Pub Date : 2025-05-31DOI: 10.1007/s12036-025-10058-8
M. Agúndez, L. Velilla-Prieto, J. P. Fonfría, J. Cernicharo
The article ‘Confirmation of interstellar phosphine towards asymptotic giant branch star IRC(+)10216’ by A. Manna and S. Pal uses ALMA data of the C-star envelope IRC(+)10216 to claim a confirmation of the detection of (hbox {PH}_3) in this source. The article, however, incorrectly assigns an emission feature observed in the ALMA spectrum of IRC(+)10216 to (hbox {PH}_3), while we find that it arises from a highly vibrationally excited state of HCN. Concretely the feature can be confidently assigned to the (J=3)–2, (ell =0) transition of HCN in the (nu _1 + 4nu _2) vibrational state based on the observation of the (ell = +2) and (ell = -2) components of the same rotational transition, (J=3)–2, with the observed relative intensities in agreement with the relative line strengths. The detection of (hbox {PH}_3) in IRC(+)10216 remains confirmed based on the observation of the (J=1)–0 and (J=2)–1 lines with the single-dish telescopes IRAM 30m, ARO SMT 10m, and Herschel (Agúndez et al. 2008, 2014; Tenenbaum & Ziurys 2008).
{"title":"Re-evaluation of ALMA detection of circumstellar (hbox {PH}_3) in the AGB envelope IRC(+)10216: Evidence for misidentification with HCN","authors":"M. Agúndez, L. Velilla-Prieto, J. P. Fonfría, J. Cernicharo","doi":"10.1007/s12036-025-10058-8","DOIUrl":"10.1007/s12036-025-10058-8","url":null,"abstract":"<div><p>The article ‘Confirmation of interstellar phosphine towards asymptotic giant branch star IRC<span>(+)</span>10216’ by A. Manna and S. Pal uses ALMA data of the C-star envelope IRC<span>(+)</span>10216 to claim a confirmation of the detection of <span>(hbox {PH}_3)</span> in this source. The article, however, incorrectly assigns an emission feature observed in the ALMA spectrum of IRC<span>(+)</span>10216 to <span>(hbox {PH}_3)</span>, while we find that it arises from a highly vibrationally excited state of HCN. Concretely the feature can be confidently assigned to the <span>(J=3)</span>–2, <span>(ell =0)</span> transition of HCN in the <span>(nu _1 + 4nu _2)</span> vibrational state based on the observation of the <span>(ell = +2)</span> and <span>(ell = -2)</span> components of the same rotational transition, <span>(J=3)</span>–2, with the observed relative intensities in agreement with the relative line strengths. The detection of <span>(hbox {PH}_3)</span> in IRC<span>(+)</span>10216 remains confirmed based on the observation of the <span>(J=1)</span>–0 and <span>(J=2)</span>–1 lines with the single-dish telescopes IRAM 30m, ARO SMT 10m, and <i>Herschel</i> (Agúndez <i>et al</i>. 2008, 2014; Tenenbaum & Ziurys 2008).\u0000</p></div>","PeriodicalId":610,"journal":{"name":"Journal of Astrophysics and Astronomy","volume":"46 1","pages":""},"PeriodicalIF":1.6,"publicationDate":"2025-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145171063","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-05-21DOI: 10.1007/s12036-025-10057-9
Chetana Jain
The Be X-ray binary pulsar RX J0520.5(-)6932 in the Large Magellanic Cloud recently underwent an outburst after a gap of about 10 years. This paper presents the timing and spectral analysis of this transient system using the NuSTAR observation that was made near the peak of the outburst. Coherent pulsations were detected with a period of 8.029877(9) s (at MJD 60412.87) up to 50 keV. The pulse profile was single-peaked and asymmetric, with the presence of two local minima on the slowly rising edge up to about 18 keV. The hard X-ray pulse profiles were relatively smooth. The 3–50 keV FPMA–FPMB energy spectrum was well described by a thermally comptonized continuum with an electron temperature of (sim )5.3 keV and a photon index of (sim )1.36. A broad (sim )6.32 keV Fe emission line and a cyclotron resonant scattering feature (CRSF) with (sim )32.3 keV central energy, corresponding to a surface magnetic field strength of (sim )(2.8times 10^{12}) G were also required to describe the energy spectrum. The pulse phase resolved spectroscopy indicated significant variation in energy and width of the CRSF and iron emission line. A (sim )14.6 keV absorption feature was also detected at specific pulse phases.
