Pub Date : 2024-11-01DOI: 10.1021/acs.jpca.4c0439310.1021/acs.jpca.4c04393
Vianni Giovanna Straccia Cepeda, María. B. Blanco and Mariano Teruel*,
Relative rate studies of the gas-phase reaction of amyl methacrylate, CH2═C(CH3)C(O)O[CH2]4CH3, with •OH radicals were performed at (298 ± 2) K and 1000 mbar. The experiments were conducted in an atmospheric Pyrex chamber coupled to in situ Fourier transform infrared spectroscopy (FTIR). The rate coefficient obtained from the average of several experiments was kAMMA+•OH = (8.10 ± 1.98) × 10–11 cm3 molecule–1 s–1. Additionally, product studies were conducted under conditions similar to those of the kinetic experiments by using in situ FTIR spectroscopy. Pentanal, butanal, and hydroxyacetone were identified as the main reaction products. The initial pathway for the degradation of amyl methacrylate with •OH radicals occurs via addition of •OH to the >C═C< bond or hydrogen abstraction from the alkyl chain of the ester. The likelihood of hydrogen atom abstraction is 25%, while the addition of hydroxyl radicals to the double bond occurs with a probability of 75%. Based on these outcomes, a degradation mechanism is postulated. Furthermore, the atmospheric implications of the studied reaction were evaluated by estimating the tropospheric lifetime of amyl methacrylate toward •OH radicals as τOH = 3.43 h. Additionally, the Photochemical Ozone Creation Potential (POCP) of 84 was calculated for the reaction studied. Carbonyl compounds found as reaction products can exert a substantial influence on both air quality and public health.
{"title":"Atmospheric Degradation of CH2═C(CH3)C(O)O[CH2]4CH3 by •OH Radicals: Reactivity, POCP, and Carbonyl Formation","authors":"Vianni Giovanna Straccia Cepeda, María. B. Blanco and Mariano Teruel*, ","doi":"10.1021/acs.jpca.4c0439310.1021/acs.jpca.4c04393","DOIUrl":"https://doi.org/10.1021/acs.jpca.4c04393https://doi.org/10.1021/acs.jpca.4c04393","url":null,"abstract":"<p >Relative rate studies of the gas-phase reaction of amyl methacrylate, CH<sub>2</sub>═C(CH<sub>3</sub>)C(O)O[CH<sub>2</sub>]<sub>4</sub>CH<sub>3</sub>, with <sup>•</sup>OH radicals were performed at (298 ± 2) K and 1000 mbar. The experiments were conducted in an atmospheric Pyrex chamber coupled to <i>in situ</i> Fourier transform infrared spectroscopy (FTIR). The rate coefficient obtained from the average of several experiments was <i>k</i><sub>AMMA+•OH</sub> = (8.10 ± 1.98) × 10<sup>–11</sup> cm<sup>3</sup> molecule<sup>–1</sup> s<sup>–1</sup>. Additionally, product studies were conducted under conditions similar to those of the kinetic experiments by using <i>in situ</i> FTIR spectroscopy. Pentanal, butanal, and hydroxyacetone were identified as the main reaction products. The initial pathway for the degradation of amyl methacrylate with <sup>•</sup>OH radicals occurs via addition of <sup>•</sup>OH to the >C═C< bond or hydrogen abstraction from the alkyl chain of the ester. The likelihood of hydrogen atom abstraction is 25%, while the addition of hydroxyl radicals to the double bond occurs with a probability of 75%. Based on these outcomes, a degradation mechanism is postulated. Furthermore, the atmospheric implications of the studied reaction were evaluated by estimating the tropospheric lifetime of amyl methacrylate toward <sup>•</sup>OH radicals as τ<sub>OH</sub> = 3.43 h. Additionally, the Photochemical Ozone Creation Potential (POCP) of 84 was calculated for the reaction studied. Carbonyl compounds found as reaction products can exert a substantial influence on both air quality and public health.</p>","PeriodicalId":59,"journal":{"name":"The Journal of Physical Chemistry A","volume":"128 45","pages":"9782–9791 9782–9791"},"PeriodicalIF":2.7,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142640958","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-31Epub Date: 2024-10-16DOI: 10.1021/acs.jpca.4c05015
Paige J Brown, Yunfan Qiu, Elisabeth I Latawiec, Brian T Phelan, Nikolai A Tcyrulnikov, Jonathan R Palmer, Matthew D Krzyaniak, Sebastian M Kopp, Yuheng Huang, Ryan M Young, Michael R Wasielewski
We report on new donor-chromophore-acceptor triads BDX-ANI-NDI and BDX-ANI-xy-NDI where the BDX donor is 2,2,6,6-tetramethylbenzo[1,2-d;4,5-d]bis[1,3]dioxole, the ANI chromophore is 4-(N-piperidinyl)naphthalene-1,8-dicarboximide, the NDI acceptor is naphthalene-1,8:4,5-bis(dicarboximide), and xy is a 2,5-xylyl spacer. The results on these compounds are compared to the analogous derivatives having a p-methoxyaniline (MeOAn) as the donor. BDX•+ has no nitrogen atoms and only a single hydrogen atom coupled to its unpaired electron spin, and therefore has significantly decreased hyperfine interactions compared to MeOAn•+. We use femtosecond transient absorption (fsTA) and nanosecond TA (nsTA) spectroscopies, the latter with