Pub Date : 2023-09-05DOI: 10.1021/acs.jpca.3c03971
Thien Khuu, Tim Schleif, Ahmed Mohamed, Sayoni Mitra, Mark A. Johnson*, Jesús Valdiviezo, Joseph P. Heindel and Teresa Head-Gordon*,
The rates of many chemical reactions are accelerated when carried out in micron-sized droplets, but the molecular origin of the rate acceleration remains unclear. One example is the condensation reaction of 1,2-diaminobenzene with formic acid to yield benzimidazole. The observed rate enhancements have been rationalized by invoking enhanced acidity at the surface of methanol solvent droplets with low water content to enable protonation of formic acid to generate a cationic species (protonated formic acid or PFA) formed by attachment of a proton to the neutral acid. Because PFA is the key feature in this reaction mechanism, vibrational spectra of cryogenically cooled, microhydrated PFA·(H2O)n=1–6 were acquired to determine how the extent of charge localization depends on the degree of hydration. Analysis of these highly anharmonic spectra with path integral ab initio molecular dynamics simulations reveals the gradual displacement of the excess proton onto the water network in the microhydration regime at low temperatures with n = 3 as the tipping point for intra-cluster proton transfer.
{"title":"Intra-cluster Charge Migration upon Hydration of Protonated Formic Acid Revealed by Anharmonic Analysis of Cold Ion Vibrational Spectra","authors":"Thien Khuu, Tim Schleif, Ahmed Mohamed, Sayoni Mitra, Mark A. Johnson*, Jesús Valdiviezo, Joseph P. Heindel and Teresa Head-Gordon*, ","doi":"10.1021/acs.jpca.3c03971","DOIUrl":"https://doi.org/10.1021/acs.jpca.3c03971","url":null,"abstract":"<p >The rates of many chemical reactions are accelerated when carried out in micron-sized droplets, but the molecular origin of the rate acceleration remains unclear. One example is the condensation reaction of 1,2-diaminobenzene with formic acid to yield benzimidazole. The observed rate enhancements have been rationalized by invoking enhanced acidity at the surface of methanol solvent droplets with low water content to enable protonation of formic acid to generate a cationic species (protonated formic acid or PFA) formed by attachment of a proton to the neutral acid. Because PFA is the key feature in this reaction mechanism, vibrational spectra of cryogenically cooled, microhydrated PFA·(H<sub>2</sub>O)<sub><i>n</i>=1–6</sub> were acquired to determine how the extent of charge localization depends on the degree of hydration. Analysis of these highly anharmonic spectra with path integral ab initio molecular dynamics simulations reveals the gradual displacement of the excess proton onto the water network in the microhydration regime at low temperatures with <i>n</i> = 3 as the tipping point for intra-cluster proton transfer.</p>","PeriodicalId":59,"journal":{"name":"The Journal of Physical Chemistry A","volume":"127 36","pages":"7501–7509"},"PeriodicalIF":2.9,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"6713259","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-05DOI: 10.1021/acs.jpca.3c03872
Xinlei Yu, Panpan Wu, Qinqin Yuan*, Chen Yan, Dan Li and Longjiu Cheng*,
The aromaticity of π-conjugated compounds has long been a confusing issue. Based on a recently emerged two-dimensional (2D) superatomic-molecule theory, a unified rule was built to decipher the aromaticity of cyclic superatomic molecules of π-conjugated compounds from the chemical bonding perspective. Herein, a series of planar [n]helicenes and [n]circulenes, composed of benzene, thiophene, or furfuran, are systemically studied and seen as superatomic molecules ◊On-2◊F2 or ◊On, where superatoms ◊F and ◊O denote π-conjugated units with 5 and 4 π electrons, respectively. The ascertained superatomic Lewis structures intuitively display aromaticity with each basic unit meeting the superatomic sextet rule of benzene, similar to classical valence bond theory, which is favored by the synthesized complex π-conjugated compounds comprising different numbers and kinds of subrings. The evolutionary trend of ring currents and chemical bonding suggests a local ribbon-like aromaticity in these π-conjugated compounds. Moreover, nonplanar helical π-conjugated compounds have the potential to evolve into spring-like periodic materials with excellent physical properties.