{"title":"Investigating the timing and spectral signatures of Be/X-ray pulsar RX J0520.5−6932 during its 2024 outburst using NuSTAR","authors":"Chetana Jain","doi":"10.1007/s12036-025-10057-9","DOIUrl":"10.1007/s12036-025-10057-9","url":null,"abstract":"<div><p>The Be X-ray binary pulsar RX J0520.5<span>(-)</span>6932 in the Large Magellanic Cloud recently underwent an outburst after a gap of about 10 years. This paper presents the timing and spectral analysis of this transient system using the NuSTAR observation that was made near the peak of the outburst. Coherent pulsations were detected with a period of 8.029877(9) s (at MJD 60412.87) up to 50 keV. The pulse profile was single-peaked and asymmetric, with the presence of two local minima on the slowly rising edge up to about 18 keV. The hard X-ray pulse profiles were relatively smooth. The 3–50 keV FPMA–FPMB energy spectrum was well described by a thermally comptonized continuum with an electron temperature of <span>(sim )</span>5.3 keV and a photon index of <span>(sim )</span>1.36. A broad <span>(sim )</span>6.32 keV Fe emission line and a cyclotron resonant scattering feature (CRSF) with <span>(sim )</span>32.3 keV central energy, corresponding to a surface magnetic field strength of <span>(sim )</span> <span>(2.8times 10^{12})</span> G were also required to describe the energy spectrum. The pulse phase resolved spectroscopy indicated significant variation in energy and width of the CRSF and iron emission line. A <span>(sim )</span>14.6 keV absorption feature was also detected at specific pulse phases.</p></div>","PeriodicalId":610,"journal":{"name":"Journal of Astrophysics and Astronomy","volume":"46 1","pages":""},"PeriodicalIF":1.1,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144100334","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In contemporary astronomy and astrophysics (A&A), the integration of high-performance computing (HPC), big data analytics, and artificial intelligence/machine learning (AI/ML) has become essential for advancing research across a wide range of scientific domains. These tools are playing an increasingly pivotal role in accelerating discoveries, simulating complex astrophysical phenomena, and analyzing vast amounts of observational data. For India to maintain and enhance its competitive edge in the global landscape of computational astrophysics and data science, the Indian A&A community must embrace these transformative technologies fully. Despite limited resources, the expanding Indian community has made significant scientific contributions. However, to remain globally competitive in the coming years, it is vital to establish a robust national framework that provides researchers with reliable access to state-of-the-art computational resources. This system should involve the regular solicitation of computational proposals, which can be assessed by domain experts and HPC specialists, ensuring that high-impact research receives the necessary support. India can develop the talent, infrastructure, and collaborative environment necessary for world-class research in computational astrophysics and data science.
{"title":"Computational astrophysics, data science and AI/ML in astronomy: A perspective from Indian community","authors":"Prateek Sharma, Bhargav Vaidya, Yogesh Wadadekar, Jasjeet Bagla, Piyali Chatterjee, Shravan Hanasoge, Prayush Kumar, Dipanjan Mukherjee, Ninan Sajeeth Philip, Nishant Singh","doi":"10.1007/s12036-025-10049-9","DOIUrl":"10.1007/s12036-025-10049-9","url":null,"abstract":"<div><p>In contemporary astronomy and astrophysics (A&A), the integration of high-performance computing (HPC), big data analytics, and artificial intelligence/machine learning (AI/ML) has become essential for advancing research across a wide range of scientific domains. These tools are playing an increasingly pivotal role in accelerating discoveries, simulating complex astrophysical phenomena, and analyzing vast amounts of observational data. For India to maintain and enhance its competitive edge in the global landscape of computational astrophysics and data science, the Indian A&A community must embrace these transformative technologies fully. Despite limited resources, the expanding Indian community has made significant scientific contributions. However, to remain globally competitive in the coming years, it is vital to establish a robust national framework that provides researchers with reliable access to state-of-the-art computational resources. This system should involve the regular solicitation of computational proposals, which can be assessed by domain experts and HPC specialists, ensuring that high-impact research receives the necessary support. India can develop the talent, infrastructure, and collaborative environment necessary for world-class research in computational astrophysics and data science.\u0000</p></div>","PeriodicalId":610,"journal":{"name":"Journal of Astrophysics and Astronomy","volume":"46 1","pages":""},"PeriodicalIF":1.1,"publicationDate":"2025-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144074107","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-05-10DOI: 10.1007/s12036-025-10052-0
Anumanchi Agastya Sai Ram Likhit, Katta Naveen, B. Arul Pandian, R. Abhishek, T. Prabu
