Quantum key distribution is a technique to securely distribute a bit string between two parties by using the laws of quantum mechanics. The security of this technique depends on the basis of quantum mechanics rather than the difficulty of the mathematical calculation as in the classical encoding. Researches in this field have shown that the quantum key distribution will be fully functioning outside the laboratory in a few years. Due to the complexity and the high efficiency of the device, the verification is needed. In this article, we use PRISM to verify the security of the quantum key distribution protocol, which uses the entangled photon based on BB84 protocol.
{"title":"Analysis of Security of Quantum Key Distribution Based on Entangled Photon Pairs by Model Checking","authors":"Surapol Rochanapratishtha, W. Pijitrojana","doi":"10.4236/JQIS.2015.53012","DOIUrl":"https://doi.org/10.4236/JQIS.2015.53012","url":null,"abstract":"Quantum key distribution is a technique to securely distribute a bit string between two parties by using the laws of quantum mechanics. The security of this technique depends on the basis of quantum mechanics rather than the difficulty of the mathematical calculation as in the classical encoding. Researches in this field have shown that the quantum key distribution will be fully functioning outside the laboratory in a few years. Due to the complexity and the high efficiency of the device, the verification is needed. In this article, we use PRISM to verify the security of the quantum key distribution protocol, which uses the entangled photon based on BB84 protocol.","PeriodicalId":58996,"journal":{"name":"量子信息科学期刊(英文)","volume":"05 1","pages":"103-108"},"PeriodicalIF":0.0,"publicationDate":"2015-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70420143","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This report describes an approach for representation of quantum operators through rotations and rotation through quantum operators. The approach of the proposed method transforms rotation in a kind of a unitary matrix that corresponds to the rotation. Operations with qubits are very similar to the rotation, but with an added phase coefficient. This fact is used to create a process for rotation between unitary matrices. This approach could be used to modifying the controls to apply in a different basis.
{"title":"Bilaterally Symmetrical Transformation between Independent Operators and Rotations","authors":"Nikolay Raychev","doi":"10.4236/jqis.2015.53010","DOIUrl":"https://doi.org/10.4236/jqis.2015.53010","url":null,"abstract":"This report describes an approach for representation of quantum operators through rotations and rotation through quantum operators. The approach of the proposed method transforms rotation in a kind of a unitary matrix that corresponds to the rotation. Operations with qubits are very similar to the rotation, but with an added phase coefficient. This fact is used to create a process for rotation between unitary matrices. This approach could be used to modifying the controls to apply in a different basis.","PeriodicalId":58996,"journal":{"name":"量子信息科学期刊(英文)","volume":"21 1","pages":"79-88"},"PeriodicalIF":0.0,"publicationDate":"2015-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70419712","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In this article the concept of phase encoding/decoding is used to analyze and formalize a simple quantum algorithm—the Deutsch’s algorithm. The algorithm is formalized in two different ways through an analysis, based on phase encoding/decoding, carried out by the formalized elementary operators developed by the author of this article. Concrete examples of different possible realizations of the formalized with Raychev’s operators Deutsch’s algorithms are offered.
{"title":"Formalized Operators with Phase Encoding","authors":"Nikolay Raychev","doi":"10.4236/JQIS.2015.53014","DOIUrl":"https://doi.org/10.4236/JQIS.2015.53014","url":null,"abstract":"In this article the concept of phase encoding/decoding is used to analyze and formalize a simple quantum algorithm—the Deutsch’s algorithm. The algorithm is formalized in two different ways through an analysis, based on phase encoding/decoding, carried out by the formalized elementary operators developed by the author of this article. Concrete examples of different possible realizations of the formalized with Raychev’s operators Deutsch’s algorithms are offered.","PeriodicalId":58996,"journal":{"name":"量子信息科学期刊(英文)","volume":"05 1","pages":"114-126"},"PeriodicalIF":0.0,"publicationDate":"2015-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70420458","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
We calculate the work done by a Landau-Zener-like dynamical field on two- and three-level quantum system by constructing a quantum power operator. We elaborate a general theory applicable to a wide range of closed-quantum system. We consider the dynamics of the system in the time domain ]-tLZ,tLZ[ (where is the LZ transition time in the sudden limit) where the external pulse changes its sign and its action becomes relevant. The statistical work is evaluated in a period [0,T] where T ≤tLZ. Our results are observed to be in good qualitative agreement with known results.