{"title":"Unraveling the Aromatic Rule of Cyclic Superatomic Molecules in π-Conjugated Compounds","authors":"Xinlei Yu, Panpan Wu, Qinqin Yuan*, Chen Yan, Dan Li and Longjiu Cheng*, ","doi":"10.1021/acs.jpca.3c03872","DOIUrl":"https://doi.org/10.1021/acs.jpca.3c03872","url":null,"abstract":"<p >The aromaticity of π-conjugated compounds has long been a confusing issue. Based on a recently emerged two-dimensional (2D) superatomic-molecule theory, a unified rule was built to decipher the aromaticity of cyclic superatomic molecules of π-conjugated compounds from the chemical bonding perspective. Herein, a series of planar [<i>n</i>]helicenes and [<i>n</i>]circulenes, composed of benzene, thiophene, or furfuran, are systemically studied and seen as superatomic molecules <sup>◊</sup>O<sub><i>n</i>-2</sub><sup>◊</sup>F<sub>2</sub> or <sup>◊</sup>O<sub><i>n</i></sub>, where superatoms <sup>◊</sup>F and <sup>◊</sup>O denote π-conjugated units with 5 and 4 π electrons, respectively. The ascertained superatomic Lewis structures intuitively display aromaticity with each basic unit meeting the superatomic sextet rule of benzene, similar to classical valence bond theory, which is favored by the synthesized complex π-conjugated compounds comprising different numbers and kinds of subrings. The evolutionary trend of ring currents and chemical bonding suggests a local ribbon-like aromaticity in these π-conjugated compounds. Moreover, nonplanar helical π-conjugated compounds have the potential to evolve into spring-like periodic materials with excellent physical properties.</p>","PeriodicalId":59,"journal":{"name":"The Journal of Physical Chemistry A","volume":"127 36","pages":"7487–7495"},"PeriodicalIF":2.9,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"6713264","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The separation of plutonium (Pu) from spent nuclear fuel was achieved by effectively adjusting the oxidation state of Pu from +IV to +III in the plutonium uranium reduction extraction (PUREX) process. Acetaldoxime (CH3CHNOH) as a free salt reductant can rapidly reduce Pu(IV), but the reduction mechanism remains indistinct. Herein, we explore the reduction mechanism of two Pu(IV) ions by one CH3CHNOH molecule, where the second Pu(IV) reduction is the rate-determining step with the energy barrier of 19.24 kcal mol–1, which is in line with the experimental activation energy (20.95 ± 2.34 kcal mol–1). Additionally, the results of structure and spin density analyses demonstrate that the first and second Pu(IV) reduction is attributed to hydrogen atom transfer and hydroxyl ligand transfer, respectively. Analysis of localized molecular orbitals unveils that the reduction process is accompanied by the breaking of the Pu–OOH bond and the formation of the OOH–H and C–OOH bonds. The reaction energies confirm that the reduction of Pu(IV) by acetaldoxime is both thermodynamically and kinetically accessible. In this work, we elucidate the reduction mechanism of Pu(IV) with CH3CHNOH, which provides a theoretical understanding of the rapid reduction of Pu(IV).