With the evolution of radio astronomy and related education and training, the demand for scalable, efficient, and remote systems in data acquisition, storage, and analysis has significantly increased. Addressing this need, we have developed a web interface for a log-periodic dipole antenna array integral to the SKA Test activities at the Gauribidanur Radio Observatory (77.428 E, 13.603 N). This interface, employing Python-based technologies such as Streamlit and PyVISA, along with Standard Commands for Programmable Instruments (SCPI) commands, offers a seamless and user-friendly experience. Our solution introduces a unique data acquisition approach, employing SCPI through Python to communicate with the setup’s data acquisition system. The web interface, accessible remotely via a secure WLAN network or VPN, facilitates user-initiated observations and comprehensive logging and offers advanced features like manual radio frequency interference masking, transit plotting, and fringe plot analysis. Additionally, it acts as a data hub, allowing for the remote downloading of observational data. These capabilities significantly enhance the user’s ability to conduct detailed post-observation data analysis. The effectiveness of this interface is further demonstrated through a successful solar transit observation, validating its utility and accuracy in real-world astronomical applications. The applications of this web tool are expandable. They can be tailored according to the Observatory’s goals and instrumentation, as well as the growing radio astronomy instrumentation and observing facilities at various educational institutions.
随着射电天文学和相关教育培训的发展,对数据采集、存储和分析的可扩展、高效和远程系统的需求显著增加。为了满足这一需求,我们开发了一个用于高里比达努尔射电天文台(77.428 E, 13.603 N) SKA测试活动的对数周期偶极子天线阵列的web界面。该界面采用基于python的技术,如Streamlit和PyVISA,以及可编程仪器(SCPI)命令的标准命令,提供了无缝的用户友好体验。我们的解决方案引入了一种独特的数据采集方法,通过Python使用SCPI与设置的数据采集系统进行通信。web界面,可通过安全的WLAN网络或VPN远程访问,便于用户发起的观察和全面的日志记录,并提供手动射频干扰屏蔽,过境绘图和条纹图分析等高级功能。此外,它还充当数据中心,允许远程下载观测数据。这些功能大大提高了用户进行详细的观察后数据分析的能力。通过一次成功的太阳凌日观测进一步证明了该接口的有效性,验证了其在实际天文应用中的实用性和准确性。这个网络工具的应用程序是可扩展的。这些课程可根据天文台的目标和仪器,以及各教育机构不断增加的射电天文仪器和观测设施而量身定制。
{"title":"Innovative web tool for remote data acquisition and analysis: Customized for SKA low frequency beamforming test bed LPDA array at Gauribidanur Radio Observatory","authors":"Anumanchi Agastya Sai Ram Likhit, Katta Naveen, B. Arul Pandian, R. Abhishek, T. Prabu","doi":"10.1007/s12036-025-10052-0","DOIUrl":"10.1007/s12036-025-10052-0","url":null,"abstract":"<div><p>With the evolution of radio astronomy and related education and training, the demand for scalable, efficient, and remote systems in data acquisition, storage, and analysis has significantly increased. Addressing this need, we have developed a web interface for a log-periodic dipole antenna array integral to the SKA Test activities at the Gauribidanur Radio Observatory (77.428 E, 13.603 N). This interface, employing Python-based technologies such as Streamlit and PyVISA, along with Standard Commands for Programmable Instruments (SCPI) commands, offers a seamless and user-friendly experience. Our solution introduces a unique data acquisition approach, employing SCPI through Python to communicate with the setup’s data acquisition system. The web interface, accessible remotely via a secure WLAN network or VPN, facilitates user-initiated observations and comprehensive logging and offers advanced features like manual radio frequency interference masking, transit plotting, and fringe plot analysis. Additionally, it acts as a data hub, allowing for the remote downloading of observational data. These capabilities significantly enhance the user’s ability to conduct detailed post-observation data analysis. The effectiveness of this interface is further demonstrated through a successful solar transit observation, validating its utility and accuracy in real-world astronomical applications. The applications of this web tool are expandable. They can be tailored according to the Observatory’s goals and instrumentation, as well as the growing radio astronomy instrumentation and observing facilities at various educational institutions.\u0000</p></div>","PeriodicalId":610,"journal":{"name":"Journal of Astrophysics and Astronomy","volume":"46 1","pages":""},"PeriodicalIF":1.1,"publicationDate":"2025-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143932300","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-05-10DOI: 10.1007/s12036-025-10053-z
S. Narendranath, Netra S. Pillai, Srikar P. Tadepalli, K. Vadodariya, N. P. S. Mithun, A. Devaraj, S. Vaishali, V. Radhakrishna, A. Tyagi, S. Vadawale
Chandrayaan-2 Large Area soft X-ray Spectrometer (CLASS) is a remote X-ray Fluorescence experiment to map the lunar surface elemental abundances. With its large effective area and low energy threshold, CLASS generates the highest spatial resolution maps of all major rock-forming elements on the Moon, such as Mg, Al, Si, Ca, Ti, and Fe. Five years of operation in lunar orbit has resulted in global coverage. With several lunar missions planned for this decade for in situ exploration and sample returns, the (15 times 15) km geochemical maps from CLASS will serve as an important dataset. This article highlights the scientific results of CLASS in the last five years and discusses its potential applications.