{"title":"Work Done on a Coherently Driven Quantum System","authors":"I. Nsangou, L. C. Fai","doi":"10.4236/JQIS.2015.53011","DOIUrl":"https://doi.org/10.4236/JQIS.2015.53011","url":null,"abstract":"We calculate the work done by a Landau-Zener-like dynamical field on two- and three-level quantum system by constructing a quantum power operator. We elaborate a general theory applicable to a wide range of closed-quantum system. We consider the dynamics of the system in the time domain ]-tLZ,tLZ[ (where is the LZ transition time in the sudden limit) where the external pulse changes its sign and its action becomes relevant. The statistical work is evaluated in a period [0,T] where T ≤tLZ. Our results are observed to be in good qualitative agreement with known results.","PeriodicalId":58996,"journal":{"name":"量子信息科学期刊(英文)","volume":"05 1","pages":"89-102"},"PeriodicalIF":0.0,"publicationDate":"2015-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70420166","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In the famous EPR paper published in 1935, Einstein, Podolsky, and Rosen suggested a thought experiment, which later became known as the “EPR experiment”. Using the EPR experiment, they posited that quantum mechanics was incomplete. Einstein, however, was dissatisfied with the EPR paper and published a second work on the EPR experiment, in which he discussed the dilemma of choosing whether quantum mechanics was incomplete or nonlocal. Currently, most physicists choose the nonlocality of quantum mechanics over Einstein’s choice of the incompleteness of quantum mechanics. However, with an appropriate alternate hypothesis, both of these choices can be rejected. Herein, I demonstrate an approach to overcome the Einstein Dilemma by proposing a new interpretation invoked by a new formalism of quantum mechanics known as two-state vector formalism.
{"title":"Einstein Dilemma and Two-State Vector Formalism","authors":"K. Morita","doi":"10.4236/JQIS.2015.52006","DOIUrl":"https://doi.org/10.4236/JQIS.2015.52006","url":null,"abstract":"In the famous EPR paper published in 1935, Einstein, Podolsky, and Rosen suggested a thought experiment, which later became known as the “EPR experiment”. Using the EPR experiment, they posited that quantum mechanics was incomplete. Einstein, however, was dissatisfied with the EPR paper and published a second work on the EPR experiment, in which he discussed the dilemma of choosing whether quantum mechanics was incomplete or nonlocal. Currently, most physicists choose the nonlocality of quantum mechanics over Einstein’s choice of the incompleteness of quantum mechanics. However, with an appropriate alternate hypothesis, both of these choices can be rejected. Herein, I demonstrate an approach to overcome the Einstein Dilemma by proposing a new interpretation invoked by a new formalism of quantum mechanics known as two-state vector formalism.","PeriodicalId":58996,"journal":{"name":"量子信息科学期刊(英文)","volume":"05 1","pages":"41-46"},"PeriodicalIF":0.0,"publicationDate":"2015-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70419570","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The discrimination of quantum operations is an important subject of quantum information processes. For the local distinction, existing researches pointed out that, since any operation performed on a quantum system must be compatible with no-signaling constraint, local discrimination between quantum operations of two spacelike separated parties cannot be realized. We found that, however, local discrimination of quantum measurements may be not restricted by the nosignaling if more multi-qubit entanglement and selective measurements were employed. In this paper, we report that local quantum measurement discrimination (LQMD) can be completed via selective projective measurements and numerous seven-qubit GHZ states without help of classical communication if both two observers agreed in advance that one of them should measure her/his qubits before an appointed time. As an application, it is shown that the teleportation can be completed via the LQMD without classical information. This means that the superluminal communication can be realized by using the LQMD.