{"title":"Unveiling the Reduction Mechanism of Pu(IV) by Acetaldoxime","authors":"Xiao-Bo Li, Qun-Yan Wu*, Cong-Zhi Wang, Jian-Hui Lan, Meng Zhang*, Zhi-Fang Chai and Wei-Qun Shi*, ","doi":"10.1021/acs.jpca.3c03830","DOIUrl":"https://doi.org/10.1021/acs.jpca.3c03830","url":null,"abstract":"<p >The separation of plutonium (Pu) from spent nuclear fuel was achieved by effectively adjusting the oxidation state of Pu from +IV to +III in the plutonium uranium reduction extraction (PUREX) process. Acetaldoxime (CH<sub>3</sub>CHNOH) as a free salt reductant can rapidly reduce Pu(IV), but the reduction mechanism remains indistinct. Herein, we explore the reduction mechanism of two Pu(IV) ions by one CH<sub>3</sub>CHNOH molecule, where the second Pu(IV) reduction is the rate-determining step with the energy barrier of 19.24 kcal mol<sup>–1</sup>, which is in line with the experimental activation energy (20.95 ± 2.34 kcal mol<sup>–1</sup>). Additionally, the results of structure and spin density analyses demonstrate that the first and second Pu(IV) reduction is attributed to hydrogen atom transfer and hydroxyl ligand transfer, respectively. Analysis of localized molecular orbitals unveils that the reduction process is accompanied by the breaking of the Pu–O<sub>OH</sub> bond and the formation of the O<sub>OH</sub>–H and C–O<sub>OH</sub> bonds. The reaction energies confirm that the reduction of Pu(IV) by acetaldoxime is both thermodynamically and kinetically accessible. In this work, we elucidate the reduction mechanism of Pu(IV) with CH<sub>3</sub>CHNOH, which provides a theoretical understanding of the rapid reduction of Pu(IV).</p>","PeriodicalId":59,"journal":{"name":"The Journal of Physical Chemistry A","volume":"127 36","pages":"7479–7486"},"PeriodicalIF":2.9,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"6713292","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-04DOI: 10.1021/acs.jpca.3c03564
Atif Mahmood, Maria Dimitrova and Dage Sundholm*,
Two porphyrinoid nanorings have been studied computationally. They were built by linking 40 Zn-porphyrin units with butadiyne bridges. The molecular structures belonging to the D40h point group were fully optimized with the Turbomole program at the density functional theory (DFT) level using the B3LYP functional and the def2-SVP basis sets. The aromatic character was studied at the DFT level by calculating the magnetically induced current-density (MICD) susceptibility using the GIMIC program. The neutral molecules are globally non-aromatic with aromatic Zn-porphyrin units. Charged nanorings could not be studied because almost degenerate frontier orbitals led to vanishing optical gaps for the cations. Since DFT calculations of the MICD are computationally expensive, we also calculated the MICD using three pseudo-π models. Appropriate pseudo-π models were constructed by removing the outer hydrogen atoms and replacing all carbon and nitrogen atoms with hydrogen atoms. The central Zn atom was either replaced with a beryllium atom or with two inner hydrogen atoms. Calculations with the computationally inexpensive pseudo-π models yielded qualitatively the same magnetic response as obtained in the all-electron calculations.
{"title":"Current-Density Calculations on Zn-Porphyrin40 Nanorings","authors":"Atif Mahmood, Maria Dimitrova and Dage Sundholm*, ","doi":"10.1021/acs.jpca.3c03564","DOIUrl":"https://doi.org/10.1021/acs.jpca.3c03564","url":null,"abstract":"<p >Two porphyrinoid nanorings have been studied computationally. They were built by linking 40 Zn-porphyrin units with butadiyne bridges. The molecular structures belonging to the <i>D</i><sub>40<i>h</i></sub> point group were fully optimized with the Turbomole program at the density functional theory (DFT) level using the B3LYP functional and the def2-SVP basis sets. The aromatic character was studied at the DFT level by calculating the magnetically induced current-density (MICD) susceptibility using the GIMIC program. The neutral molecules are globally non-aromatic with aromatic Zn-porphyrin units. Charged nanorings could not be studied because almost degenerate frontier orbitals led to vanishing optical gaps for the cations. Since DFT calculations of the MICD are computationally expensive, we also calculated the MICD using three pseudo-π models. Appropriate pseudo-π models were constructed by removing the outer hydrogen atoms and replacing all carbon and nitrogen atoms with hydrogen atoms. The central Zn atom was either replaced with a beryllium atom or with two inner hydrogen atoms. Calculations with the computationally inexpensive pseudo-π models yielded qualitatively the same magnetic response as obtained in the all-electron calculations.</p>","PeriodicalId":59,"journal":{"name":"The Journal of Physical Chemistry A","volume":"127 36","pages":"7452–7459"},"PeriodicalIF":2.9,"publicationDate":"2023-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acs.jpca.3c03564","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"6713183","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-04DOI: 10.1021/acs.jpca.3c04227
Vincenzo Barone*, Lina Marcela Uribe Grajales, Silvia Di Grande, Federico Lazzari and Marco Mendolicchio,
A new computational strategy has been applied to the conformational and spectroscopic properties in the gas phase of amino acids with very distinctive features, ranging from different tautomeric forms (histidine) to ring puckering (proline), and heteroaromatic structures with non-equivalent rings (tryptophan). The integration of modern double-hybrid functionals and wave-function composite methods has allowed us to obtain accurate results for a large panel of conformers with reasonable computer times. The remarkable agreement between computations and microwave experiments allows an unbiased interpretation of the latter in terms of stereoelectronic effects.
