首页 > 最新文献

Journal of Chemical Crystallography最新文献

英文 中文
Molecular and Crystal Structure of N-(8-benzylidene-4-phenylhexahydroquinazolin-2(1H)-ylidene)Cyanamide N-(8-亚苄基-4-苯基六氢喹唑啉-2(1H)-亚基)氰酰胺的分子和晶体结构
IF 0.4 4区 化学 Q4 CRYSTALLOGRAPHY Pub Date : 2024-04-03 DOI: 10.1007/s10870-024-01010-9
Anna E. Sklyar, Vyacheslav S. Grinev, Maksim V. Dmitriev, Natalia O. Vasilkova, Daniil A. Puzanov, Adel P. Krivenko

We have obtained previously known and new 4,8-C-substituted hexahydroquinazolincyanamides by two-component condensation of 2,6-diaryl(heteroaryl)methylidenecyclohexanones with the same or different terminal substituents with N-cyanoguanidine according to a modified procedure under conditions of basic catalysis. We have grown a singlecrystal of one of the representatives of the series –N-(8-benzylidene-4-phenylhexahydroquinazolin-2(1H)-ylidene)cyanamideby crystallization from a saturated solution of acetonitrile and carried out its X-ray diffraction study. The structure of N-(8-benzylidene-4-phenylhexahydroquinazolin-2(1H)-ylidene)cyanamide, C22H20N4, has orthorhombic (P212121) symmetry. The molecule is built from fused non-planar cyclohexene and tetrahydropyrimidine rings. The cyclohexene ring is in the half-chair conformation, while the tetrahydropyrimidine ring adopts the ‘C-envelope’ conformation. The crystal packing of the compound is an alternating layered structure. The mutual arrangement of molecules promotes the formation of intermolecular hydrogen bonds (IMH) between the H1 hydrogen atoms of the quinazoline ring and the N4 nitrogen atoms of the nitrile group. Non-planar C–H···π interactions are observed in the crystal as well. The compound is in the E,E-configuration. The calculation and analysis of Hirschfeld surfaces demonstrated the presence of hydrogen bonds, different in energy, and C–H···π interactions between benzene rings and protons of other benzene rings of neighbouring molecules in both the benzylidene and phenyl substituents.

Graphical Abstract

X-ray diffraction analysis of hexahydroquinazolincyanamide showed that there are intermolecular hydrogen bonds with the hydrogen atoms of the quinazoline ring and the nitrogen atoms of the nitrile and imine groups. An assessment of the intermolecular stacking interaction is given.

我们在碱性催化条件下,通过改进的程序,用具有相同或不同末端取代基的 2,6-二芳基(杂芳基)亚甲基环己酮与 N-氰基胍进行双组分缩合,得到了以前已知的和新的 4,8-C-取代的六氢喹唑啉氰酰胺。我们通过从饱和乙腈溶液中结晶的方法,制备出了 N-(8-亚苄基-4-苯基六氢喹唑啉-2(1H)-亚基)氰酰胺系列的一个代表单晶,并对其进行了 X 射线衍射研究。N-(8-亚苄基-4-苯基六氢喹唑啉-2(1H)-亚基)氰酰胺(C22H20N4)的结构具有正菱形(P212121)对称性。该分子由非平面的环己烯环和四氢嘧啶环融合而成。环己烯环呈半椅构象,而四氢嘧啶环则呈 "C-包络 "构象。该化合物的晶体结构为交替层状结构。分子的相互排列促进了喹唑啉环的 H1 氢原子和腈基的 N4 氮原子之间形成分子间氢键(IMH)。晶体中还观察到非平面的 C-H---π 相互作用。该化合物呈 E,E-configuration 结构。对赫氏表面的计算和分析表明,在苯亚甲基和苯基取代基中,苯环与邻近分子其他苯环的质子之间存在能量不同的氢键和 C-H---π 相互作用。对分子间的堆叠作用进行了评估。
{"title":"Molecular and Crystal Structure of N-(8-benzylidene-4-phenylhexahydroquinazolin-2(1H)-ylidene)Cyanamide","authors":"Anna E. Sklyar,&nbsp;Vyacheslav S. Grinev,&nbsp;Maksim V. Dmitriev,&nbsp;Natalia O. Vasilkova,&nbsp;Daniil A. Puzanov,&nbsp;Adel P. Krivenko","doi":"10.1007/s10870-024-01010-9","DOIUrl":"10.1007/s10870-024-01010-9","url":null,"abstract":"<div><p>We have obtained previously known and new 4,8-C-substituted hexahydroquinazolincyanamides by two-component condensation of 2,6-diaryl(heteroaryl)methylidenecyclohexanones with the same or different terminal substituents with <i>N</i>-cyanoguanidine according to a modified procedure under conditions of basic catalysis. We have grown a singlecrystal of one of the representatives of the series –<i>N</i>-(8-benzylidene-4-phenylhexahydroquinazolin-2(1<i>H</i>)-ylidene)cyanamideby crystallization from a saturated solution of acetonitrile and carried out its X-ray diffraction study. The structure of <i>N</i>-(8-benzylidene-4-phenylhexahydroquinazolin-2(1<i>H</i>)-ylidene)cyanamide, C<sub>22</sub>H<sub>20</sub>N<sub>4</sub>, has orthorhombic (<i>P</i>2<sub>1</sub>2<sub>1</sub>2<sub>1</sub>) symmetry. The molecule is built from fused non-planar cyclohexene and tetrahydropyrimidine rings. The cyclohexene ring is in the half-chair conformation, while the tetrahydropyrimidine ring adopts the ‘C-envelope’ conformation. The crystal packing of the compound is an alternating layered structure. The mutual arrangement of molecules promotes the formation of intermolecular hydrogen bonds (IMH) between the H1 hydrogen atoms of the quinazoline ring and the N4 nitrogen atoms of the nitrile group. Non-planar C–H···π interactions are observed in the crystal as well. The compound is in the <i>E,E</i>-configuration. The calculation and analysis of Hirschfeld surfaces demonstrated the presence of hydrogen bonds, different in energy, and C–H···π interactions between benzene rings and protons of other benzene rings of neighbouring molecules in both the benzylidene and phenyl substituents.</p><h3>Graphical Abstract</h3><p>X-ray diffraction analysis of hexahydroquinazolincyanamide showed that there are intermolecular hydrogen bonds with the hydrogen atoms of the quinazoline ring and the nitrogen atoms of the nitrile and imine groups. An assessment of the intermolecular stacking interaction is given.</p>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":615,"journal":{"name":"Journal of Chemical Crystallography","volume":"54 2","pages":"173 - 182"},"PeriodicalIF":0.4,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140568710","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Novel Trinuclear Copper(II) Complex: Crystal Structure at 100 K and Magnetic Properties of  (R, S)-di[(6,7-dimethoxy-isoquinolin-1-yl)-(3,4-dimethoxy-phenyl)-methanolato]-tetra(2-hydroxybenzoato)-diaqua-tricopper dihydrate, [Cu3(C7H5O3)4(C20H20NO5)2(H2O)2]·2(H2O) 新型三核铜(II)配合物:(R, S)-二[(6,7-二甲氧基-异喹啉-1-基)-(3,4-二甲氧基苯基)-甲醇]-四(2-羟基苯甲酸)-二水合三氯化铜在 100 K 时的晶体结构和磁性能,[Cu3(C7H5O3)4(C20H20NO5)2(H2O)2]-2(H2O)
IF 0.4 4区 化学 Q4 CRYSTALLOGRAPHY Pub Date : 2024-03-28 DOI: 10.1007/s10870-024-01009-2
Fedor Valach, Ján Pavlik, Ivan Šalitroš, Milan Melník, Jozef Kožíšek