{"title":"RETRACTED: Local Discrimination of Quantum Measurement without Assistance of Classical Information","authors":"Y. Zhan","doi":"10.4236/JQIS.2015.52009","DOIUrl":"https://doi.org/10.4236/JQIS.2015.52009","url":null,"abstract":"The discrimination of quantum operations is an important subject of quantum information processes. For the local distinction, existing researches pointed out that, since any operation performed on a quantum system must be compatible with no-signaling constraint, local discrimination between quantum operations of two spacelike separated parties cannot be realized. We found that, however, local discrimination of quantum measurements may be not restricted by the nosignaling if more multi-qubit entanglement and selective measurements were employed. In this paper, we report that local quantum measurement discrimination (LQMD) can be completed via selective projective measurements and numerous seven-qubit GHZ states without help of classical communication if both two observers agreed in advance that one of them should measure her/his qubits before an appointed time. As an application, it is shown that the teleportation can be completed via the LQMD without classical information. This means that the superluminal communication can be realized by using the LQMD.","PeriodicalId":58996,"journal":{"name":"量子信息科学期刊(英文)","volume":"05 1","pages":"71-78"},"PeriodicalIF":0.0,"publicationDate":"2015-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70419698","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A quantum information theory is derived for multidimensional signals scaling. Dynamical data modeling methodology is described for decomposing a signal in a coupled structure of binding synergies, in scale-space. Mass conservation principle, along with a generalized uncertainty relation, and the scale-space wave propagation lead to a polynomial decomposition of information. Statistical map of data, through dynamical cascades, gives an effective way of coding and assessing its control structure. Using a multi-scale approach, the scale-space wave information propagation is utilized in computing stochastic resonance synergies (SRS), and a data ensemble is conceptualized within an atomic structure. In this paper, we show the analysis of multidimensional data scatter, exhibiting a point scaling property. We discuss applications in image processing, as well as, in neuroimaging. Functional neuro-cortical mapping by multidimensional scaling is explained for two behaviorally correlated auditory experiments, whose BOLD signals are recorded by fMRI. The point scaling property of the information flow between the signals recorded in those two experiments is analyzed in conjunction with the cortical feature detector findings and the auditory tonotopic map. The brain wave nucleons from an EEG scan, along with a distance measure of synchronicity of the brain wave patterns, are also explained.
{"title":"Stochastic Resonance Synergetics— Quantum Information Theory for Multidimensional Scaling","authors":"Milan Jovovic","doi":"10.4236/JQIS.2015.52007","DOIUrl":"https://doi.org/10.4236/JQIS.2015.52007","url":null,"abstract":"A quantum information theory is derived for multidimensional signals scaling. Dynamical data modeling methodology is described for decomposing a signal in a coupled structure of binding synergies, in scale-space. Mass conservation principle, along with a generalized uncertainty relation, and the scale-space wave propagation lead to a polynomial decomposition of information. Statistical map of data, through dynamical cascades, gives an effective way of coding and assessing its control structure. Using a multi-scale approach, the scale-space wave information propagation is utilized in computing stochastic resonance synergies (SRS), and a data ensemble is conceptualized within an atomic structure. In this paper, we show the analysis of multidimensional data scatter, exhibiting a point scaling property. We discuss applications in image processing, as well as, in neuroimaging. Functional neuro-cortical mapping by multidimensional scaling is explained for two behaviorally correlated auditory experiments, whose BOLD signals are recorded by fMRI. The point scaling property of the information flow between the signals recorded in those two experiments is analyzed in conjunction with the cortical feature detector findings and the auditory tonotopic map. The brain wave nucleons from an EEG scan, along with a distance measure of synchronicity of the brain wave patterns, are also explained.","PeriodicalId":58996,"journal":{"name":"量子信息科学期刊(英文)","volume":"05 1","pages":"47-57"},"PeriodicalIF":0.0,"publicationDate":"2015-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70419628","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Makhamisa Senekane, M. Mafu, Francesco Petruccione
We propose and demonstrate an optical implementation of a quantum key distribution protocol, which uses three-non-orthogonal states and six states in total. The proposed scheme improves the protocol that is proposed by Phoenix, Barnett and Chefles [J. Mod. Opt. 47, 507 (2000)]. An additional feature, which we introduce in our scheme, is that we add another detection set; where each detection set has three non-orthogonal states. The inclusion of an additional detection set leads to improved symmetry, increased eavesdropper detection and higher security margin for our protocol.