月船2号(Chandrayaan-2)大面积软x射线光谱仪(CLASS)是一个远程x射线荧光实验,用于绘制月球表面元素丰度。CLASS具有有效面积大、能量阈值低的特点,能够生成月球上Mg、Al、Si、Ca、Ti、Fe等所有主要造岩元素的最高空间分辨率地图。在月球轨道上运行了五年,实现了全球覆盖。由于计划在本十年进行几次月球原位勘探和样本返回任务,来自CLASS的(15 times 15)公里地球化学地图将作为重要的数据集。本文重点介绍了近五年来CLASS的科研成果,并对其应用前景进行了探讨。
{"title":"CLASS onboard Chandrayaan-2: Five years around the Moon","authors":"S. Narendranath, Netra S. Pillai, Srikar P. Tadepalli, K. Vadodariya, N. P. S. Mithun, A. Devaraj, S. Vaishali, V. Radhakrishna, A. Tyagi, S. Vadawale","doi":"10.1007/s12036-025-10053-z","DOIUrl":"10.1007/s12036-025-10053-z","url":null,"abstract":"<div><p>Chandrayaan-2 Large Area soft X-ray Spectrometer (CLASS) is a remote X-ray Fluorescence experiment to map the lunar surface elemental abundances. With its large effective area and low energy threshold, CLASS generates the highest spatial resolution maps of all major rock-forming elements on the Moon, such as Mg, Al, Si, Ca, Ti, and Fe. Five years of operation in lunar orbit has resulted in global coverage. With several lunar missions planned for this decade for <i>in situ</i> exploration and sample returns, the <span>(15 times 15)</span> km geochemical maps from CLASS will serve as an important dataset. This article highlights the scientific results of CLASS in the last five years and discusses its potential applications.</p></div>","PeriodicalId":610,"journal":{"name":"Journal of Astrophysics and Astronomy","volume":"46 1","pages":""},"PeriodicalIF":1.1,"publicationDate":"2025-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143932299","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-04-26DOI: 10.1007/s12036-025-10047-x
Ramya Sethuram, Jayanta Roy, Eswar Reddy, G. C. Anupama, Ravinder Banyal, Varun Bhalerao, Subir Bhattacharyya, Kaushal Dipak Buch, Eswaraiah Chakali, Varsha Chitnis, Abhirup Datta, Sagar Godambe, Maheswar Gopinathan, Ruta Prabhakar Kale, Dharam Vir Lal, Kshitiz Kumar Mallick, Pratik Majumdar, Sanjit Mitra, Divya Oberoi, Pravata Mohanty, Bhaswati Mookerjea, Devendra K. Ojha, Lokesh Kumar Dewangan, Jessy Jose, Joe Philip Ninan, Mayuri S. Rao, Mayukh Pahari, Sachindra Naik, Pankaj Jain, Tushar Prabhu, A. N. Ramaprakash, Vikram Rana, R. Ramesh, B. Ravindra, K. Sankarasubramanian, M. C. Ramadevi, K. C. Shyama Narendranath, Archana Soam, Santosh Vadawale, Veena Vadamattom, Girish Veerappa, Kuldeep Yadav, Krishna Kumar Singh, Nijil Mankuzhiyil, Bharat Kumar Yerra, K. P. Arun Babu
In this article, we present the current state of observing facilities available for Indian astronomers in various wavelength bands existing in the country. We also mention a few state-of-the-art astronomical facilities across the globe and contrast them with the Indian facilities. We then present a vision for improving our facilities to raise world-class capabilities. This process involves (a) upgrading the current facilities, (b) partnering in mega-science projects across the globe, (c) continued involvement in International projects, and (d) creating our large-scale facilities. These steps are divided into short, medium, and long-term tasks/projects. Recommendations for building large telescopes with versatile back-end instruments on Indian soil for Indian astronomers have been provided for each wavelength band. All these world-class astronomical observing facilities warrant cutting-edge technologies ranging from signal/image processing, high-performance computing, algorithms, and AI/ML. We hope this exercise will start a discussion and eventually lead to the initiation of these projects, which will result in significant scientific breakthroughs in the coming decades.