an applied static magnetic field, to study the charge transfer dynamics and determine the spin-spin exchange interaction (J) for BDX•+-ANI-NDI•- and BDX•+-ANI-xy-NDI•- at both ambient and cryogenic temperatures. Time-resolved electron paramagnetic resonance (EPR) and pulse-EPR measurements on these spin-correlated radical pairs (SCRPs) were used to probe their spin dynamics. We demonstrate that BDX•+-ANI-xy-NDI•- has an unusually long lifetime of ∼550 μs in glassy butyronitrile (PrCN) at 85 K, which makes it useful for pulse-EPR studies that target quantum information science (QIS) applications. We also show that rotation of the BDX group about the single bond linking it to the neighboring phenyl group has a significant impact on the spin dynamics, and in particular the magnitude of J. By comparing the results on these compounds to the analogous MeOAn series, insights into design principles for creating improved spin-correlated radical pair systems for QIS studies are obtained.
{"title":"Enhancing Photogenerated Radical Pair Properties in Donor-Chromophore-Acceptor Systems for Quantum Information Applications.","authors":"Paige J Brown, Yunfan Qiu, Elisabeth I Latawiec, Brian T Phelan, Nikolai A Tcyrulnikov, Jonathan R Palmer, Matthew D Krzyaniak, Sebastian M Kopp, Yuheng Huang, Ryan M Young, Michael R Wasielewski","doi":"10.1021/acs.jpca.4c05015","DOIUrl":"10.1021/acs.jpca.4c05015","url":null,"abstract":"<p><p>We report on new donor-chromophore-acceptor triads <b>BDX-ANI-NDI</b> and <b>BDX-ANI-xy-NDI</b> where the BDX donor is 2,2,6,6-tetramethylbenzo[1,2-<i>d</i>;4,5-<i>d</i>]bis[1,3]dioxole, the ANI chromophore is 4-(<i>N</i>-piperidinyl)naphthalene-1,8-dicarboximide, the NDI acceptor is naphthalene-1,8:4,5-bis(dicarboximide), and xy is a 2,5-xylyl spacer. The results on these compounds are compared to the analogous derivatives having a <i>p</i>-methoxyaniline (MeOAn) as the donor. BDX<sup>•<b>+</b></sup> has no nitrogen atoms and only a single hydrogen atom coupled to its unpaired electron spin, and therefore has significantly decreased hyperfine interactions compared to MeOAn<sup><b>•+</b></sup>. We use femtosecond transient absorption (fsTA) and nanosecond TA (nsTA) spectroscopies, the latter with an applied static magnetic field, to study the charge transfer dynamics and determine the spin-spin exchange interaction (<i>J</i>) for <b>BDX</b><sup><b>•+</b></sup><b>-ANI-NDI</b><sup><b>•-</b></sup> and <b>BDX</b><sup><b>•+</b></sup><b>-ANI-xy-NDI</b><sup><b>•-</b></sup> at both ambient and cryogenic temperatures. Time-resolved electron paramagnetic resonance (EPR) and pulse-EPR measurements on these spin-correlated radical pairs (SCRPs) were used to probe their spin dynamics. We demonstrate that <b>BDX</b><sup><b>•+</b></sup><b>-ANI-xy-NDI</b><sup><b>•-</b></sup> has an unusually long lifetime of ∼550 μs in glassy butyronitrile (PrCN) at 85 K, which makes it useful for pulse-EPR studies that target quantum information science (QIS) applications. We also show that rotation of the BDX group about the single bond linking it to the neighboring phenyl group has a significant impact on the spin dynamics, and in particular the magnitude of <i>J</i>. By comparing the results on these compounds to the analogous MeOAn series, insights into design principles for creating improved spin-correlated radical pair systems for QIS studies are obtained.</p>","PeriodicalId":59,"journal":{"name":"The Journal of Physical Chemistry A","volume":" ","pages":"9371-9382"},"PeriodicalIF":2.7,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142453487","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-31Epub Date: 2024-10-18DOI: 10.1021/acs.jpca.4c05198
Silvia Alessandrini, Hexu Ye, Malgorzata Biczysko, Cristina Puzzarini
Selected molecular species containing the disulfide bond, RSSR, have been considered, these ranging from hydrogen disulfide, H2S2 (R = H), to diphenyl disulfide with R = C6H5. The aim of this work is two-fold: (i) to investigate different computational approaches in order to derive accurate equilibrium structures at an affordable cost, (ii) to employ the results from the first goal in order to benchmark cheaper methodologies rooted in the density functional theory. Among the strategies used for the accurate geometrical determinations, the semiexperimental approach has been exploited in combination with a reduced-dimensionality VPT2 model, without however obtaining satisfactory results. Instead, the so-called "Lego brick" approach turned out to be very effective despite the flexibility of the systems investigated. Concerning the second target of this work, the focus was mainly on the S-S bond and the structural parameters related to it. Among those tested, PBE0(-D3BJ), M06-2X(-D3) and DSD-PBEP86-D3BJ have been found to be the best-performing functionals.