{"title":"Six-State Symmetric Quantum Key Distribution Protocol","authors":"Makhamisa Senekane, M. Mafu, Francesco Petruccione","doi":"10.4236/JQIS.2015.52005","DOIUrl":"https://doi.org/10.4236/JQIS.2015.52005","url":null,"abstract":"We propose and demonstrate an optical implementation of a quantum key distribution protocol, which uses three-non-orthogonal states and six states in total. The proposed scheme improves the protocol that is proposed by Phoenix, Barnett and Chefles [J. Mod. Opt. 47, 507 (2000)]. An additional feature, which we introduce in our scheme, is that we add another detection set; where each detection set has three non-orthogonal states. The inclusion of an additional detection set leads to improved symmetry, increased eavesdropper detection and higher security margin for our protocol.","PeriodicalId":58996,"journal":{"name":"量子信息科学期刊(英文)","volume":"05 1","pages":"33-40"},"PeriodicalIF":0.0,"publicationDate":"2015-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70419554","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
T. Masuhara, Toru Kuriyama, Masakazu Yoshida, Jun Cheng
Formal verification using interactive theorem provers have been noticed as a method of verification of proofs that are too big for humans to check the validity of them. The purpose of this work is to verify the validity of Robertson-type uncertainty relation toward verifying unconditional security of quantum key distributions. We verify the validity of the relation by using proof assistant Coq and it is turned out that the theorem regarding the relation formally holds. The source code for Coq which represents the validity of the theorem is printed in Appendix.
{"title":"Formal Verification of Robertson-Type Uncertainty Relation","authors":"T. Masuhara, Toru Kuriyama, Masakazu Yoshida, Jun Cheng","doi":"10.4236/JQIS.2015.52008","DOIUrl":"https://doi.org/10.4236/JQIS.2015.52008","url":null,"abstract":"Formal verification using interactive theorem provers have been noticed as a method of verification of proofs that are too big for humans to check the validity of them. The purpose of this work is to verify the validity of Robertson-type uncertainty relation toward verifying unconditional security of quantum key distributions. We verify the validity of the relation by using proof assistant Coq and it is turned out that the theorem regarding the relation formally holds. The source code for Coq which represents the validity of the theorem is printed in Appendix.","PeriodicalId":58996,"journal":{"name":"量子信息科学期刊(英文)","volume":"05 1","pages":"58-70"},"PeriodicalIF":0.0,"publicationDate":"2015-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70419643","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This paper questions the generally accepted assumption that one can make a random choice that is independent of the rest of the universe. We give a general description of any setup that could be conceived to generate random numbers. Based on the fact that the initial state of such setup together with its environment cannot be known, we show that the independence of its generated output cannot be guaranteed. Some consequences of this theoretical limitation are discussed.
{"title":"Is Independent Choice Possible","authors":"H. Inamori","doi":"10.4236/jqis.2016.61005","DOIUrl":"https://doi.org/10.4236/jqis.2016.61005","url":null,"abstract":"This paper questions the generally accepted assumption that one can make a random choice that is independent of the rest of the universe. We give a general description of any setup that could be conceived to generate random numbers. Based on the fact that the initial state of such setup together with its environment cannot be known, we show that the independence of its generated output cannot be guaranteed. Some consequences of this theoretical limitation are discussed.","PeriodicalId":58996,"journal":{"name":"量子信息科学期刊(英文)","volume":"06 1","pages":"39-43"},"PeriodicalIF":0.0,"publicationDate":"2015-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70420369","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}