The crystal structure of [Cu3(C7H5O3)4(C20H20NO5)2(H2O)2]·2(H2O) (1) and analysis of temperature and field dependence of magnetic susceptibility is reported in this work. The structure of 1 is composed of trinuclear complex units and water molecules. The middle copper atom occupies the center of symmetry. N, O-bonded (6,7-dimethoxy-isoquinolin-1-yl)-(3,4-di­methoxy-phenyl)-methanolato ligands, 2-hydroxybenzoates with bridging carboxylic groups, and oxo-bridged water molecules connect the middle Cu(II) atom with the terminal copper atoms. Two 2-hydroxybenzoates coordinate the terminal copper atoms via one carboxylic oxygen and an O atom of the hydroxyl group. The analysis of copper coordination by bond-valence sum approach and relevant structural correlation is consistent with hexacoordinated Cu(II) centers. Cu···Cu separation is 3.0269(3) Å. The magnetism of 1 shows a strong ferromagnetic interaction between the neighboring metallic centers accompanied by very weak antiferromagnetic intermolecular interactions. The complex units are mutually held by π···π stack interactions of 2-hydroxybenzoates and hydrogen bonds.

Graphical Abstract

A new N,O bonded ligands, (R, S)-[(6,7-dimethoxy-isoquinolin-1-yl)-(3,4-dimethoxy-phenyl)-methanolate] coordinate the terminal atoms of the trinuclear copper(II) complex.

本文报告了[Cu3(C7H5O3)4(C20H20NO5)2(H2O)2]-2(H2O)(1)的晶体结构以及磁感应强度的温度和磁场依赖性分析。1 的结构由三核复合单元和水分子组成。中间的铜原子占据对称中心。N、O 键 (6,7-dimethoxy-isoquinolin-1-yl)-(3,4-dimethoxy-phenyl)-methanolato 配体、桥接羧基的 2-hydroxybenzoates 以及氧桥水分子将中间的 Cu(II) 原子与末端的铜原子连接起来。两个 2-羟基苯甲酸酯通过一个羧基氧和一个羟基 O 原子与末端铜原子配位。通过键价总和法和相关的结构关联分析,铜配位与六配位的 Cu(II) 中心一致。1 的磁性表明,相邻金属中心之间存在很强的铁磁相互作用,同时分子间存在很弱的反铁磁相互作用。通过 2-hydroxybenzoates 和氢键的 π---π 堆叠作用,复合物单元相互固定。
{"title":"Novel Trinuclear Copper(II) Complex: Crystal Structure at 100 K and Magnetic Properties of  (R, S)-di[(6,7-dimethoxy-isoquinolin-1-yl)-(3,4-dimethoxy-phenyl)-methanolato]-tetra(2-hydroxybenzoato)-diaqua-tricopper dihydrate, [Cu3(C7H5O3)4(C20H20NO5)2(H2O)2]·2(H2O)","authors":"Fedor Valach,&nbsp;Ján Pavlik,&nbsp;Ivan Šalitroš,&nbsp;Milan Melník,&nbsp;Jozef Kožíšek","doi":"10.1007/s10870-024-01009-2","DOIUrl":"10.1007/s10870-024-01009-2","url":null,"abstract":"<div><p>The crystal structure of [Cu<sub>3</sub>(C<sub>7</sub>H<sub>5</sub>O<sub>3</sub>)<sub>4</sub>(C<sub>20</sub>H<sub>20</sub>NO<sub>5</sub>)<sub>2</sub>(H<sub>2</sub>O)<sub>2</sub>]·2(H<sub>2</sub>O) (<b>1</b>) and analysis of temperature and field dependence of magnetic susceptibility is reported in this work. The structure of<b> 1</b> is composed of trinuclear complex units and water molecules. The middle copper atom occupies the center of symmetry. <i>N</i>, <i>O</i>-bonded (6,7-dimethoxy-isoquinolin-1-yl)-(3,4-di­methoxy-phenyl)-methanolato ligands, 2-hydroxybenzoates with bridging carboxylic groups, and oxo-bridged water molecules connect the middle Cu(II) atom with the terminal copper atoms. Two 2-hydroxybenzoates coordinate the terminal copper atoms <i>via</i> one carboxylic oxygen and an O atom of the hydroxyl group. The analysis of copper coordination by bond-valence sum approach and relevant structural correlation is consistent with hexacoordinated Cu(II) centers. Cu···Cu separation is 3.0269(3) Å. The magnetism of <b>1</b> shows a strong ferromagnetic interaction between the neighboring metallic centers accompanied by very weak antiferromagnetic intermolecular interactions. The complex units are mutually held by π···π stack interactions of 2-hydroxybenzoates and hydrogen bonds.</p><h3>Graphical Abstract</h3><p>A new N,O bonded ligands, (<i>R</i>,<i> S</i>)-[(6,7-dimethoxy-isoquinolin-1-yl)-(3,4-dimethoxy-phenyl)-methanolate] coordinate the terminal atoms of the trinuclear copper(II) complex.</p>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":615,"journal":{"name":"Journal of Chemical Crystallography","volume":"54 2","pages":"163 - 172"},"PeriodicalIF":0.4,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10870-024-01009-2.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140313256","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Copper(II) Tetrafluoroborate Hexahydrate: Preparation, Structure and Raman Spectrum 六水四氟硼酸铜(II):制备、结构和拉曼光谱
IF 0.4 4区 化学 Q4 CRYSTALLOGRAPHY Pub Date : 2024-03-16 DOI: 10.1007/s10870-024-01008-3
Andrii Vakulka, Evgeny Goreshnik

Previously unknown crystal structure of a copper(II) tetrafluoroborate hexahydrate salt was determined using single crystal X-ray diffraction. The unit cell parameters were determined at different temperatures (90, 150 and 270 K). The structure is isotypical with copper(II) perchlorate hexahydrate. The Raman spectrum was also recorded and discussed.