{"title":"New age observing facilities for Indian astronomy: 2020–2035","authors":"Ramya Sethuram, Jayanta Roy, Eswar Reddy, G. C. Anupama, Ravinder Banyal, Varun Bhalerao, Subir Bhattacharyya, Kaushal Dipak Buch, Eswaraiah Chakali, Varsha Chitnis, Abhirup Datta, Sagar Godambe, Maheswar Gopinathan, Ruta Prabhakar Kale, Dharam Vir Lal, Kshitiz Kumar Mallick, Pratik Majumdar, Sanjit Mitra, Divya Oberoi, Pravata Mohanty, Bhaswati Mookerjea, Devendra K. Ojha, Lokesh Kumar Dewangan, Jessy Jose, Joe Philip Ninan, Mayuri S. Rao, Mayukh Pahari, Sachindra Naik, Pankaj Jain, Tushar Prabhu, A. N. Ramaprakash, Vikram Rana, R. Ramesh, B. Ravindra, K. Sankarasubramanian, M. C. Ramadevi, K. C. Shyama Narendranath, Archana Soam, Santosh Vadawale, Veena Vadamattom, Girish Veerappa, Kuldeep Yadav, Krishna Kumar Singh, Nijil Mankuzhiyil, Bharat Kumar Yerra, K. P. Arun Babu","doi":"10.1007/s12036-025-10047-x","DOIUrl":"10.1007/s12036-025-10047-x","url":null,"abstract":"<div><p>In this article, we present the current state of observing facilities available for Indian astronomers in various wavelength bands existing in the country. We also mention a few state-of-the-art astronomical facilities across the globe and contrast them with the Indian facilities. We then present a vision for improving our facilities to raise world-class capabilities. This process involves (a) upgrading the current facilities, (b) partnering in mega-science projects across the globe, (c) continued involvement in International projects, and (d) creating our large-scale facilities. These steps are divided into short, medium, and long-term tasks/projects. Recommendations for building large telescopes with versatile back-end instruments on Indian soil for Indian astronomers have been provided for each wavelength band. All these world-class astronomical observing facilities warrant cutting-edge technologies ranging from signal/image processing, high-performance computing, algorithms, and AI/ML. We hope this exercise will start a discussion and eventually lead to the initiation of these projects, which will result in significant scientific breakthroughs in the coming decades.</p></div>","PeriodicalId":610,"journal":{"name":"Journal of Astrophysics and Astronomy","volume":"46 1","pages":""},"PeriodicalIF":1.1,"publicationDate":"2025-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143875457","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-04-25DOI: 10.1007/s12036-025-10045-z
B. S. SHYLAJA, B. S. SHUBHA
The procedures followed for computations of eclipses in the classical treatises are best understood with a practical demonstration of the technique. Here, we have studied manuscripts describing the computations. These are authored by Ekanātha of the 14th century, whose works are not well known. We demonstrate the procedure by practical verification of each step and finally comparing the results with currently available computations. In the process, the finer details of valuable tools, like the iteration method, are brought to light. The drawings of the eclipses are presented as per the procedure. The possible causes for the observed discrepancies in the results are discussed.
