Pub Date : 2024-05-13DOI: 10.1007/s12036-024-10002-2
Oleg Malkov, Alexey Kniazev, Stanislav Gorda
We have spectroscopically studied the last six stars in the northern sky from our preliminary list of candidates for wide non-coeval pairs, and we have found no evidence of non-coevality. Thus, considering our previous research, which found one such binary system, we confirm that our preliminary estimate of the fraction of binaries in the solar neighborhood formed by capture is no more than 0.03%.
{"title":"Searching for wide binary stars with non-coeval components in the northern sky","authors":"Oleg Malkov, Alexey Kniazev, Stanislav Gorda","doi":"10.1007/s12036-024-10002-2","DOIUrl":"10.1007/s12036-024-10002-2","url":null,"abstract":"<div><p>We have spectroscopically studied the last six stars in the northern sky from our preliminary list of candidates for wide non-coeval pairs, and we have found no evidence of non-coevality. Thus, considering our previous research, which found one such binary system, we confirm that our preliminary estimate of the fraction of binaries in the solar neighborhood formed by capture is no more than 0.03%.</p></div>","PeriodicalId":610,"journal":{"name":"Journal of Astrophysics and Astronomy","volume":"45 1","pages":""},"PeriodicalIF":1.1,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140938768","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Solar activity, such as sunspots and flares, has a great impact on humans, living beings, and technologies in the whole world. Changes in sunspots will influence high-frequency and space-navigation radio communications. Based on the full-disk, southern and northern hemispheres sunspot areas (SAs) data in 1874–2023 from the Royal Observatory, Greenwich (RGO) USAF/NOAA, extreme value theory (EVT) is applied to predict the trend of the 25th and 26th solar cycles (SCs) in this work. Two methods with EVT, the block maxima (BM) approach and the peaks-over-threshold (POT) approach, are employed to research solar extreme events. The former method focuses on each block’s maximum sunspot areas value and is applied for the generalized extreme value (GEV) distribution. The latter method aims to select the extreme values exceeding a threshold value and is used to obtain the generalized Pareto (GP) distribution. It is the first time that the EVT is applied on the sunspot areas data from the Royal Observatory, Greenwich (RGO) USAF/NOAA. The analysis indicates that the estimated 8-year return levels for sunspot areas are 5701 and 6258 using the two methods, while the estimated 19-year return levels are all 7165. This suggests that the trends of the 25th and 26th solar cycles will be stronger than that of the 24th solar cycle.
{"title":"Extreme value theory applied to long-term sunspot areas","authors":"Rui Zhang, Yan-Qing Chen, Shu-Guang Zeng, Sheng Zheng, Yan-Shan Xiao, Lin-Hua Deng, Xiang-Yun Zeng, Yao Huang","doi":"10.1007/s12036-024-09999-3","DOIUrl":"10.1007/s12036-024-09999-3","url":null,"abstract":"<div><p>Solar activity, such as sunspots and flares, has a great impact on humans, living beings, and technologies in the whole world. Changes in sunspots will influence high-frequency and space-navigation radio communications. Based on the full-disk, southern and northern hemispheres sunspot areas (SAs) data in 1874–2023 from the Royal Observatory, Greenwich (RGO) USAF/NOAA, extreme value theory (EVT) is applied to predict the trend of the 25th and 26th solar cycles (SCs) in this work. Two methods with EVT, the block maxima (BM) approach and the peaks-over-threshold (POT) approach, are employed to research solar extreme events. The former method focuses on each block’s maximum sunspot areas value and is applied for the generalized extreme value (GEV) distribution. The latter method aims to select the extreme values exceeding a threshold value and is used to obtain the generalized Pareto (GP) distribution. It is the first time that the EVT is applied on the sunspot areas data from the Royal Observatory, Greenwich (RGO) USAF/NOAA. The analysis indicates that the estimated 8-year return levels for sunspot areas are 5701 and 6258 using the two methods, while the estimated 19-year return levels are all 7165. This suggests that the trends of the 25th and 26th solar cycles will be stronger than that of the 24th solar cycle.</p></div>","PeriodicalId":610,"journal":{"name":"Journal of Astrophysics and Astronomy","volume":"45 1","pages":""},"PeriodicalIF":1.1,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140883753","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-02DOI: 10.1007/s12036-024-10001-3
Rakesh Kumar, Hitendra K. Malik, Sandeep Kumar
Collisionless shocks are generated via the magnetic field mediated by Weibel instability in astrophysical systems. In this work, by performing particle-in-cell (PIC) simulations, Weibel instability-mediated magnetic field amplification is investigated for initially unmagnetized, spatially uniform, counter-streaming electron–positron (e−/e+) plasma flows and compared with the magnetic amplification for nonuniform counter-streaming e−/e+ plasma flows by considering their drift velocity of (0.5 c). Our simulation results show that initially, the magnetic field grows exponentially in the linear regime and then decays further after saturation for homogeneous e−/e+ plasma flows. However, in the case of inhomogeneous counter-streaming e−/e+ plasma flow, the magnetic field re-amplifies in the post-saturation region after the first saturation. It is found that the amplification magnitude of magnetic field energy in the post-saturation region is related to the density fluctuations for upstream plasma. Our calculations show that temperature anisotropy is the reason behind the second saturation of the magnetic field energy in the case of inhomogeneous plasma distribution. Such inhomogeneous media in astrophysical systems like Gamma-ray bursts are common. Therefore, this study will be useful for understanding collisionless shocks' formation and their effects.