Graphical Abstract

The K.P.I. coefficient (78.0) and the FUV index (256.21 Å3) indicating very effective packing of the ions in the discussed structure, whereas the β angle is very close to the 90° and, in this way, the crystal could undergo a monoclinic (to ) orthorhombic phase transition at some lower temperatures.

利用单晶 X 射线衍射测定了一种六水合四氟硼酸铜(II)的未知晶体结构。单胞参数是在不同温度(90、150 和 270 K)下测定的。其结构与六水合高氯酸铜(II)相同。图解 摘要 K.P.I.系数(78.0)和 FUV 指数(256.21 Å3)表明在所讨论的结构中离子的堆积非常有效,而 β 角非常接近 90°,因此该晶体在某些较低的温度下会发生单斜(to )正交相变。
{"title":"Copper(II) Tetrafluoroborate Hexahydrate: Preparation, Structure and Raman Spectrum","authors":"Andrii Vakulka,&nbsp;Evgeny Goreshnik","doi":"10.1007/s10870-024-01008-3","DOIUrl":"10.1007/s10870-024-01008-3","url":null,"abstract":"<div><p>Previously unknown crystal structure of a copper(II) tetrafluoroborate hexahydrate salt was determined using single crystal X-ray diffraction. The unit cell parameters were determined at different temperatures (90, 150 and 270 K). The structure is isotypical with copper(II) perchlorate hexahydrate. The Raman spectrum was also recorded and discussed.</p><h3>Graphical Abstract</h3><p>The K.P.I. coefficient (78.0) and the FUV index (256.21 Å<sup>3</sup>) indicating very effective packing of the ions in the discussed structure, whereas the β angle is very close to the 90° and, in this way, the crystal could undergo a monoclinic <span>(to )</span> orthorhombic phase transition at some lower temperatures.</p>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":615,"journal":{"name":"Journal of Chemical Crystallography","volume":"54 2","pages":"157 - 162"},"PeriodicalIF":0.4,"publicationDate":"2024-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140150989","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Type II Halogen-Halogen Contacts in the Single-Crystal X-ray Diffraction Structure of a 1:1 Halogen-Bonded Cocrystal of 2,3,5,6-Tetramethylpyrazine and 1,3,4,5-Tetrabromo-2,6-difluorobenzene 2,3,5,6-四甲基吡嗪和 1,3,4,5-四溴-2,6-二氟苯的 1:1 卤键共晶体单晶 X 射线衍射结构中的 II 型卤素-卤素触点
IF 0.4 4区 化学 Q4 CRYSTALLOGRAPHY Pub Date : 2024-03-07 DOI: 10.1007/s10870-024-01007-4
Shubha S. Gunaga, David L. Bryce

A cocrystal of 2,3,5,6-tetramethylpyrazine and 1,3,4,5-tetrabromo-2,6-difluorobenzene has been prepared and its crystal structure has been determined via single-crystal X-ray diffraction. Infinite chains of roughly coplanar donor and acceptor molecules are held together by two crystallographically distinct and highly linear Br···N halogen bonds. Four further crystallographically distinct Br···Br halogen bonds are also observed. Each of the two Br atoms in the 3 and 5 positions on the benzene ring acts simultaneously as a halogen bond donor and acceptor to two additional bromines on two neighbouring 1,3,4,5-tetrabromo-2,6-difluorobenzene molecules. These halogen bonds are also classified as type II halogen-halogen contacts. As a result of these contacts, a staggered herringbone arrangement of the infinite chains results. These structural features are shown to be consistent with computed molecular electrostatic potential and Hirshfeld surfaces. The insights gained through this analysis imply that additional systematic variations in the substitution motifs of aromatic halogen bond donors may lead to new structures and properties. As part of this work, a single-crystal X-ray structure of 1,3,4,5-tetrabromo-2,6-difluorobenzene of moderate quality is also reported.

Graphical Abstract

The single-crystal X-ray diffraction structure of a 1:1 cocrystal of 2,3,5,6-tetramethylpyrazine and 1,3,4,5-tetrabromo-2,6-difluorobenzene is reported. Bromine-nitrogen halogen bonds link the two types of molecules together, forming infinite chains. Bromine-bromine halogen bonds (type II contacts) between aromatic molecules stabilize a herringbone-like packing arrangement.