{"title":"DFT Meets Wave-Function Methods for Accurate Structures and Rotational Constants of Histidine, Tryptophan, and Proline","authors":"Vincenzo Barone*, Lina Marcela Uribe Grajales, Silvia Di Grande, Federico Lazzari and Marco Mendolicchio, ","doi":"10.1021/acs.jpca.3c04227","DOIUrl":"https://doi.org/10.1021/acs.jpca.3c04227","url":null,"abstract":"<p >A new computational strategy has been applied to the conformational and spectroscopic properties in the gas phase of amino acids with very distinctive features, ranging from different tautomeric forms (histidine) to ring puckering (proline), and heteroaromatic structures with non-equivalent rings (tryptophan). The integration of modern double-hybrid functionals and wave-function composite methods has allowed us to obtain accurate results for a large panel of conformers with reasonable computer times. The remarkable agreement between computations and microwave experiments allows an unbiased interpretation of the latter in terms of stereoelectronic effects.</p>","PeriodicalId":59,"journal":{"name":"The Journal of Physical Chemistry A","volume":"127 36","pages":"7534–7543"},"PeriodicalIF":2.9,"publicationDate":"2023-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acs.jpca.3c04227","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"6713184","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-03DOI: 10.1021/acs.jpca.3c03704
Leonardo Vetritti, Janina Kopyra*, Paulina Wierzbicka and Márcio T. do N. Varella*,
8-oxo-Guanine is a mutagenic lesion produced by reactions involving reactive oxygen species and guanine in DNA. Its production induces mispairing between the canonical nucleobases during DNA replication such that various types of cancers are associated with the DNA lesion. Since radiation therapy is used in some cases, the interaction of low-energy electrons with 8-oxo-guanine can in turn produce other reactive species, which in principle could have either a detrimental or protective effect on the organism. Motivated by these facts, we report a comparative experimental study of electron-induced fragmentation of guanine and 8-oxo-guanine, along with a theoretical study of the π* shape resonances and bound anion states, which may trigger those dissociation reactions. The electron-induced fragmentation of 8-oxo-guanine is remarkably distinct from the native form. More complex reactions were observed for the oxidized species, which may produce several anion fragments at very low energies (∼0 eV). The dehydrogenated parent anion, which is already a minor fragment in guanine, was completely suppressed in 8-oxo-guanine. The calculated thermodynamical thresholds also suggest that NH2 elimination in guanine, at sub-excitation energies, proceeds via a complex reaction involving rearrangement steps.