无碰撞冲击是通过天体物理系统中魏伯尔不稳定性介导的磁场产生的。在这项工作中,通过进行粒子在胞(PIC)模拟,研究了魏贝尔不稳定性介导的磁场放大,适用于初始未磁化、空间均匀、逆流电子-正电子(e-/e+)等离子体流,并通过考虑其漂移速度(0.5 c ),与非均匀逆流电子-正电子(e-/e+)等离子体流的磁场放大进行了比较。我们的模拟结果表明,对于均匀的 e-/e+ 等离子体流,磁场最初在线性范围内呈指数增长,饱和后进一步衰减。然而,在非均质逆流 e-/e+ 等离子体流的情况下,磁场在第一次饱和后的后饱和区重新放大。研究发现,后饱和区磁场能量的放大幅度与上游等离子体的密度波动有关。我们的计算表明,在等离子体分布不均匀的情况下,温度各向异性是磁场能量第二次饱和的原因。这种不均匀介质在伽马射线暴等天体物理系统中很常见。因此,这项研究将有助于理解无碰撞冲击的形成及其影响。
{"title":"Study of magnetic field evolution by Weibel instability in counter-streaming electron–positron plasma flows","authors":"Rakesh Kumar, Hitendra K. Malik, Sandeep Kumar","doi":"10.1007/s12036-024-10001-3","DOIUrl":"10.1007/s12036-024-10001-3","url":null,"abstract":"<div><p>Collisionless shocks are generated via the magnetic field mediated by Weibel instability in astrophysical systems. In this work, by performing particle-in-cell (PIC) simulations, Weibel instability-mediated magnetic field amplification is investigated for initially unmagnetized, spatially uniform, counter-streaming electron–positron (<i>e</i><sup>−</sup>/<i>e</i><sup>+</sup>) plasma flows and compared with the magnetic amplification for nonuniform counter-streaming <i>e</i><sup>−</sup>/<i>e</i><sup>+</sup> plasma flows by considering their drift velocity of <span>(0.5 c)</span>. Our simulation results show that initially, the magnetic field grows exponentially in the linear regime and then decays further after saturation for homogeneous <i>e</i><sup>−</sup>/<i>e</i><sup>+</sup> plasma flows. However, in the case of inhomogeneous counter-streaming <i>e</i><sup>−</sup>/<i>e</i><sup>+</sup> plasma flow, the magnetic field re-amplifies in the post-saturation region after the first saturation. It is found that the amplification magnitude of magnetic field energy in the post-saturation region is related to the density fluctuations for upstream plasma. Our calculations show that temperature anisotropy is the reason behind the second saturation of the magnetic field energy in the case of inhomogeneous plasma distribution. Such inhomogeneous media in astrophysical systems like Gamma-ray bursts are common. Therefore, this study will be useful for understanding collisionless shocks' formation and their effects.</p></div>","PeriodicalId":610,"journal":{"name":"Journal of Astrophysics and Astronomy","volume":"45 1","pages":""},"PeriodicalIF":1.1,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140580620","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-01DOI: 10.1007/s12036-024-10000-4
Gopal-Krishna, Paul J. Wiita
The issue of radiation mechanisms triggered in 1950–60s the first applications of plasma physics to understand the nature of radio galaxies. This interplay has steadily intensified during the past five decades due to the premise of in-situ acceleration of relativistic electrons occurring in the lobes of radio galaxies. This article briefly traces the chain of these remarkable developments, largely from an observational perspective. We recount several observational and theoretical milestones established along the way and the lessons drawn from them. We also present a new observational clue about in-situ acceleration of the relativistic particles radiating in the lobes of radio galaxies, gleaned by us from the very recently published sensitive radio observations of a tailed radio source in the galaxy cluster Abell 1033.