我们制备了 2,3,5,6- 四甲基吡嗪和 1,3,4,5- 四溴-2,6-二氟苯的共晶体,并通过单晶 X 射线衍射测定了其晶体结构。由大致共面的供体分子和受体分子组成的无限链通过两个晶体学上不同的、高度线性的 Br-N 卤素键连接在一起。此外,还观察到四个晶体学上不同的 Br-Br 卤素键。苯环 3 和 5 位置上的两个 Br 原子同时作为卤素键的供体和受体,与相邻的两个 1,3,4,5-四溴-2,6-二氟苯分子上的另外两个溴结合。这些卤素键也被归类为 II 型卤素-卤素接触。由于这些接触,无限链形成了交错的人字形排列。这些结构特征与计算的分子静电势和 Hirshfeld 表面一致。通过这一分析所获得的启示意味着,芳香卤素键供体的替代图案的其他系统性变化可能会导致新的结构和性质。作为这项工作的一部分,还报告了中等质量的 1,3,4,5-四溴-2,6-二氟苯的单晶 X 射线结构。图文摘要报告了 2,3,5,6-四甲基吡嗪和 1,3,4,5-四溴-2,6-二氟苯 1:1 共晶体的单晶 X 射线衍射结构。溴-氮卤素键将这两种分子连接在一起,形成无限链。芳香分子之间的溴-溴卤素键(第二类接触)稳定了人字形的堆积排列。
{"title":"Type II Halogen-Halogen Contacts in the Single-Crystal X-ray Diffraction Structure of a 1:1 Halogen-Bonded Cocrystal of 2,3,5,6-Tetramethylpyrazine and 1,3,4,5-Tetrabromo-2,6-difluorobenzene","authors":"Shubha S. Gunaga,&nbsp;David L. Bryce","doi":"10.1007/s10870-024-01007-4","DOIUrl":"10.1007/s10870-024-01007-4","url":null,"abstract":"<div><p>A cocrystal of 2,3,5,6-tetramethylpyrazine and 1,3,4,5-tetrabromo-2,6-difluorobenzene has been prepared and its crystal structure has been determined via single-crystal X-ray diffraction. Infinite chains of roughly coplanar donor and acceptor molecules are held together by two crystallographically distinct and highly linear Br···N halogen bonds. Four further crystallographically distinct Br···Br halogen bonds are also observed. Each of the two Br atoms in the 3 and 5 positions on the benzene ring acts simultaneously as a halogen bond donor and acceptor to two additional bromines on two neighbouring 1,3,4,5-tetrabromo-2,6-difluorobenzene molecules. These halogen bonds are also classified as type II halogen-halogen contacts. As a result of these contacts, a staggered herringbone arrangement of the infinite chains results. These structural features are shown to be consistent with computed molecular electrostatic potential and Hirshfeld surfaces. The insights gained through this analysis imply that additional systematic variations in the substitution motifs of aromatic halogen bond donors may lead to new structures and properties. As part of this work, a single-crystal X-ray structure of 1,3,4,5-tetrabromo-2,6-difluorobenzene of moderate quality is also reported.</p><h3>Graphical Abstract</h3><p>The single-crystal X-ray diffraction structure of a 1:1 cocrystal of 2,3,5,6-tetramethylpyrazine and 1,3,4,5-tetrabromo-2,6-difluorobenzene is reported. Bromine-nitrogen halogen bonds link the two types of molecules together, forming infinite chains. Bromine-bromine halogen bonds (type II contacts) between aromatic molecules stabilize a herringbone-like packing arrangement.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":615,"journal":{"name":"Journal of Chemical Crystallography","volume":"54 2","pages":"150 - 156"},"PeriodicalIF":0.4,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140073520","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
L-alanine Derived Schiff Base Ligated Vanadium(IV) Complex with Phenanthroline as Co-ligand: Synthesis, Crystal Structure and Hirshfeld Surface Analysis 以菲罗啉为共配体的 L-丙氨酸衍生希夫碱配位钒(IV)配合物:合成、晶体结构和 Hirshfeld 表面分析
IF 0.4 4区 化学 Q4 CRYSTALLOGRAPHY Pub Date : 2024-03-05 DOI: 10.1007/s10870-024-01006-5
Tanaya Medhi, Manashi Sahariah, Anshuman Gogoi

A vanadium(IV) Schiff base complex derived from salicylaldehyde and L-alanine with phenanthroline as co-ligand viz. [VIVO(salala)(phen)]1.66H2O (where salala = Schiff base derived from salicylaldehyde and L-alanine, phen = 1,10-phenanthroline) have been synthesized and its structure determined by single crystal X-ray diffraction. The crystal lattice parameters of the complex was determined by single crystal X-ray diffraction with lattice parameters, a = 18.4361 [5] Å, b = 22.4926 [6] Å, c = 12.4035 [6] Å, β = 126.904 [1]°, C2 space group, Z = 2. In the crystal, the V(IV) ions are in distorted octahedral geometry, coordinated to two oxygen atoms and one nitrogen atom of Schiff base ligand and two phenanthroline nitrogen atoms. The π···π stacking interactions as well as C–H···O hydrogen bonds were found to play an important role in the self-assembly of the complex molecules. The non-covalent interactions of the complex were further evaluated by Hirshfeld Surface Analysis. Spectroscopic characterization of the complex by Infrared and UV–visible spectroscopic techniques is also reported.

Graphical Abstract

Crystal structure of a vanadium(IV) Schiff base complex derived from salicylaldehyde and L-alanine with phenanthroline as co-ligand have been determined by single crystal X-ray diffraction and non-covalent interactions between the complex molecules studied by Hirshfeld surface analysis.

合成了一种由水杨醛和 L-丙氨酸衍生出的钒(IV)希夫碱络合物,以菲罗啉作为配位体,即 [VIVO(salala)(phen)]1.66H2O(其中 salala = 由水杨醛和 L-丙氨酸衍生出的希夫碱,phen = 1,10-菲罗啉),并通过单晶 X 射线衍射测定了其结构。通过单晶 X 射线衍射测定了该复合物的晶格参数:a = 18.4361 [5] Å,b = 22.4926 [6] Å,c = 12.4035 [6] Å,β = 126.904 [1] °,C2 空间群,Z = 2。在晶体中,V(IV) 离子呈扭曲的八面体几何形状,与希夫碱配体的两个氧原子和一个氮原子以及两个菲罗啉氮原子配位。研究发现,π---π堆积相互作用以及 C-H-O 氢键在复合物分子的自组装过程中发挥了重要作用。Hirshfeld 表面分析法进一步评估了复合物的非共价相互作用。通过单晶 X 射线衍射确定了由水杨醛和 L-丙氨酸以及菲罗啉作为配位体衍生出的席夫碱钒(IV)配合物的晶体结构,并通过 Hirshfeld 表面分析研究了配合物分子之间的非共价相互作用。
{"title":"L-alanine Derived Schiff Base Ligated Vanadium(IV) Complex with Phenanthroline as Co-ligand: Synthesis, Crystal Structure and Hirshfeld Surface Analysis","authors":"Tanaya Medhi,&nbsp;Manashi Sahariah,&nbsp;Anshuman Gogoi","doi":"10.1007/s10870-024-01006-5","DOIUrl":"10.1007/s10870-024-01006-5","url":null,"abstract":"<div><p> A vanadium(IV) Schiff base complex derived from salicylaldehyde and L-alanine with phenanthroline as co-ligand viz. [V<sup>IV</sup>O(salala)(phen)]1.66H<sub>2</sub>O (where salala = Schiff base derived from salicylaldehyde and L-alanine, phen = 1,10-phenanthroline) have been synthesized and its structure determined by single crystal X-ray diffraction. The crystal lattice parameters of the complex was determined by single crystal X-ray diffraction with lattice parameters, a = 18.4361 [5] Å, b = 22.4926 [6] Å, c = 12.4035 [6] Å, β = 126.904 [1]°, <i>C2</i> space group, Z = 2. In the crystal, the V(IV) ions are in distorted octahedral geometry, coordinated to two oxygen atoms and one nitrogen atom of Schiff base ligand and two phenanthroline nitrogen atoms. The π···π stacking interactions as well as C–H···O hydrogen bonds were found to play an important role in the self-assembly of the complex molecules. The non-covalent interactions of the complex were further evaluated by Hirshfeld Surface Analysis. Spectroscopic characterization of the complex by Infrared and UV–visible spectroscopic techniques is also reported.</p><h3>Graphical Abstract</h3><p>Crystal structure of a vanadium(IV) Schiff base complex derived from salicylaldehyde and L-alanine with phenanthroline as co-ligand have been determined by single crystal X-ray diffraction and non-covalent interactions between the complex molecules studied by Hirshfeld surface analysis.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":615,"journal":{"name":"Journal of Chemical Crystallography","volume":"54 2","pages":"140 - 149"},"PeriodicalIF":0.4,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140033167","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synthesis, Crystal Structure and Spectral Characterization of a New Caesium–Sodium-Isopolyvanadate: Photodegradation of Methylene Blue Dye 新型异多钒酸铯钠的合成、晶体结构和光谱特性:亚甲基蓝染料的光降解
IF 0.4 4区 化学 Q4 CRYSTALLOGRAPHY Pub Date : 2024-03-04 DOI: 10.1007/s10870-024-01005-6
Tahmineh Kohanfekr, Mohammad Hakimi, Hasan Ali Hosseini, Michal Dusek, Monika Kucerakova