{"title":"Describing the Disulfide Bond: From the Density Functional Theory and Back through the \"Lego Brick\" Approach.","authors":"Silvia Alessandrini, Hexu Ye, Malgorzata Biczysko, Cristina Puzzarini","doi":"10.1021/acs.jpca.4c05198","DOIUrl":"10.1021/acs.jpca.4c05198","url":null,"abstract":"<p><p>Selected molecular species containing the disulfide bond, RSSR, have been considered, these ranging from hydrogen disulfide, H<sub>2</sub>S<sub>2</sub> (R = H), to diphenyl disulfide with R = C<sub>6</sub>H<sub>5</sub>. The aim of this work is two-fold: (i) to investigate different computational approaches in order to derive accurate equilibrium structures at an affordable cost, (ii) to employ the results from the first goal in order to benchmark cheaper methodologies rooted in the density functional theory. Among the strategies used for the accurate geometrical determinations, the semiexperimental approach has been exploited in combination with a reduced-dimensionality VPT2 model, without however obtaining satisfactory results. Instead, the so-called \"Lego brick\" approach turned out to be very effective despite the flexibility of the systems investigated. Concerning the second target of this work, the focus was mainly on the S-S bond and the structural parameters related to it. Among those tested, PBE0(-D3BJ), M06-2X(-D3) and DSD-PBEP86-D3BJ have been found to be the best-performing functionals.</p>","PeriodicalId":59,"journal":{"name":"The Journal of Physical Chemistry A","volume":" ","pages":"9383-9397"},"PeriodicalIF":2.7,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142453485","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-31Epub Date: 2024-10-16DOI: 10.1021/acs.jpca.4c06443
Pengcheng Jiang, Yijing Yang, Xun Zhu, Dingding Ye, Yang Yang, Hong Wang, Liang An, Alexander A Fedorets, Qiang Liao, Rong Chen, Michael Nosonovsky
It has been reported that the self-assembly pattern of light levitating droplet clusters above the hot gas-liquid interface is dependent on the quantity of droplets. However, the already-reported theoretical explanation of the quantity-dependent self-assembly pattern cannot work well when the quantity of the light levitating droplet exceeds 15. Herein, we propose a new theoretical perspective to understand the self-assembly of a light levitating droplet cluster by referring to the classical densest packing problem of identical rigid circles in a larger circle with the introduction of the minimum total potential energy principle. Amazingly, the theoretical results obtained by this new approach agree well with experimental results, even though the quantity of the light levitating droplet is up to 142. This study deepens our understanding of the quantity-dependent self-assembly pattern of the light levitating droplet clusters and provides significant inspiration for other analogous self-assembly phenomena.