{"title":"Computations of eclipses from 14th-century manuscript Ekanāthakaraṇa","authors":"B. S. SHYLAJA, B. S. SHUBHA","doi":"10.1007/s12036-025-10045-z","DOIUrl":"10.1007/s12036-025-10045-z","url":null,"abstract":"<div><p>The procedures followed for computations of eclipses in the classical treatises are best understood with a practical demonstration of the technique. Here, we have studied manuscripts describing the computations. These are authored by <i>Ekanātha</i> of the 14th century, whose works are not well known. We demonstrate the procedure by practical verification of each step and finally comparing the results with currently available computations. In the process, the finer details of valuable tools, like the iteration method, are brought to light. The drawings of the eclipses are presented as per the procedure. The possible causes for the observed discrepancies in the results are discussed. </p></div>","PeriodicalId":610,"journal":{"name":"Journal of Astrophysics and Astronomy","volume":"46 1","pages":""},"PeriodicalIF":1.1,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143871406","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-04-05DOI: 10.1007/s12036-025-10048-w
A. Sule, Niruj Mohan Ramanujam, Moupiya Maji, S. More, V. Yadav, Anand Narayanan, S. Dhurde, J. Ganguly, S. Seetha, A. M. Srivastava, B. S. Shylaja, Y. Wadadekar
Astronomy, of all the sciences, is possibly the one with the most public appeal across all age groups. This is also evidenced by the existence of a large number of planetaria and amateur astronomy societies, which are unique to the field. Astronomy is known as a ‘gateway science’, with the ability to attract students who then proceed to explore their interest in other STEM fields. Astronomy’s link to society is, therefore, substantive and diverse. This white paper analyses six key areas: outreach and communication, astronomy education, history and heritage, astronomy for development, diversity, and hiring practices for outreach personnel.
The current status of each of these areas is described, followed by an analysis of what is needed for the future. A set of recommendations for institutions, funding agencies, and individuals are evolved for each specific area. This work outlines how the future astronomy-society connection should take shape and provides a road map for the various stakeholders involved.
{"title":"Astronomy and society: The road ahead","authors":"A. Sule, Niruj Mohan Ramanujam, Moupiya Maji, S. More, V. Yadav, Anand Narayanan, S. Dhurde, J. Ganguly, S. Seetha, A. M. Srivastava, B. S. Shylaja, Y. Wadadekar","doi":"10.1007/s12036-025-10048-w","DOIUrl":"10.1007/s12036-025-10048-w","url":null,"abstract":"<div><p>Astronomy, of all the sciences, is possibly the one with the most public appeal across all age groups. This is also evidenced by the existence of a large number of planetaria and amateur astronomy societies, which are unique to the field. Astronomy is known as a ‘gateway science’, with the ability to attract students who then proceed to explore their interest in other STEM fields. Astronomy’s link to society is, therefore, substantive and diverse. This white paper analyses six key areas: outreach and communication, astronomy education, history and heritage, astronomy for development, diversity, and hiring practices for outreach personnel.</p><p>The current status of each of these areas is described, followed by an analysis of what is needed for the future. A set of recommendations for institutions, funding agencies, and individuals are evolved for each specific area. This work outlines how the future astronomy-society connection should take shape and provides a road map for the various stakeholders involved.</p></div>","PeriodicalId":610,"journal":{"name":"Journal of Astrophysics and Astronomy","volume":"46 1","pages":""},"PeriodicalIF":1.1,"publicationDate":"2025-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143778097","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-04-02DOI: 10.1007/s12036-025-10046-y
Souren P. Pogossian
In this study, I re-examine the question of whether a hypothetical planet, Vulcan, could explain the anomalous advance of Mercury’s perihelion. I propose that Vulcan might be considered a type of primordial black hole with a planetary mass. The detection of this type of celestial body has become possible through modern experimental techniques, including the Optical Gravitational Lensing Experiment. Recently, an excess of ultra-short microlensing events with crossing times of 0.1–0.3 days has been reported, suggesting the possible existence of sub-Earth-mass primordial black holes in our solar system. The primordial black hole Vulcan planetary mass hypothesis could then explain the anomalous advance of Mercury’s perihelion under the influence of its gravitational attraction, remaining hidden from astronomers’ telescopes. But in this case, it will also influence the perihelion advance of the other planets. To this end, I first calculate the mutual partial contributions to the perihelion motion of all the planets by two different methods without Vulcan in a model of the simplified solar system consisting of the Sun and eight planets. Next, I include Vulcan in this model within the framework of the Newtonian theory of classical gravitation and analyze Vulcan’s influence on the perihelion advance of the inner planets, using Vulcan parameters from my previous work. These results are compared with the perihelion advances of the inner planets predicted by the theory of general relativity and with the data obtained by modern observations.