A new aqua-tricaesium-sodium polymetavanadate compound, [Cs3Na(VO3)4(H2O)] (1), was synthesized by reacting caesium chloride and sodium metavanadate at ambient pH. The structure was characterized and identified using single-crystal X-ray diffraction, Fourier-transform infrared spectroscopy, Raman spectroscopy, and energy dispersive X-ray analysis (EDS). Compound (1) crystallizes in an orthorhombic system with a Pnma space group, and cell parameters a = 11.6554(4), b = 8.3408(2), c = 16.1121(5). Vanadium has tetrahedral coordination connected to the next vanadium atom through an oxygen bridge. The infinite zigzag metavanadate chains formed by corner-sharing VO4 tetrahedral constitute a1D building block. The chains were laterally connected through Cs, Na, and H2O. This connectivity generates continuous 2D layers within the ab plane. The photocatalytic performance of (1) was evaluated by measuring the degradation of methylene blue under visible light. The results confirmed the efficiency of the photocatalytic activity because of the narrowed bandgap energy of 2.18 eV, and 85% degradation rate, making it suitable for absorbing visible light.

Graphical Abstract

The paper reports the synthesise and characterization of a new isopolyvanadate compound, [Cs3Na(VO3)4H2O], which contains vanadim in the five oxidation state with tetrahedral coordination.  It forms metavanadate chains interconnected by caesium and sodium cations. The photocatalytic activity was tested by degrading methylen blue under visible light irradiation. The results showed decent activity attributed to the narrowed bandgap energy of 2.18 eV.

氯化铯和偏钒酸钠在环境 pH 值下反应合成了一种新的水生三铯-多偏钒酸钠化合物 [Cs3Na(VO3)4(H2O)] (1)。利用单晶 X 射线衍射、傅立叶变换红外光谱、拉曼光谱和能量色散 X 射线分析(EDS)对其结构进行了表征和鉴定。化合物(1)呈正交菱形结晶,空间群为 Pnma,晶胞参数 a = 11.6554(4),b = 8.3408(2),c = 16.1121(5)。钒具有四面体配位,通过氧桥与下一个钒原子相连。由角共享的 VO4 四面体形成的无限人字形偏钒酸链构成了一维构件。这些链通过 Cs、Na 和 H2O 横向连接。这种连接在 ab 平面内产生了连续的二维层。通过测量亚甲基蓝在可见光下的降解情况,对 (1) 的光催化性能进行了评估。结果表明,(1)的带隙能为 2.18 eV,降解率为 85%,适合吸收可见光,因而具有高效的光催化活性。它形成了由铯和钠离子相互连接的偏钒酸盐链。通过在可见光照射下降解亚甲基蓝,对光催化活性进行了测试。结果表明,由于其带隙能缩小到 2.18 eV,因此具有良好的活性。
{"title":"Synthesis, Crystal Structure and Spectral Characterization of a New Caesium–Sodium-Isopolyvanadate: Photodegradation of Methylene Blue Dye","authors":"Tahmineh Kohanfekr,&nbsp;Mohammad Hakimi,&nbsp;Hasan Ali Hosseini,&nbsp;Michal Dusek,&nbsp;Monika Kucerakova","doi":"10.1007/s10870-024-01005-6","DOIUrl":"10.1007/s10870-024-01005-6","url":null,"abstract":"<div><p>A new aqua-tricaesium-sodium polymetavanadate compound, [Cs<sub>3</sub>Na(VO<sub>3</sub>)<sub>4</sub>(H<sub>2</sub>O)] (<b>1</b>), was synthesized by reacting caesium chloride and sodium metavanadate at ambient pH. The structure was characterized and identified using single-crystal X-ray diffraction, Fourier-transform infrared spectroscopy, Raman spectroscopy, and energy dispersive X-ray analysis (EDS). Compound (<b>1</b>) crystallizes in an orthorhombic system with a Pnma space group, and cell parameters a = 11.6554(4), b = 8.3408(2), c = 16.1121(5). Vanadium has tetrahedral coordination connected to the next vanadium atom through an oxygen bridge. The infinite zigzag metavanadate chains formed by corner-sharing VO<sub>4</sub> tetrahedral constitute a1D building block. The chains were laterally connected through Cs, Na, and H<sub>2</sub>O. This connectivity generates continuous 2D layers within the ab plane. The photocatalytic performance of (<b>1</b>) was evaluated by measuring the degradation of methylene blue under visible light. The results confirmed the efficiency of the photocatalytic activity because of the narrowed bandgap energy of 2.18 eV, and 85% degradation rate, making it suitable for absorbing visible light.</p><h3>Graphical Abstract</h3><p>The paper reports the synthesise and characterization of a new isopolyvanadate compound, [Cs<sub>3</sub>Na(VO<sub>3</sub>)<sub>4</sub>H<sub>2</sub>O], which contains vanadim in the five oxidation state with tetrahedral coordination.  It forms metavanadate chains interconnected by caesium and sodium cations. The photocatalytic activity was tested by degrading methylen blue under visible light irradiation. The results showed decent activity attributed to the narrowed bandgap energy of 2.18 eV.</p>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":615,"journal":{"name":"Journal of Chemical Crystallography","volume":"54 2","pages":"132 - 139"},"PeriodicalIF":0.4,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140033157","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Pseudo Symmetric Crystal Structure of 1,4-Diazabicyclo[2·2·2]octane-1,4-diium bis(5-hydroxy-2,4-dinitrophenolate) 1,4-二氮杂双环[2-2-2]辛烷-1,4-二鎓双(5-羟基-2,4-二硝基苯酚)的伪对称晶体结构
IF 0.4 4区 化学 Q4 CRYSTALLOGRAPHY Pub Date : 2024-02-08 DOI: 10.1007/s10870-023-01004-z
Rüdiger W. Seidel, Richard Goddard, Tsonko M. Kolev