{"title":"New Insight into Quantity-Dependent Self-Assembly Pattern of Light Levitating Droplet Clusters.","authors":"Pengcheng Jiang, Yijing Yang, Xun Zhu, Dingding Ye, Yang Yang, Hong Wang, Liang An, Alexander A Fedorets, Qiang Liao, Rong Chen, Michael Nosonovsky","doi":"10.1021/acs.jpca.4c06443","DOIUrl":"10.1021/acs.jpca.4c06443","url":null,"abstract":"<p><p>It has been reported that the self-assembly pattern of light levitating droplet clusters above the hot gas-liquid interface is dependent on the quantity of droplets. However, the already-reported theoretical explanation of the quantity-dependent self-assembly pattern cannot work well when the quantity of the light levitating droplet exceeds 15. Herein, we propose a new theoretical perspective to understand the self-assembly of a light levitating droplet cluster by referring to the classical densest packing problem of identical rigid circles in a larger circle with the introduction of the minimum total potential energy principle. Amazingly, the theoretical results obtained by this new approach agree well with experimental results, even though the quantity of the light levitating droplet is up to 142. This study deepens our understanding of the quantity-dependent self-assembly pattern of the light levitating droplet clusters and provides significant inspiration for other analogous self-assembly phenomena.</p>","PeriodicalId":59,"journal":{"name":"The Journal of Physical Chemistry A","volume":" ","pages":"9447-9452"},"PeriodicalIF":2.7,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142453499","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-31Epub Date: 2024-10-21DOI: 10.1021/acs.jpca.4c02877
Daniel T Gweme, Sarah A Styler
Organosulfates (OS, ROSO3-), ubiquitous constituents of atmospheric particulate matter (PM), influence both the physicochemical and climatic properties of PM. Although the formation pathways of OS have been extensively researched, only a few studies have investigated the atmospheric fate of this class of compounds. Here, to better understand the reactivity and transformation of OS under cloudwater- and aerosol-relevant conditions, we investigate the hydroxyl radical (OH) oxidation bimolecular rate constants (kOS+OHII) and products of five atmospherically relevant OS as a function of pH and ionic strength: methyl sulfate (MeS), ethyl sulfate (EtS), propyl sulfate (PrS), hydroxyacetone sulfate (HaS) and phenyl sulfate (PhS). Our results show that OS are oxidized by OH with kOS+OHII between 108 - 109 M-1 s-1, which corresponds to atmospheric lifetimes of minutes in aqueous aerosol to days in cloudwater. We find that kOS+OHII increases with carbon chain length (MeS < EtS < PrS) and aromaticity (PrS < PhS), but does not depend on solution pH (2, 9). In addition, we find that whereas the OH reactivity of the aliphatic OS studied here decreases by ∼2× with increasing ionic strength (0-15 M), the reactivity of PhS decreases by ∼10×. The oxidation of EtS and PrS produced organic peroxides (ROOH) as first-generation oxidation products, which subsequently photolyzed; the oxidation of PhS resulted in hydroxylated aromatic products. These results highlight the need for inclusion of OS loss pathways in atmospheric models, and suggest caution in using ambient OS concentration measurements alone to estimate their production rates.
{"title":"OH Radical Oxidation of Organosulfates in the Atmospheric Aqueous Phase.","authors":"Daniel T Gweme, Sarah A Styler","doi":"10.1021/acs.jpca.4c02877","DOIUrl":"10.1021/acs.jpca.4c02877","url":null,"abstract":"<p><p>Organosulfates (OS, ROSO<sub>3</sub><sup>-</sup>), ubiquitous constituents of atmospheric particulate matter (PM), influence both the physicochemical and climatic properties of PM. Although the formation pathways of OS have been extensively researched, only a few studies have investigated the atmospheric fate of this class of compounds. Here, to better understand the reactivity and transformation of OS under cloudwater- and aerosol-relevant conditions, we investigate the hydroxyl radical (OH) oxidation bimolecular rate constants (<i>k</i><sub>OS+OH</sub><sup>II</sup>) and products of five atmospherically relevant OS as a function of pH and ionic strength: methyl sulfate (MeS), ethyl sulfate (EtS), propyl sulfate (PrS), hydroxyacetone sulfate (HaS) and phenyl sulfate (PhS). Our results show that OS are oxidized by OH with <i>k</i><sub>OS+OH</sub><sup>II</sup> between 10<sup>8</sup> - 10<sup>9</sup> M<sup>-1</sup> s<sup>-1</sup>, which corresponds to atmospheric lifetimes of minutes in aqueous aerosol to days in cloudwater. We find that <i>k</i><sub>OS+OH</sub><sup>II</sup> increases with carbon chain length (MeS < EtS < PrS) and aromaticity (PrS < PhS), but does not depend on solution pH (2, 9). In addition, we find that whereas the OH reactivity of the aliphatic OS studied here decreases by ∼2× with increasing ionic strength (0-15 M), the reactivity of PhS decreases by ∼10×. The oxidation of EtS and PrS produced organic peroxides (ROOH) as first-generation oxidation products, which subsequently photolyzed; the oxidation of PhS resulted in hydroxylated aromatic products. These results highlight the need for inclusion of OS loss pathways in atmospheric models, and suggest caution in using ambient OS concentration measurements alone to estimate their production rates.</p>","PeriodicalId":59,"journal":{"name":"The Journal of Physical Chemistry A","volume":" ","pages":"9462-9475"},"PeriodicalIF":2.7,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142453500","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-31Epub Date: 2024-10-22DOI: 10.1021/acs.jpca.4c04778