{"title":"If Vulcan was a primordial black hole of planetary-mass?","authors":"Souren P. Pogossian","doi":"10.1007/s12036-025-10046-y","DOIUrl":"10.1007/s12036-025-10046-y","url":null,"abstract":"<div><p>In this study, I re-examine the question of whether a hypothetical planet, Vulcan, could explain the anomalous advance of Mercury’s perihelion. I propose that Vulcan might be considered a type of primordial black hole with a planetary mass. The detection of this type of celestial body has become possible through modern experimental techniques, including the Optical Gravitational Lensing Experiment. Recently, an excess of ultra-short microlensing events with crossing times of 0.1–0.3 days has been reported, suggesting the possible existence of sub-Earth-mass primordial black holes in our solar system. The primordial black hole Vulcan planetary mass hypothesis could then explain the anomalous advance of Mercury’s perihelion under the influence of its gravitational attraction, remaining hidden from astronomers’ telescopes. But in this case, it will also influence the perihelion advance of the other planets. To this end, I first calculate the mutual partial contributions to the perihelion motion of all the planets by two different methods without Vulcan in a model of the simplified solar system consisting of the Sun and eight planets. Next, I include Vulcan in this model within the framework of the Newtonian theory of classical gravitation and analyze Vulcan’s influence on the perihelion advance of the inner planets, using Vulcan parameters from my previous work. These results are compared with the perihelion advances of the inner planets predicted by the theory of general relativity and with the data obtained by modern observations.</p></div>","PeriodicalId":610,"journal":{"name":"Journal of Astrophysics and Astronomy","volume":"46 1","pages":""},"PeriodicalIF":1.1,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143761817","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-03-19DOI: 10.1007/s12036-025-10042-2
Vikrant V. Jadhav
This study examines the characterization of binary star systems using Spectral Energy Distributions (SEDs), a technique increasingly essential with the rise of large-scale astronomical surveys. Binaries can emit flux at different regions of the electromagnetic spectrum, making SEDs a valuable tool in identifying and characterizing unresolved binary systems. However, fitting multi-component models to SEDs and recovering accurate stellar parameters remains challenging due to nonlinear fitting methods and inherent uncertainties in the data and the spectral models. In this work, a simplified approach was used to model stars as blackbodies, and we tested the accuracy of parameter recovery from SEDs, particularly by focusing on secondary stars. We explored a range of primary properties, filter sets, and noise models. Special attention was given to two case studies: one examining the detection of unresolved binaries using Gaia XP spectra, and the other focusing on identifying hotter companions in binary systems using UV-IR SEDs. Although an analytic prescription for recoverability is impossible, we present a simplified model and the necessary python tools to analyze any potential binary system. Finally, we propose using blackbody models as a baseline for error estimation in SED fitting. We offer a possible method for measuring fitting errors and improving the precision of binary star characterizations.
{"title":"On the detectability and parameterization of binary stars through spectral energy distributions","authors":"Vikrant V. Jadhav","doi":"10.1007/s12036-025-10042-2","DOIUrl":"10.1007/s12036-025-10042-2","url":null,"abstract":"<div><p>This study examines the characterization of binary star systems using Spectral Energy Distributions (SEDs), a technique increasingly essential with the rise of large-scale astronomical surveys. Binaries can emit flux at different regions of the electromagnetic spectrum, making SEDs a valuable tool in identifying and characterizing unresolved binary systems. However, fitting multi-component models to SEDs and recovering accurate stellar parameters remains challenging due to nonlinear fitting methods and inherent uncertainties in the data and the spectral models. In this work, a simplified approach was used to model stars as blackbodies, and we tested the accuracy of parameter recovery from SEDs, particularly by focusing on secondary stars. We explored a range of primary properties, filter sets, and noise models. Special attention was given to two case studies: one examining the detection of unresolved binaries using <i>Gaia</i> XP spectra, and the other focusing on identifying hotter companions in binary systems using UV-IR SEDs. Although an analytic prescription for recoverability is impossible, we present a simplified model and the necessary <span>python</span> tools to analyze any potential binary system. Finally, we propose using blackbody models as a baseline for error estimation in SED fitting. We offer a possible method for measuring fitting errors and improving the precision of binary star characterizations.</p></div>","PeriodicalId":610,"journal":{"name":"Journal of Astrophysics and Astronomy","volume":"46 1","pages":""},"PeriodicalIF":1.1,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143645571","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}