{"title":"In-situ acceleration of radio-emitting particles in the lobes of radio galaxies: Evolving observational perspective and recent clues","authors":"Gopal-Krishna, Paul J. Wiita","doi":"10.1007/s12036-024-10000-4","DOIUrl":"10.1007/s12036-024-10000-4","url":null,"abstract":"<div><p>The issue of radiation mechanisms triggered in 1950–60s the first applications of plasma physics to understand the nature of radio galaxies. This interplay has steadily intensified during the past five decades due to the premise of <i>in-situ</i> acceleration of relativistic electrons occurring in the lobes of radio galaxies. This article briefly traces the chain of these remarkable developments, largely from an observational perspective. We recount several observational and theoretical milestones established along the way and the lessons drawn from them. We also present a new observational clue about <i>in-situ</i> acceleration of the relativistic particles radiating in the lobes of radio galaxies, gleaned by us from the very recently published sensitive radio observations of a tailed radio source in the galaxy cluster Abell 1033.</p></div>","PeriodicalId":610,"journal":{"name":"Journal of Astrophysics and Astronomy","volume":"45 1","pages":""},"PeriodicalIF":1.1,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140511270","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-16DOI: 10.1007/s12036-024-09996-6
K. Aravind, Kumar Venkataramani, Shashikiran Ganesh, Emmanuel Jehin, Youssef Moulane
Jupiter family comets, having an orbital period <20 years, allow us to observe their activity and analyze the homogeneity in their coma composition over multiple apparitions. Comet 46P/Wirtanen, with its exceptionally close approach to Earth during its 2018 apparition, offered the possibility for long-term spectroscopic observations. We used a 1.2 m telescope equipped with a low-resolution spectrograph to monitor the comet’s activity and compute the relative abundances in the coma as a function of heliocentric distance. We report the production rates of four molecules CN, C(_2), C(_3) and NH(_2,) and Af(rho ) parameter, a proxy to the dust production, before and after perihelion. We found that 46P has a typical coma composition with almost constant abundance ratios with respect to CN across the epochs of observation. Comparing the coma composition of comet 46P during the current and previous apparitions, we conclude the comet has a highly homogeneous chemical composition in the nucleus with an enhancement in ammonia abundance compared to the average abundance in comets.