Jianhang Li, Chenyu Li, Wenkai Liang, Wenhu Han, Chung K Law
In this work, effects of ozone (O3) addition on ethylene-oxygen (C2H4-O2) mixtures are computationally studied through the explosion limit profiles. The results show that the addition of minute quantities of ozone (with a mole fraction of 0.06% in the oxidizer) shifts the explosion limit of the C2H4-O3-O2 mixtures to the low-temperature regime. Further increases in the ozone concentration gradually strengthen the negative temperature coefficient (NTC) behavior at the second limit. That is because the explosion limit is primarily controlled by the ethylene ozonolysis reaction, and both the sensitivity analysis and chemical reaction rate perturbation method reveal specific kinetic reasons. Furthermore, it is shown that with the increasing equivalence ratio, the explosion limit curve with minute ozone addition rotates counterclockwise around a crossover point, while the explosion limit curve becomes complicated and the NTC behavior appears on the second limit with larger quantities of ozone addition. Furthermore, the effects of dilutions of nitrogen (N2), argon (Ar), carbon dioxide (CO2), and water (H2O) on the explosion limits are also studied. To elucidate the different wall elimination effects of different explosion limit regimes, the impacts of surface reactions of six radicals (H, O, OH, HO2, H2O2, and HCO) have been examined and the dominant radicals are found to be H and HO2. The H radicals significantly influence the first explosion limit, while the HO2 radicals impact the entire explosion limit.
{"title":"Ozone Doping and Negative Temperature Response in the Explosion Limits of Ethylene-Oxygen Mixtures.","authors":"Jianhang Li, Chenyu Li, Wenkai Liang, Wenhu Han, Chung K Law","doi":"10.1021/acs.jpca.4c04778","DOIUrl":"10.1021/acs.jpca.4c04778","url":null,"abstract":"<p><p>In this work, effects of ozone (O<sub>3</sub>) addition on ethylene-oxygen (C<sub>2</sub>H<sub>4</sub>-O<sub>2</sub>) mixtures are computationally studied through the explosion limit profiles. The results show that the addition of minute quantities of ozone (with a mole fraction of 0.06% in the oxidizer) shifts the explosion limit of the C<sub>2</sub>H<sub>4</sub>-O<sub>3</sub>-O<sub>2</sub> mixtures to the low-temperature regime. Further increases in the ozone concentration gradually strengthen the negative temperature coefficient (NTC) behavior at the second limit. That is because the explosion limit is primarily controlled by the ethylene ozonolysis reaction, and both the sensitivity analysis and chemical reaction rate perturbation method reveal specific kinetic reasons. Furthermore, it is shown that with the increasing equivalence ratio, the explosion limit curve with minute ozone addition rotates counterclockwise around a crossover point, while the explosion limit curve becomes complicated and the NTC behavior appears on the second limit with larger quantities of ozone addition. Furthermore, the effects of dilutions of nitrogen (N<sub>2</sub>), argon (Ar), carbon dioxide (CO<sub>2</sub>), and water (H<sub>2</sub>O) on the explosion limits are also studied. To elucidate the different wall elimination effects of different explosion limit regimes, the impacts of surface reactions of six radicals (H, O, OH, HO<sub>2</sub>, H<sub>2</sub>O<sub>2</sub>, and HCO) have been examined and the dominant radicals are found to be H and HO<sub>2</sub>. The H radicals significantly influence the first explosion limit, while the HO<sub>2</sub> radicals impact the entire explosion limit.</p>","PeriodicalId":59,"journal":{"name":"The Journal of Physical Chemistry A","volume":" ","pages":"9510-9518"},"PeriodicalIF":2.7,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142453502","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-31DOI: 10.1021/acs.jpca.4c0600410.1021/acs.jpca.4c06004
Chisom A. Dim, Caroline Sorrells, Alicia O. Hernandez-Castillo and Kyle N. Crabtree*,
Succinimide and its derivatives are cyclic five-membered rings that appear in a variety of natural products and are widely used in organic synthesis. From a structural standpoint, succinimide contains an NH group in the ring which interacts with two adjacent carbonyl groups, pushing the ring structure toward planarity at the expense of increasing ring strain and eclipsing interactions among the out-of-plane hydrogen atoms in the two CH2 groups. Previous quantum chemical calculations at different levels of theory have predicted both a nonplanar C2 structure and a planar C2v structure, the latter of which is the most consistent with gas-phase electron diffraction measurements. Here, we report the pure rotational spectra of succinimide and N-chlorosuccinimide in the 26.5–40.0 GHz range using chirped-pulse Fourier transform microwave spectroscopy, supported by coupled cluster and density functional theory quantum chemical calculations. The spectra were fit to Watson’s A-reduced effective Hamiltonian, including both 35Cl and 37Cl isotopologues of N-chlorosuccinimide as well as the N and Cl quadrupole hyperfine interactions. On the basis of the agreement with quantum chemical calculations and the measured inertial defects, we find that the rotational spectra are consistent with a planar ring structure, with a maximum out-of-plane angle of ≤5°.