Reaction of 4,6-dinitroresorcinol (1) and the nitrogen base 1,4-diazabicyclo[2·2·2]octane (2) affords the 1:2 salt and proton-transfer compound 1,4-diazabicyclo[2·2·2]octane-1,4-diium bis(5-hydroxy-2,4-dinitrophenolate) (3). Compound 3 crystallizes in the triclinic crystal system (space group P-1) with a = 8.3242(5) Å, b = 11.9915(7) Å, c = 12.4595(7) Å, α = 116.282(2)°, β = 100.576(3)°, γ = 101.051(2)°, 1042.30(11) Å3 and Z = 2. The dication 2-({text{H}}_{2}^{2+}) forms charge assisted donating bifurcated N+−H⋅⋅⋅O hydrogen bonds to the phenolate moieties of two monoanions of 1. The latter exhibit an intramolecular O−H⋅⋅⋅O hydrogen bond between the hydroxy group and the nitro group in ortho position. The crystal structure of 3 features pseudo B-centering of the lattice, which relates the two crystallographically distinct monoanions of 1 by a pseudo translation. The possible B-centring is broken by the ethylene groups of 2-H22+, which are related in neighbouring molecules by centres of symmetry.

Graphical Abstract

The 1:2 proton-transfer compound 1,4-diazabicyclo[2.2.2]octane-1,4-diium bis(5-hydroxy-2,4-dinitrophenolate) features pseudo B-centering of the lattice.

摘要 4,6-二硝基间苯二酚(1)和氮基 1,4-二氮杂双环[2-2-2]辛烷(2)反应生成 1:2 盐和质子转移化合物 1,4-二氮杂双环[2-2-2]辛烷-1,4-二鎓双(5-羟基-2,4-二硝基苯酚)(3)。化合物 3 结晶于三linic 晶系(空间群 P-1),a = 8.3242(5)埃,b = 11.9915(7)埃,c = 12.4595(7)埃,α = 116.282(2)°,β = 100.576(3)°,γ = 101.051(2)°,1042.30(11)埃3,Z = 2。2- ({text{H}}_{2}^{2+})的二阳离子与 1 的两个单阳离子的苯酚基形成电荷辅助捐献的分叉 N+-H⋅⋅O-氢键。3 的晶体结构具有晶格假 B 居中的特点,它通过假平移将晶体学上不同的两个单阳离子 1 联系在一起。2-H22+ 的乙烯基团打破了可能存在的 B 中心,在相邻分子中,乙烯基团是通过对称中心联系在一起的。 图表摘要 1:2 质子转移化合物 1,4-二氮杂双环[2.2.2]辛烷-1,4-二鎓双(5-羟基-2,4-二硝基苯酚)的晶格具有假 B 中心。
{"title":"The Pseudo Symmetric Crystal Structure of 1,4-Diazabicyclo[2·2·2]octane-1,4-diium bis(5-hydroxy-2,4-dinitrophenolate)","authors":"Rüdiger W. Seidel,&nbsp;Richard Goddard,&nbsp;Tsonko M. Kolev","doi":"10.1007/s10870-023-01004-z","DOIUrl":"10.1007/s10870-023-01004-z","url":null,"abstract":"<div><p>Reaction of 4,6-dinitroresorcinol (<b>1</b>) and the nitrogen base 1,4-diazabicyclo[2·2·2]octane (<b>2</b>) affords the 1:2 salt and proton-transfer compound 1,4-diazabicyclo[2·2·2]octane-1,4-diium bis(5-hydroxy-2,4-dinitrophenolate) (<b>3</b>). Compound <b>3</b> crystallizes in the triclinic crystal system (space group <i>P</i>-1) with <i>a</i> = 8.3242(5) Å, <i>b</i> = 11.9915(7) Å, <i>c</i> = 12.4595(7) Å, <i>α</i> = 116.282(2)°, <i>β</i> = 100.576(3)°, <i>γ</i> = 101.051(2)°, 1042.30(11) Å<sup>3</sup> and <i>Z</i> = 2. The dication <b>2</b>-<span>({text{H}}_{2}^{2+})</span> forms charge assisted donating bifurcated N<sup>+</sup>−H⋅⋅⋅O<sup>−</sup> hydrogen bonds to the phenolate moieties of two monoanions of <b>1</b>. The latter exhibit an intramolecular O−H⋅⋅⋅O hydrogen bond between the hydroxy group and the nitro group in <i>ortho</i> position. The crystal structure of <b>3</b> features <i>pseudo B</i>-centering of the lattice, which relates the two crystallographically distinct monoanions of <b>1</b> by a <i>pseudo</i> translation. The possible <i>B</i>-centring is broken by the ethylene groups of <b>2</b>-H<sub>2</sub><sup>2+</sup>, which are related in neighbouring molecules by centres of symmetry.</p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div><div><p>The 1:2 proton-transfer compound 1,4-diazabicyclo[2.2.2]octane-1,4-diium bis(5-hydroxy-2,4-dinitrophenolate) features pseudo <i>B</i>-centering of the lattice.</p></div></div></figure></div></div>","PeriodicalId":615,"journal":{"name":"Journal of Chemical Crystallography","volume":"54 2","pages":"125 - 131"},"PeriodicalIF":0.4,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10870-023-01004-z.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139764650","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Crystal Structure of Tetrachloroferrate(III) Complex with Methylene Blue 四氯铁(III)与亚甲蓝络合物的晶体结构
IF 0.4 4区 化学 Q4 CRYSTALLOGRAPHY Pub Date : 2024-01-29 DOI: 10.1007/s10870-023-01003-0
Vahobjon Kh. Sabirov