{"title":"Long-term spectroscopic monitoring of comet 46P/Wirtanen","authors":"K. Aravind, Kumar Venkataramani, Shashikiran Ganesh, Emmanuel Jehin, Youssef Moulane","doi":"10.1007/s12036-024-09996-6","DOIUrl":"10.1007/s12036-024-09996-6","url":null,"abstract":"<div><p>Jupiter family comets, having an orbital period <20 years, allow us to observe their activity and analyze the homogeneity in their coma composition over multiple apparitions. Comet 46P/Wirtanen, with its exceptionally close approach to Earth during its 2018 apparition, offered the possibility for long-term spectroscopic observations. We used a 1.2 m telescope equipped with a low-resolution spectrograph to monitor the comet’s activity and compute the relative abundances in the coma as a function of heliocentric distance. We report the production rates of four molecules CN, C<span>(_2)</span>, C<span>(_3)</span> and NH<span>(_2,)</span> and Af<span>(rho )</span> parameter, a proxy to the dust production, before and after perihelion. We found that 46P has a typical coma composition with almost constant abundance ratios with respect to CN across the epochs of observation. Comparing the coma composition of comet 46P during the current and previous apparitions, we conclude the comet has a highly homogeneous chemical composition in the nucleus with an enhancement in ammonia abundance compared to the average abundance in comets.</p></div>","PeriodicalId":610,"journal":{"name":"Journal of Astrophysics and Astronomy","volume":"45 1","pages":""},"PeriodicalIF":1.1,"publicationDate":"2024-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140151399","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-14DOI: 10.1007/s12036-024-09998-4
Sabyasachi Pal, Arijit Manna
Comets are the most primordial objects in our solar system. Comets are icy bodies that release gas and dust when moving close to the Sun. The C/2020 F3 (Near-Earth Object Wide-field Infrared Survey Explorer: NEOWISE) is a nearly isotropic comet moving near-parabolic orbit. The C/2020 F3 (NEOWISE) was the brightest comet in the northern hemisphere after comet Hale–Bopp in 1997 and comet McNaught in 2006. This paper presents the first interferometric high-resolution detection of the comet C/2020 F3 (NEOWISE) using the Giant Metrewave Radio Telescope (GMRT). We detected the radio continuum emission from the comet C/2020 F3 (NEOWISE) with a flux density level 2.84 (±0.56)–3.89 (±0.57) mJy in the frequency range of 1050–1450 MHz. We also detected the absorption line of atomic hydrogen (HI) with a signal-to-noise ratio (SNR) (sim )5.7. The column density of the detected HI absorption line is (N_{textrm{HI}} = (3.46pm 0.60)times (T_{s}/100)times 10^{21},hbox {cm}^{-2}), where we assume the spin temperature (T_{s} = 100) K and filling factor (f = 1). The significant detection of continuum emission from the comet C/2020 F3 (NEOWISE) at (sim )21 cm wavelength indicated that it arose from the large icy grains halo (IGH) region.
{"title":"Detection of continuum emission and atomic hydrogen from comet C/2020 F3 NEOWISE using GMRT","authors":"Sabyasachi Pal, Arijit Manna","doi":"10.1007/s12036-024-09998-4","DOIUrl":"10.1007/s12036-024-09998-4","url":null,"abstract":"<div><p>Comets are the most primordial objects in our solar system. Comets are icy bodies that release gas and dust when moving close to the Sun. The C/2020 F3 (Near-Earth Object Wide-field Infrared Survey Explorer: NEOWISE) is a nearly isotropic comet moving near-parabolic orbit. The C/2020 F3 (NEOWISE) was the brightest comet in the northern hemisphere after comet Hale–Bopp in 1997 and comet McNaught in 2006. This paper presents the first interferometric high-resolution detection of the comet C/2020 F3 (NEOWISE) using the Giant Metrewave Radio Telescope (GMRT). We detected the radio continuum emission from the comet C/2020 F3 (NEOWISE) with a flux density level 2.84 (±0.56)–3.89 (±0.57) mJy in the frequency range of 1050–1450 MHz. We also detected the absorption line of atomic hydrogen (HI) with a signal-to-noise ratio (SNR) <span>(sim )</span>5.7. The column density of the detected HI absorption line is <span>(N_{textrm{HI}} = (3.46pm 0.60)times (T_{s}/100)times 10^{21},hbox {cm}^{-2})</span>, where we assume the spin temperature <span>(T_{s} = 100)</span> K and filling factor <span>(f = 1)</span>. The significant detection of continuum emission from the comet C/2020 F3 (NEOWISE) at <span>(sim )</span>21 cm wavelength indicated that it arose from the large icy grains halo (IGH) region.</p></div>","PeriodicalId":610,"journal":{"name":"Journal of Astrophysics and Astronomy","volume":"45 1","pages":""},"PeriodicalIF":1.1,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140151542","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-05DOI: 10.1007/s12036-024-09997-5
Maksym Ersteniuk, Timothy Banks, Edwin Budding, Michael D. Rhodes
Model orbits have been fitted to 27 physical double stars listed in a 1922 catalog. A Markov Chain Monte Carlo technique was applied to estimate best-fitting values and associated uncertainties for the orbital parameters. Dynamical masses were calculated using parallaxes from the Hipparcos mission and are presented in this paper with the estimates of the orbital parameters for the 27 systems. The resulting mass estimates of the current study are in good agreement with a recently published study, as are comparisons with the orbital parameters listed by the Washington Double Star catalog, confirming the validity of the optimization methodology.