{"title":"Ka-Band Rotational Spectroscopy of Succinimide and N-Chlorosuccinimide","authors":"Chisom A. Dim, Caroline Sorrells, Alicia O. Hernandez-Castillo and Kyle N. Crabtree*, ","doi":"10.1021/acs.jpca.4c0600410.1021/acs.jpca.4c06004","DOIUrl":"https://doi.org/10.1021/acs.jpca.4c06004https://doi.org/10.1021/acs.jpca.4c06004","url":null,"abstract":"<p >Succinimide and its derivatives are cyclic five-membered rings that appear in a variety of natural products and are widely used in organic synthesis. From a structural standpoint, succinimide contains an NH group in the ring which interacts with two adjacent carbonyl groups, pushing the ring structure toward planarity at the expense of increasing ring strain and eclipsing interactions among the out-of-plane hydrogen atoms in the two CH<sub>2</sub> groups. Previous quantum chemical calculations at different levels of theory have predicted both a nonplanar <i>C</i><sub>2</sub> structure and a planar <i>C</i><sub>2<i>v</i></sub> structure, the latter of which is the most consistent with gas-phase electron diffraction measurements. Here, we report the pure rotational spectra of succinimide and N-chlorosuccinimide in the 26.5–40.0 GHz range using chirped-pulse Fourier transform microwave spectroscopy, supported by coupled cluster and density functional theory quantum chemical calculations. The spectra were fit to Watson’s A-reduced effective Hamiltonian, including both <sup>35</sup>Cl and <sup>37</sup>Cl isotopologues of N-chlorosuccinimide as well as the N and Cl quadrupole hyperfine interactions. On the basis of the agreement with quantum chemical calculations and the measured inertial defects, we find that the rotational spectra are consistent with a planar ring structure, with a maximum out-of-plane angle of ≤5°.</p>","PeriodicalId":59,"journal":{"name":"The Journal of Physical Chemistry A","volume":"128 45","pages":"9754–9762 9754–9762"},"PeriodicalIF":2.7,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142640855","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-31DOI: 10.1021/acs.jpca.4c0569310.1021/acs.jpca.4c05693
Felipe R. Dutra, João G. F. Romeu and David A. Dixon*,
Density functional theory in conjunction with small core pseudopotentials and the associated basis sets was used to calculate potentials for multiple redox couples, covering a range of oxidation states for Ac (0 to III), Th (0 to IV), and Pa (0 to V) in aqueous solution. Solvation effects were incorporated using a supermolecule-continuum approach, with 30 water molecules representing two solvation shells, and the COSMO and SMD implicit solvation models. The calculated geometries for Ac(III), Th(IV), and Pa(V) were in reasonable agreement with the available experimental data. Using the COSMO model with the B3LYP functional, the calculated redox potentials were within ±0.2 V from experiment for most redox couples. Several pathways were explored for the Pa(V/IV) redox couple for different forms of Pa(V) and Pa(IV). Most Pa(V/IV) redox couples have very similar potentials, ranging from 0 to −0.4 V up to a pH of 1.4. At pH = 1.4, the potentials shift to values that are more negative than −0.7 V, reflecting the growing unfavorable nature of the redox process at higher pH levels. The calculated values for An(III/II) potentials were consistent with prior estimates and the available experimental data. The predicted redox potentials for An(II/I) were highly negative, as expected. For An(I/0) potentials, Th and Pa exhibited positive values, contrasting with the negative values calculated for Ac. The An+m/An(0) potentials agreed better with the experimental data when using the COSMO solvation model as compared to the SMD model.