{"title":"Fragmentation of the DNA Lesion 8-oxo-Guanine by Low-Energy Electrons","authors":"Leonardo Vetritti, Janina Kopyra*, Paulina Wierzbicka and Márcio T. do N. Varella*, ","doi":"10.1021/acs.jpca.3c03704","DOIUrl":"https://doi.org/10.1021/acs.jpca.3c03704","url":null,"abstract":"<p >8-oxo-Guanine is a mutagenic lesion produced by reactions involving reactive oxygen species and guanine in DNA. Its production induces mispairing between the canonical nucleobases during DNA replication such that various types of cancers are associated with the DNA lesion. Since radiation therapy is used in some cases, the interaction of low-energy electrons with 8-oxo-guanine can in turn produce other reactive species, which in principle could have either a detrimental or protective effect on the organism. Motivated by these facts, we report a comparative experimental study of electron-induced fragmentation of guanine and 8-oxo-guanine, along with a theoretical study of the π* shape resonances and bound anion states, which may trigger those dissociation reactions. The electron-induced fragmentation of 8-oxo-guanine is remarkably distinct from the native form. More complex reactions were observed for the oxidized species, which may produce several anion fragments at very low energies (∼0 eV). The dehydrogenated parent anion, which is already a minor fragment in guanine, was completely suppressed in 8-oxo-guanine. The calculated thermodynamical thresholds also suggest that NH<sub>2</sub> elimination in guanine, at sub-excitation energies, proceeds via a complex reaction involving rearrangement steps.</p>","PeriodicalId":59,"journal":{"name":"The Journal of Physical Chemistry A","volume":"127 36","pages":"7470–7478"},"PeriodicalIF":2.9,"publicationDate":"2023-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"6713178","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-02DOI: 10.1021/acs.jpca.3c03265
Xiangyun Zheng, and , Yuxiang Bu*,
Rational modification of the coupler for the theoretical design of molecular magnets has attracted extensive interest. Substituent insertion is a widely used strategy for adjusting molecular properties, but its effect and modulation on magnetic spin couplings have been less investigated. In this work, we predict the magnetic properties of the design m-phenylene nitroxide (NO) diradicals regulated by introducing substituents. The calculated results for those two pairs of diradicals indicate that the signs of their magnetic coupling constants J do not change, but the magnitudes remarkably change after substituent regulation in the range from 253 to 730 cm–1. Such noticeable magnetic changes induced by introducing subsituents are mainly attributed to different electronic effects of substituents, assisted by the proximity of two NO groups, good planarity, conjugation, and an intramolecular hydrogen bond. In particular, the insertion of intramolecular H-bonds not only indicates an electronic effect but also has greatly changed the spin density distribution. Further aromaticity of the coupler ring, spin densities, and molecular orbitals and energetics was evaluated to gain a better understanding of magnetic regulation. Interestingly, further protonation of some substituents (e.g., −NO2 and −CO2) can noticeably turn the spin coupling from ferromagnetic to antiferromagnetic, showing manipulable magnetic switching. This work provides a promising strategy based on substituent engineering for magnetic spin coupling modulation, not only turning the coupling magnitude but also enabling the magnetic switching, thus providing insights into molecular magnetic manipulation for spintronics applications.