{"title":"Markov Chain Monte Carlo optimization applied to double stars from Miller & Pitman research","authors":"Maksym Ersteniuk, Timothy Banks, Edwin Budding, Michael D. Rhodes","doi":"10.1007/s12036-024-09997-5","DOIUrl":"10.1007/s12036-024-09997-5","url":null,"abstract":"<div><p>Model orbits have been fitted to 27 physical double stars listed in a 1922 catalog. A Markov Chain Monte Carlo technique was applied to estimate best-fitting values and associated uncertainties for the orbital parameters. Dynamical masses were calculated using parallaxes from the Hipparcos mission and are presented in this paper with the estimates of the orbital parameters for the 27 systems. The resulting mass estimates of the current study are in good agreement with a recently published study, as are comparisons with the orbital parameters listed by the Washington Double Star catalog, confirming the validity of the optimization methodology.</p></div>","PeriodicalId":610,"journal":{"name":"Journal of Astrophysics and Astronomy","volume":"45 1","pages":""},"PeriodicalIF":1.1,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140034099","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-29DOI: 10.1007/s12036-024-09995-7
Varun Padikal, Amirul Hasan, Vineeth Valsan, S. Sriram, Athul Kurian, Vishnu C. Unni, Alikhan Basheer, Pramod Panchal, Maheswar Gopinathan, B. S. Remya, Totan Chand
A 10–12 m class national large optical-IR telescope (NLOT) is envisaged to meet the growing scientific requirements in astronomy and astrophysics. Telescopes of such dimensions can only be made by segmenting the primary mirror, as it eases a more prominent primary mirror’s fabrication, transportation, operation, and maintenance process. This paper presents the various optical designs analyzed for NLOT that can be fabricated using the India TMT Optics Fabrication Facility (ITOFF) at the Centre for Research and Education in Science and Technology (CREST) campus. We present the primary mirror segmentation details, its ideal optical performance, and study each design’s advantages and technical complexities. Based on the above analysis, we have narrowed it down to an optimal design, and its performance analysis is also discussed.
{"title":"Optical design studies for national large optical-IR telescope","authors":"Varun Padikal, Amirul Hasan, Vineeth Valsan, S. Sriram, Athul Kurian, Vishnu C. Unni, Alikhan Basheer, Pramod Panchal, Maheswar Gopinathan, B. S. Remya, Totan Chand","doi":"10.1007/s12036-024-09995-7","DOIUrl":"10.1007/s12036-024-09995-7","url":null,"abstract":"<div><p>A 10–12 m class national large optical-IR telescope (NLOT) is envisaged to meet the growing scientific requirements in astronomy and astrophysics. Telescopes of such dimensions can only be made by segmenting the primary mirror, as it eases a more prominent primary mirror’s fabrication, transportation, operation, and maintenance process. This paper presents the various optical designs analyzed for NLOT that can be fabricated using the India TMT Optics Fabrication Facility (ITOFF) at the Centre for Research and Education in Science and Technology (CREST) campus. We present the primary mirror segmentation details, its ideal optical performance, and study each design’s advantages and technical complexities. Based on the above analysis, we have narrowed it down to an optimal design, and its performance analysis is also discussed.</p></div>","PeriodicalId":610,"journal":{"name":"Journal of Astrophysics and Astronomy","volume":"45 1","pages":""},"PeriodicalIF":1.1,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140010262","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-14DOI: 10.1007/s12036-023-09994-0
Binay Rai, Biswajit Paul, Mohammed Tobrej, Manoj Ghising, Ruchi Tamang, Bikash Chandra Paul
We studied the timing and spectral properties of the Be/X-ray pulsar Swift J1626.6−5156 using the NICER observations of its 2021 outburst. The most important observation is the positive correlation of the centroid energy of the fundamental cyclotron line with the luminosity. This observation agrees with the usual positive correlation of the centroid energy cyclotron line with luminosity in the sub-critical regime. The correlation between the two quantities is verified using two different continuum models. The photon index decreases with an increase in flux. Thus, the spectrum is softer when the flux is low, which may be due to a decrease in the optical depth of the accretion column with a decrease in the flux.