{"title":"Prediction of Redox Potentials for Ac, Th, and Pa in Aqueous Solution","authors":"Felipe R. Dutra, João G. F. Romeu and David A. Dixon*, ","doi":"10.1021/acs.jpca.4c0569310.1021/acs.jpca.4c05693","DOIUrl":"https://doi.org/10.1021/acs.jpca.4c05693https://doi.org/10.1021/acs.jpca.4c05693","url":null,"abstract":"<p >Density functional theory in conjunction with small core pseudopotentials and the associated basis sets was used to calculate potentials for multiple redox couples, covering a range of oxidation states for Ac (0 to III), Th (0 to IV), and Pa (0 to V) in aqueous solution. Solvation effects were incorporated using a supermolecule-continuum approach, with 30 water molecules representing two solvation shells, and the COSMO and SMD implicit solvation models. The calculated geometries for Ac(III), Th(IV), and Pa(V) were in reasonable agreement with the available experimental data. Using the COSMO model with the B3LYP functional, the calculated redox potentials were within ±0.2 V from experiment for most redox couples. Several pathways were explored for the Pa(V/IV) redox couple for different forms of Pa(V) and Pa(IV). Most Pa(V/IV) redox couples have very similar potentials, ranging from 0 to −0.4 V up to a pH of 1.4. At pH = 1.4, the potentials shift to values that are more negative than −0.7 V, reflecting the growing unfavorable nature of the redox process at higher pH levels. The calculated values for An(III/II) potentials were consistent with prior estimates and the available experimental data. The predicted redox potentials for An(II/I) were highly negative, as expected. For An(I/0) potentials, Th and Pa exhibited positive values, contrasting with the negative values calculated for Ac. The An<sup>+m</sup>/An(0) potentials agreed better with the experimental data when using the COSMO solvation model as compared to the SMD model.</p>","PeriodicalId":59,"journal":{"name":"The Journal of Physical Chemistry A","volume":"128 45","pages":"9730–9746 9730–9746"},"PeriodicalIF":2.7,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142640854","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-31Epub Date: 2024-10-20DOI: 10.1021/acs.jpca.4c05313
Isuru R Ariyarathna, Jeffery A Leiding, Amanda J Neukirch, Mark C Zammit
FeH is one of the most challenging diatomic molecules to study under electronic structure theory. Here, we have successfully studied 22 electronic states of FeH using ab initio multireference configuration interaction (MRCI), Davidson-corrected MRCI (MRCI+Q), and coupled cluster singles, doubles, and perturbative triples [CCSD(T)] levels of theory. We report their potential energy curves (PECs), excitation energies, dissociation energies, equilibrium electronic configurations, and a series of spectroscopic constants with the use of augmented triple-ζ, quadruple-ζ, and quintuple-ζ quality correlation consistent basis sets. The scalar relativistic effects and active space and core electron correlation contribution on the properties of FeH are also explored. The use of a large CASSCF active space that includes 4s, 4p, 3d, and 4d orbitals of Fe and the 1s of H is critical for producing accurate full PECs with proper dissociations and predicting the exact order of the electronic states. Our findings are in harmony with the experimental results available in the literature and will serve as reference values for future studies of FeH. Furthermore, with the use of PECs, the total internal partition function sum (TIPS) of FeH was calculated across a range of temperatures. Finally, we exploited the single-reference nature of the a6Δ of FeH and its ionized product FeH+ (X5Δ) to evaluate the associated density functional theory (DFT) errors on their dissociation energies and spectroscopic parameters.