The crystal structure of tetrachloroferrate(III) complex with methylene blue, [Mb]+[FeCl4] (where [Mb]+ methylthioninium or 3,7-bis(dimethylamino)-phenothiazine-5-ium cation), has been prepared by mechanochemical way and studied by the single crystal X-ray crystallography. The crystal structure of title compound is built from by [FeCl4] tetrahedral ion and planar [Mb]+ counter ions. The [Mb]+ cation is linked in the 3D network by the C–H···Cl hydrogen bonds and is stacked in an antiparallel fashion with the sulfur atom disposed alternatively on an opposite sides of the stacking. The interplanar distance between two neighboring aromatic cycles is 3.431 Å, and a centroids–centroids distance between thiazine rings is 3.975 Å. Dihedral angle between aromatic rings is 1.6°. Intermolecular short contacts were analyzed by 3D Hirshfeld surfaces method and 2D fingerprint plots. Intermolecular interaction energy between two neighboring Mb+ cation pair was calculated by using of CE-B3LYP/6-31G(d,p) theoretical level.

Graphical Abstract

The π···π stacking interactions were found plays an important role in the crystal structure formation of the FeCl3 complex with methylene blue, and calculation by the CrystalExlorer17.5 program indicates that π···π interaction energy between two neighboring methylene blue cations is −33.5 kJ/mol.

通过机械化学方法制备了亚甲基蓝的四氯铁(III)络合物 [Mb]+[FeCl4]-(其中 [Mb]+ 甲基噻吩鎓或 3,7 二甲基氨基吩噻嗪-5-鎓阳离子)的晶体结构,并利用单晶 X 射线晶体学对其进行了研究。标题化合物的晶体结构由[FeCl4]-四面体离子和平面[Mb]+反离子构建而成。Mb]+ 阳离子通过 C-H-Cl 氢键连接在三维网络中,并以反平行方式堆叠,硫原子交替排列在堆叠的两侧。两个相邻芳香环之间的平面间距为 3.431 Å,噻嗪环之间的中心距为 3.975 Å。利用三维 Hirshfeld 表面法和二维指纹图谱分析了分子间的短接触。利用CE-B3LYP/6-31G(d,p)理论水平计算了两个相邻Mb+阳离子对之间的分子间相互作用能。图解 摘要研究发现π---π堆积相互作用在亚甲基蓝与FeCl3配合物晶体结构形成中起着重要作用,利用CrystalExlorer17.5程序计算表明,两个相邻亚甲基蓝阳离子之间的π---π相互作用能为-33.5 kJ/mol。
{"title":"Crystal Structure of Tetrachloroferrate(III) Complex with Methylene Blue","authors":"Vahobjon Kh. Sabirov","doi":"10.1007/s10870-023-01003-0","DOIUrl":"10.1007/s10870-023-01003-0","url":null,"abstract":"<div><p>The crystal structure of tetrachloroferrate(III) complex with methylene blue, [Mb]<sup>+</sup>[FeCl<sub>4</sub>]<sup>−</sup> (where [Mb]<sup>+</sup> methylthioninium or 3,7-bis(dimethylamino)-phenothiazine-5-ium cation), has been prepared by mechanochemical way and studied by the single crystal X-ray crystallography. The crystal structure of title compound is built from by [FeCl<sub>4</sub>]<sup>−</sup> tetrahedral ion and planar [Mb]<sup>+</sup> counter ions. The [Mb]<sup>+</sup> cation is linked in the 3D network by the C–H···Cl hydrogen bonds and is stacked in an antiparallel fashion with the sulfur atom disposed alternatively on an opposite sides of the stacking. The interplanar distance between two neighboring aromatic cycles is 3.431 Å, and a centroids–centroids distance between thiazine rings is 3.975 Å. Dihedral angle between aromatic rings is 1.6°. Intermolecular short contacts were analyzed by 3D Hirshfeld surfaces method and 2D fingerprint plots. Intermolecular interaction energy between two neighboring Mb<sup>+</sup> cation pair was calculated by using of CE-B3LYP/6-31G(d,p) theoretical level.</p><h3>Graphical Abstract</h3><p>The π···π stacking interactions were found plays an important role in the crystal structure formation of the FeCl<sub>3</sub> complex with methylene blue, and calculation by the CrystalExlorer17.5 program indicates that π···π interaction energy between two neighboring methylene blue cations is −33.5 kJ/mol.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":615,"journal":{"name":"Journal of Chemical Crystallography","volume":"54 1","pages":"114 - 123"},"PeriodicalIF":0.4,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139587549","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Metal Complexes of a Thiosemicarbazone with Heterocyclic Bases as Coligands: Spectral Characterization, Crystal Structures, DFT and In silico Docking Studies 以杂环碱为配位体的硫代氨基羰酮金属配合物:光谱特性、晶体结构、DFT 和 In silico Docking 研究
IF 0.4 4区 化学 Q4 CRYSTALLOGRAPHY Pub Date : 2023-12-29 DOI: 10.1007/s10870-023-01001-2
Nimya Ann Mathews, M. Sithambaresan, Savaş Kaya, Samir Chtita, M. R. Prathapachandra Kurup

Copper(II) and zinc(II) complexes, [Cu(esct)(4-pico)] (1), [Zn(esct)(5,5′-dmbipy)]·H2O (2), [Cu(esct)(5,5′-dmbipy)] (3), (where H2esct = 3-ethoxysalicylaldehye-N4-cyclohexylthiosemicarbazone) were synthesized by reacting copper acetate/zinc acetate with the thiosemicarbazone derivative (H2esct) along with heterocyclic bases. The thiosemicarbazone forms doubly deprotonated anions in all the complexes to coordinate via thiolate S, azomethine N and phenolate O atoms. The complexes were characterized by various spectroscopic techniques like infrared, UV–vis, 1H NMR and EPR spectra. The single crystal XRD studies confirmed the structures. All the three complexes got crystallized in triclinic space group P (overline{1 }.) Complexes are found to have four, five and six coordination around the metal center. The importance of van der Waals interactions in them is explained by Hirshfeld surface analysis. We have used Density Functional Theory (DFT) methods and optimized ground states of the studied complexes using the Gaussian 09 package. Electrostatic potential plots of complexes were investigated. Further, docking studies were carried out with various Epidermal Growth Factor Receptor (EGFR) enzymes.