我们利用 NICER 对其 2021 年爆发的观测,研究了 Be/X 射线脉冲星 Swift J1626.6-5156 的时间和光谱特性。最重要的观测结果是基本回旋线的中心能量与光度呈正相关。这一观测结果与亚临界体系中回旋线中心能量与光度的通常正相关性一致。这两个量之间的相关性通过两个不同的连续体模型得到了验证。光子指数随着光通量的增加而降低。因此,当通量较低时,光谱会比较柔和,这可能是由于随着通量的降低,吸积柱的光学深度也会降低。
{"title":"Luminosity dependent cyclotron line in Swift J1626.6−5156","authors":"Binay Rai, Biswajit Paul, Mohammed Tobrej, Manoj Ghising, Ruchi Tamang, Bikash Chandra Paul","doi":"10.1007/s12036-023-09994-0","DOIUrl":"10.1007/s12036-023-09994-0","url":null,"abstract":"<div><p>We studied the timing and spectral properties of the Be/X-ray pulsar Swift J1626.6−5156 using the NICER observations of its 2021 outburst. The most important observation is the positive correlation of the centroid energy of the fundamental cyclotron line with the luminosity. This observation agrees with the usual positive correlation of the centroid energy cyclotron line with luminosity in the sub-critical regime. The correlation between the two quantities is verified using two different continuum models. The photon index decreases with an increase in flux. Thus, the spectrum is softer when the flux is low, which may be due to a decrease in the optical depth of the accretion column with a decrease in the flux.\u0000</p></div>","PeriodicalId":610,"journal":{"name":"Journal of Astrophysics and Astronomy","volume":"45 1","pages":""},"PeriodicalIF":1.1,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139751640","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-08DOI: 10.1007/s12036-023-09993-1
Ibtisam Shaikh, Priya Hasan, S. N. Hasan
In this paper, we study the location and stability of the collinear Lagrangian points for the RTBP case in which one of the primary bodies radiates and the other is oblate. We consider the effect of Poynting–Roberson drag and investigate how the location and stability of the Lagrangian points change with changes in the radiation parameter (beta ) and oblateness a. We apply our results to ten exoplanet systems: CoRoT-2 b, TOI-1278 b, HAT-P-20 b, Kepler-75 b, WASP-89 b, TIC 172900988 b, NGTS 9 b, LP 714-47 b, WASP-162 b and XO-3 b, data of which has been taken from NASA exoplanet archives, to find locations in these exoplanet systems where one can detect asteroids, primordial material or seeds where planet formation can take place. We find that the location of the collinear Lagrangian points changes with variations in radiation pressure and oblateness. Further, for all the ten planetary systems studied in this paper, the Lagrangian points are unstable and can be locations where we expect to find minor planets, asteroids or debris. The unstability of the Lagrangian points can be a possible cause of relocation and migration of planetesimals.
{"title":"Exploring the collinear Lagrangian points of exoplanet systems with P–R drag and oblateness","authors":"Ibtisam Shaikh, Priya Hasan, S. N. Hasan","doi":"10.1007/s12036-023-09993-1","DOIUrl":"10.1007/s12036-023-09993-1","url":null,"abstract":"<div><p>In this paper, we study the location and stability of the collinear Lagrangian points for the RTBP case in which one of the primary bodies radiates and the other is oblate. We consider the effect of Poynting–Roberson drag and investigate how the location and stability of the Lagrangian points change with changes in the radiation parameter <span>(beta )</span> and oblateness <i>a</i>. We apply our results to ten exoplanet systems: CoRoT-2 b, TOI-1278 b, HAT-P-20 b, Kepler-75 b, WASP-89 b, TIC 172900988 b, NGTS 9 b, LP 714-47 b, WASP-162 b and XO-3 b, data of which has been taken from NASA exoplanet archives, to find locations in these exoplanet systems where one can detect asteroids, primordial material or seeds where planet formation can take place. We find that the location of the collinear Lagrangian points changes with variations in radiation pressure and oblateness. Further, for all the ten planetary systems studied in this paper, the Lagrangian points are unstable and can be locations where we expect to find minor planets, asteroids or debris. The unstability of the Lagrangian points can be a possible cause of relocation and migration of planetesimals.</p></div>","PeriodicalId":610,"journal":{"name":"Journal of Astrophysics and Astronomy","volume":"45 1","pages":""},"PeriodicalIF":1.1,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139751628","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}