{"title":"Hydrogen-Bonding-Assisted Substituent Engineering for Modulating Magnetic Spin Couplings and Switching in m-Phenylene Nitroxide Diradicals","authors":"Xiangyun Zheng, and , Yuxiang Bu*, ","doi":"10.1021/acs.jpca.3c03265","DOIUrl":"https://doi.org/10.1021/acs.jpca.3c03265","url":null,"abstract":"<p >Rational modification of the coupler for the theoretical design of molecular magnets has attracted extensive interest. Substituent insertion is a widely used strategy for adjusting molecular properties, but its effect and modulation on magnetic spin couplings have been less investigated. In this work, we predict the magnetic properties of the design <i>m</i>-phenylene nitroxide (NO) diradicals regulated by introducing substituents. The calculated results for those two pairs of diradicals indicate that the signs of their magnetic coupling constants <i>J</i> do not change, but the magnitudes remarkably change after substituent regulation in the range from 253 to 730 cm<sup>–1</sup>. Such noticeable magnetic changes induced by introducing subsituents are mainly attributed to different electronic effects of substituents, assisted by the proximity of two NO groups, good planarity, conjugation, and an intramolecular hydrogen bond. In particular, the insertion of intramolecular H-bonds not only indicates an electronic effect but also has greatly changed the spin density distribution. Further aromaticity of the coupler ring, spin densities, and molecular orbitals and energetics was evaluated to gain a better understanding of magnetic regulation. Interestingly, further protonation of some substituents (e.g., −NO<sub>2</sub> and −CO<sub>2</sub>) can noticeably turn the spin coupling from ferromagnetic to antiferromagnetic, showing manipulable magnetic switching. This work provides a promising strategy based on substituent engineering for magnetic spin coupling modulation, not only turning the coupling magnitude but also enabling the magnetic switching, thus providing insights into molecular magnetic manipulation for spintronics applications.</p>","PeriodicalId":59,"journal":{"name":"The Journal of Physical Chemistry A","volume":"127 36","pages":"7443–7451"},"PeriodicalIF":2.9,"publicationDate":"2023-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"6713443","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-01DOI: 10.1021/acs.jpca.3c03232
Robert W. Schmidt, Giulia Giubertoni*, Federico Caporaletti, Paul Kolpakov, Noushine Shahidzadeh, Freek Ariese and Sander Woutersen*,
The Stokes–Einstein relation, which relates the diffusion coefficient of a molecule to its hydrodynamic radius, is commonly used to determine molecular sizes in chemical analysis methods. Here, we combine the size sensitivity of such diffusion-based methods with the structure sensitivity of Raman spectroscopy by performing Raman diffusion-ordered spectroscopy (Raman-DOSY). The core of the Raman-DOSY setup is a flow cell with a Y-shaped channel containing two inlets: one for the sample solution and one for the pure solvent. The two liquids are injected at the same flow rate, giving rise to two parallel laminar flows in the channel. After the flow stops, the solute molecules diffuse from the solution-filled half of the channel into the solvent-filled half at a rate determined by their hydrodynamic radius. The arrival of the solute molecules in the solvent-filled half of the channel is recorded in a spectrally resolved manner by Raman microspectroscopy. From the time series of Raman spectra, a two-dimensional Raman-DOSY spectrum is obtained, which has the Raman frequency on one axis and the diffusion coefficient (or equivalently, hydrodynamic radius) on the other. In this way, Raman-DOSY spectrally resolves overlapping Raman peaks arising from molecules of different sizes. We demonstrate Raman-DOSY on samples containing up to three compounds and derive the diffusion coefficients of small molecules, proteins, and supramolecules (micelles), illustrating the versatility of Raman-DOSY. Raman-DOSY is label-free and does not require deuterated solvents and can thus be applied to samples and matrices that might be difficult to investigate with other diffusion-based spectroscopy methods.
