the sintering process and the dielectric properties of Li2MgTi3O8-based ceramics was studied. It was found that the introduction of an additive in amounts 10.0 – 15.0% promotes sintering of ceramics by means of a liquid-phase mechanism. Li2MgTi3O8-based ceramic, containing a sintering additive in the amount 15.0% and fired at 900°C, demonstrates the following property levels: average density ρav = 3.04 g/cm3, open porosity Po = 5.7%, relative dielectric constant εr = 19.0, and dielectric loss tangent tan δ = 0.028. The lowered sintering temperature of the ceramic will allow the manufacture of different electronic components based on it, using low-temperature co-firing ceramic (LTCC) technology, and the a specified level of dielectric properties will allow the miniaturization of devices.
{"title":"Eutectic Additive Influence in the Li2O–B2O3 System on the Sintering Process and Properties of Li2MgTi3O8 Ceramics","authors":"V. D. Stolyarov, O. E. Shubabko, D. I. Vershinin","doi":"10.1007/s10717-024-00633-w","DOIUrl":"10.1007/s10717-024-00633-w","url":null,"abstract":"<p>The effect of the eutectic additive of the system Li<sub>2</sub>O–B<sub>2</sub>O<sub>3</sub> on the sintering process and the dielectric properties of Li<sub>2</sub>MgTi<sub>3</sub>O<sub>8</sub>-based ceramics was studied. It was found that the introduction of an additive in amounts 10.0 – 15.0% promotes sintering of ceramics by means of a liquid-phase mechanism. Li<sub>2</sub>MgTi<sub>3</sub>O<sub>8</sub>-based ceramic, containing a sintering additive in the amount 15.0% and fired at 900°C, demonstrates the following property levels: average density ρ<sub>av</sub> = 3.04 g/cm<sup>3</sup>, open porosity P<sub>o</sub> = 5.7%, relative dielectric constant ε<sub><i>r</i></sub> = 19.0, and dielectric loss tangent tan δ = 0.028. The lowered sintering temperature of the ceramic will allow the manufacture of different electronic components based on it, using low-temperature co-firing ceramic (LTCC) technology, and the a specified level of dielectric properties will allow the miniaturization of devices.</p>","PeriodicalId":579,"journal":{"name":"Glass and Ceramics","volume":"80 11-12","pages":"455 - 459"},"PeriodicalIF":0.6,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140810289","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}