铁黑是电子结构理论研究中最具挑战性的二原子分子之一。在这里,我们利用 ab initio 多参量构型相互作用(MRCI)、戴维森校正 MRCI(MRCI+Q)和耦合簇单、双和扰动三[CCSD(T)]水平理论,成功地研究了 FeH 的 22 种电子态。我们利用增强的三重ζ、四重ζ和五重ζ质量相关一致基集,报告了它们的势能曲线(PECs)、激发能、解离能、平衡电子构型和一系列光谱常数。此外,还探讨了标量相对论效应以及活动空间和核心电子相关性对 FeH 性质的贡献。使用包括 Fe 的 4s、4p、3d 和 4d 轨道以及 H 的 1s 在内的大型 CASSCF 活跃空间,对于产生具有适当解离的精确全 PEC 以及预测电子态的精确顺序至关重要。我们的研究结果与文献中的实验结果一致,可作为今后研究 FeH 的参考值。此外,我们还利用 PECs 计算了 FeH 在一定温度范围内的总内部分区函数总和(TIPS)。最后,我们利用 FeH 的 a6Δ 及其电离产物 FeH+ (X5Δ) 的单一参考性质,评估了它们的解离能和光谱参数的相关密度泛函理论 (DFT) 误差。
{"title":"Ground and Excited Electronic Structure Analysis of FeH with Correlated Wave Function Theory and Density Functional Approximations.","authors":"Isuru R Ariyarathna, Jeffery A Leiding, Amanda J Neukirch, Mark C Zammit","doi":"10.1021/acs.jpca.4c05313","DOIUrl":"10.1021/acs.jpca.4c05313","url":null,"abstract":"<p><p>FeH is one of the most challenging diatomic molecules to study under electronic structure theory. Here, we have successfully studied 22 electronic states of FeH using <i>ab initio</i> multireference configuration interaction (MRCI), Davidson-corrected MRCI (MRCI+Q), and coupled cluster singles, doubles, and perturbative triples [CCSD(T)] levels of theory. We report their potential energy curves (PECs), excitation energies, dissociation energies, equilibrium electronic configurations, and a series of spectroscopic constants with the use of augmented triple-ζ, quadruple-ζ, and quintuple-ζ quality correlation consistent basis sets. The scalar relativistic effects and active space and core electron correlation contribution on the properties of FeH are also explored. The use of a large CASSCF active space that includes 4s, 4p, 3d, and 4d orbitals of Fe and the 1s of H is critical for producing accurate full PECs with proper dissociations and predicting the exact order of the electronic states. Our findings are in harmony with the experimental results available in the literature and will serve as reference values for future studies of FeH. Furthermore, with the use of PECs, the total internal partition function sum (TIPS) of FeH was calculated across a range of temperatures. Finally, we exploited the single-reference nature of the a<sup>6</sup>Δ of FeH and its ionized product FeH<sup>+</sup> (X<sup>5</sup>Δ) to evaluate the associated density functional theory (DFT) errors on their dissociation energies and spectroscopic parameters.</p>","PeriodicalId":59,"journal":{"name":"The Journal of Physical Chemistry A","volume":" ","pages":"9412-9425"},"PeriodicalIF":2.7,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142453491","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-31Epub Date: 2024-10-21DOI: 10.1021/acs.jpca.4c05611
Desiree Bates, Brian J Esselman, Chase P Schultz, Susanna L Widicus Weaver
Carbamic acid (H2NCOOH) is a small organic molecule that is terrestrially unstable in condensed phases under ambient conditions but could survive in the low densities and temperatures of the interstellar medium. In this work, the reaction of formamide (H2NCOH) and electronically excited oxygen atoms in the 1D state, namely, O(1D), has been investigated computationally to determine the feasibility of carbamic acid production. Geometries for carbamic acid and other potential reaction products have been calculated, as well as all pertinent transition states. In addition, harmonic and anharmonic frequency calculations were performed to determine quartic and sextic centrifugal distortion constants for all products. This work enables spectroscopic predictions that can guide the experimental search for carbamic acid. Presented here are the calculations, geometries, molecular constants, and spectral predictions for possible products of the reaction between formamide and O(1D), as well as a discussion of which products are favored.
{"title":"Theoretical Investigation of the Reaction of O(<sup>1</sup>D) with Formamide.","authors":"Desiree Bates, Brian J Esselman, Chase P Schultz, Susanna L Widicus Weaver","doi":"10.1021/acs.jpca.4c05611","DOIUrl":"10.1021/acs.jpca.4c05611","url":null,"abstract":"<p><p>Carbamic acid (H<sub>2</sub>NCOOH) is a small organic molecule that is terrestrially unstable in condensed phases under ambient conditions but could survive in the low densities and temperatures of the interstellar medium. In this work, the reaction of formamide (H<sub>2</sub>NCOH) and electronically excited oxygen atoms in the <sup>1</sup>D state, namely, O(<sup>1</sup>D), has been investigated computationally to determine the feasibility of carbamic acid production. Geometries for carbamic acid and other potential reaction products have been calculated, as well as all pertinent transition states. In addition, harmonic and anharmonic frequency calculations were performed to determine quartic and sextic centrifugal distortion constants for all products. This work enables spectroscopic predictions that can guide the experimental search for carbamic acid. Presented here are the calculations, geometries, molecular constants, and spectral predictions for possible products of the reaction between formamide and O(<sup>1</sup>D), as well as a discussion of which products are favored.</p>","PeriodicalId":59,"journal":{"name":"The Journal of Physical Chemistry A","volume":" ","pages":"9426-9432"},"PeriodicalIF":2.7,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142453433","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}