{"title":"Raman Diffusion-Ordered Spectroscopy","authors":"Robert W. Schmidt, Giulia Giubertoni*, Federico Caporaletti, Paul Kolpakov, Noushine Shahidzadeh, Freek Ariese and Sander Woutersen*, ","doi":"10.1021/acs.jpca.3c03232","DOIUrl":"https://doi.org/10.1021/acs.jpca.3c03232","url":null,"abstract":"<p >The Stokes–Einstein relation, which relates the diffusion coefficient of a molecule to its hydrodynamic radius, is commonly used to determine molecular sizes in chemical analysis methods. Here, we combine the size sensitivity of such diffusion-based methods with the structure sensitivity of Raman spectroscopy by performing Raman diffusion-ordered spectroscopy (Raman-DOSY). The core of the Raman-DOSY setup is a flow cell with a Y-shaped channel containing two inlets: one for the sample solution and one for the pure solvent. The two liquids are injected at the same flow rate, giving rise to two parallel laminar flows in the channel. After the flow stops, the solute molecules diffuse from the solution-filled half of the channel into the solvent-filled half at a rate determined by their hydrodynamic radius. The arrival of the solute molecules in the solvent-filled half of the channel is recorded in a spectrally resolved manner by Raman microspectroscopy. From the time series of Raman spectra, a two-dimensional Raman-DOSY spectrum is obtained, which has the Raman frequency on one axis and the diffusion coefficient (or equivalently, hydrodynamic radius) on the other. In this way, Raman-DOSY spectrally resolves overlapping Raman peaks arising from molecules of different sizes. We demonstrate Raman-DOSY on samples containing up to three compounds and derive the diffusion coefficients of small molecules, proteins, and supramolecules (micelles), illustrating the versatility of Raman-DOSY. Raman-DOSY is label-free and does not require deuterated solvents and can thus be applied to samples and matrices that might be difficult to investigate with other diffusion-based spectroscopy methods.</p>","PeriodicalId":59,"journal":{"name":"The Journal of Physical Chemistry A","volume":"127 36","pages":"7638–7645"},"PeriodicalIF":2.9,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acs.jpca.3c03232","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"6713373","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-01DOI: 10.1021/acs.jpca.3c04420
Devon M. Andriola, and , Kirk A. Peterson*,
The atomization enthalpies of the U(VI) species UF6 and the uranium oxyhalides UO2X2 (X = F, Cl, Br, I, and At) were calculated using a composite relativistic Feller–Peterson–Dixon (FPD) approach based on scalar relativistic DKH3-CCSD(T) with extrapolations to the CBS limit. The inherent multideterminant nature of the U atom was mitigated by utilizing the singly charged atomic cation in all calculations with correction back to the neutral asymptote via the accurate ionization energy of the U atom. The effects of SO coupling were recovered using full 4-component CCSD(T) with contributions due to the Gaunt Hamiltonian calculated using Dirac–Hartree–Fock. The final atomization enthalpy for UF6 (752.2 kcal/mol) was within 2.5 kcal/mol of the experimental value, but unfortunately the latter carries a ±2.4 kcal/mol uncertainty that is predominantly due to the experimental uncertainty in the formation enthalpy of the U atom. The analogous value for UO2F2 (607.6 kcal/mol) was in nearly exact agreement with the experiment, but the latter has a stated experimental uncertainty of ±4.3 kcal/mol. The FPD atomization enthalpy for UO2Cl2 (540.4 kcal/mol) was within the experimental error limit of ±5.5 kcal/mol. FPD atomization energies for the non-U-containing molecules (used for reaction enthalpies) H2O and HX (X = F, Cl, Br, I, and At) were within at most 0.3 kcal/mol of their experimental values where available. The FPD atomization enthalpies, together with FPD reaction enthalpies for two different reactions, were used to determine heats of formation for all species of this work, with estimated uncertainties of ±4 kcal/mol. The calculated heat of formation for UF6 (−511.0 kcal/mol) is within 2.5 kcal/mol of the accurately known (±0.45 kcal/mol) experimental value.
{"title":"Coupled Cluster Study of the Heats of Formation of UF6 and the Uranium Oxyhalides, UO2X2 (X = F, Cl, Br, I, and At)","authors":"Devon M. Andriola, and , Kirk A. Peterson*, ","doi":"10.1021/acs.jpca.3c04420","DOIUrl":"https://doi.org/10.1021/acs.jpca.3c04420","url":null,"abstract":"<p >The atomization enthalpies of the U(VI) species UF<sub>6</sub> and the uranium oxyhalides UO<sub>2</sub>X<sub>2</sub> (X = F, Cl, Br, I, and At) were calculated using a composite relativistic Feller–Peterson–Dixon (FPD) approach based on scalar relativistic DKH3-CCSD(T) with extrapolations to the CBS limit. The inherent multideterminant nature of the U atom was mitigated by utilizing the singly charged atomic cation in all calculations with correction back to the neutral asymptote via the accurate ionization energy of the U atom. The effects of SO coupling were recovered using full 4-component CCSD(T) with contributions due to the Gaunt Hamiltonian calculated using Dirac–Hartree–Fock. The final atomization enthalpy for UF<sub>6</sub> (752.2 kcal/mol) was within 2.5 kcal/mol of the experimental value, but unfortunately the latter carries a ±2.4 kcal/mol uncertainty that is predominantly due to the experimental uncertainty in the formation enthalpy of the U atom. The analogous value for UO<sub>2</sub>F<sub>2</sub> (607.6 kcal/mol) was in nearly exact agreement with the experiment, but the latter has a stated experimental uncertainty of ±4.3 kcal/mol. The FPD atomization enthalpy for UO<sub>2</sub>Cl<sub>2</sub> (540.4 kcal/mol) was within the experimental error limit of ±5.5 kcal/mol. FPD atomization energies for the non-U-containing molecules (used for reaction enthalpies) H<sub>2</sub>O and HX (X = F, Cl, Br, I, and At) were within at most 0.3 kcal/mol of their experimental values where available. The FPD atomization enthalpies, together with FPD reaction enthalpies for two different reactions, were used to determine heats of formation for all species of this work, with estimated uncertainties of ±4 kcal/mol. The calculated heat of formation for UF<sub>6</sub> (−511.0 kcal/mol) is within 2.5 kcal/mol of the accurately known (±0.45 kcal/mol) experimental value.</p>","PeriodicalId":59,"journal":{"name":"The Journal of Physical Chemistry A","volume":"127 36","pages":"7579–7585"},"PeriodicalIF":2.9,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"6713374","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-01DOI: 10.1021/acs.jpca.3c04706
Gina C. Roesch, and , Etienne Garand*,
We present the implementation of tandem mass-selective cryogenic ion traps, designed to enhance the range of ion processing capabilities that can be performed prior to spectroscopic interrogation. We show that both the formation of ion clusters and mass filtering steps can be combined in a single cryogenic linear quadrupole ion trap driven by RF square waves. Mass filtering and mass isolation can be achieved by manipulation of the RF frequency and duty cycle. Very importantly, this scheme circumvents the need for high-amplitude RF voltages that can be incompatible with typical cryogenic ion processing conditions. In addition, proper adjustment of the stability boundaries during the clustering process allows for the preferential formation of a specific cluster size rather than a broad distribution of sizes. Lastly, we show that a specific cluster size can be formed, mass-selected, and then transferred to another ion trap for a second completely separate ion processing step. The instrumentation and modular design developed here expand the scope of ionic species and clusters that can be accessed by processing electrosprayed ions.
{"title":"Tandem Mass-Selective Cryogenic Digital Ion Traps for Enhanced Cluster Formation","authors":"Gina C. Roesch, and , Etienne Garand*, ","doi":"10.1021/acs.jpca.3c04706","DOIUrl":"https://doi.org/10.1021/acs.jpca.3c04706","url":null,"abstract":"<p >We present the implementation of tandem mass-selective cryogenic ion traps, designed to enhance the range of ion processing capabilities that can be performed prior to spectroscopic interrogation. We show that both the formation of ion clusters and mass filtering steps can be combined in a single cryogenic linear quadrupole ion trap driven by RF square waves. Mass filtering and mass isolation can be achieved by manipulation of the RF frequency and duty cycle. Very importantly, this scheme circumvents the need for high-amplitude RF voltages that can be incompatible with typical cryogenic ion processing conditions. In addition, proper adjustment of the stability boundaries during the clustering process allows for the preferential formation of a specific cluster size rather than a broad distribution of sizes. Lastly, we show that a specific cluster size can be formed, mass-selected, and then transferred to another ion trap for a second completely separate ion processing step. The instrumentation and modular design developed here expand the scope of ionic species and clusters that can be accessed by processing electrosprayed ions.</p>","PeriodicalId":59,"journal":{"name":"The Journal of Physical Chemistry A","volume":"127 36","pages":"7665–7672"},"PeriodicalIF":2.9,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"6713400","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}