Graphical Abstract

Three mixed ligand Cu(II) and Zn(II) complexes prepared from a thiosemicarbazone showed interesting geometries and structures

铜(II)和锌(II)配合物[Cu(esct)(4-pico)](1)、[Zn(esct)(5,5′-dmbipy)]-H2O(2)、[Cu(esct)(5,5′-dmbipy)](3)、(其中 H2esct = 3-乙氧基水杨醛-N4-环己基硫代氨基甲酸铜)是通过醋酸铜/醋酸锌与硫代氨基甲酸铜衍生物(H2esct)和杂环碱反应合成的。硫代氨基脲在所有配合物中都形成了双去质子化阴离子,通过硫代硫酸根 S 原子、偶氮甲基 N 原子和苯酚 O 原子进行配位。这些复合物通过红外光谱、紫外-可见光谱、1H NMR 光谱和 EPR 光谱等各种光谱技术进行表征。单晶 XRD 研究证实了它们的结构。所有这三种配合物都在三菱空间群 P (overline{1 }.)中结晶,发现配合物在金属中心周围有四个、五个和六个配位。Hirshfeld 表面分析解释了其中范德华相互作用的重要性。我们使用了密度泛函理论(DFT)方法,并使用高斯 09 软件包优化了所研究复合物的基态。我们还研究了复合物的静电位图。此外,我们还与多种表皮生长因子受体(EGFR)酶进行了对接研究。 图解 摘要由硫代氨基甲酸酮制备的三种混合配体铜(II)和锌(II)配合物显示出有趣的几何形状和结构。
{"title":"Metal Complexes of a Thiosemicarbazone with Heterocyclic Bases as Coligands: Spectral Characterization, Crystal Structures, DFT and In silico Docking Studies","authors":"Nimya Ann Mathews,&nbsp;M. Sithambaresan,&nbsp;Savaş Kaya,&nbsp;Samir Chtita,&nbsp;M. R. Prathapachandra Kurup","doi":"10.1007/s10870-023-01001-2","DOIUrl":"10.1007/s10870-023-01001-2","url":null,"abstract":"<div><p>Copper(II) and zinc(II) complexes, [Cu(esct)(4-pico)] (<b>1</b>), [Zn(esct)(5,5′-dmbipy)]·H<sub>2</sub>O (<b>2</b>), [Cu(esct)(5,5′-dmbipy)] (<b>3</b>), (where H<sub>2</sub>esct = 3-ethoxysalicylaldehye-N<sup>4</sup>-cyclohexylthiosemicarbazone) were synthesized by reacting copper acetate/zinc acetate with the thiosemicarbazone derivative (H<sub>2</sub>esct) along with heterocyclic bases. The thiosemicarbazone forms doubly deprotonated anions in all the complexes to coordinate via thiolate S, azomethine N and phenolate O atoms. The complexes were characterized by various spectroscopic techniques like infrared, UV–vis, <sup>1</sup>H NMR and EPR spectra. The single crystal XRD studies confirmed the structures. All the three complexes got crystallized in triclinic space group <i>P</i> <span>(overline{1 }.)</span> Complexes are found to have four, five and six coordination around the metal center. The importance of van der Waals interactions in them is explained by Hirshfeld surface analysis. We have used Density Functional Theory (DFT) methods and optimized ground states of the studied complexes using the Gaussian 09 package. Electrostatic potential plots of complexes were investigated. Further, docking studies were carried out with various Epidermal Growth Factor Receptor (EGFR) enzymes.</p><h3>Graphical Abstract</h3><p>Three mixed ligand Cu(II) and Zn(II) complexes prepared from a thiosemicarbazone showed interesting geometries and structures</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":615,"journal":{"name":"Journal of Chemical Crystallography","volume":"54 1","pages":"99 - 113"},"PeriodicalIF":0.4,"publicationDate":"2023-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139070205","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Crystal Structure of a Catena-Triglycinium-µ-Chlorido-Tetrachloridocuprate(II) Glycine Co-crystal 卡替纳-三riglycinium-µ-氯ido-四氯琥珀酸(II)甘氨酸共晶体的晶体结构
IF 0.4 4区 化学 Q4 CRYSTALLOGRAPHY Pub Date : 2023-12-22 DOI: 10.1007/s10870-023-01002-1
M. O. Mazurin, D. S. Tsvetkov, P. A. Slepukhin

A new complex compound, catena-triglycinium-µ-chlorido-tetrachloridocuprate(II) glycine co-crystal (or glycine-triglycinium pentachlorocuprate), {(C2H6NO2)3CuCl5·(C2H5NO2)}n, was synthesized and studied by single crystal X-ray diffraction (SC XRD) and mid-range infrared spectroscopy. The compound crystallizes in a non-centrosymmetric triclinic P1 space group with lattice parameters a = 5.1277(2) Å, b = 9.1412(6) Å, c = 12.2023(5) Å, α = 101.407(4)°, β = 97.460(3)°, γ = 105.832(4)°, Z = 1. The unit cell contains four glycine ions—three glycinium cations and single zwitter-ion—linked through hydrogen bonds network. The anionic part of the compound is presented by infinite chains [CuCl6]n of distorted (elongated) octahedra, connected by vertices and alternating direction of elongated axis. Positions of hydrogen atoms were refined using geometry optimization via density functional theory (DFT) approach. Thermogravimetric analysis (TGA) showed the title compound to be stable in air atmosphere up to ∼ 388‒393 K and decomposes upon further heating.

Graphical Abstract

Unit cell content of the glycine-triglycinium pentachlorocuprate, determined by the SC XRD analysis

通过单晶 X 射线衍射 (SC XRD) 和中程红外光谱法,合成并研究了一种新的复合物--卡替纳-三甘宁-µ-氯代四氯琥珀酸(II)甘氨酸共晶体(或甘氨酸-三甘宁五氯琥珀酸){(C2H6NO2)3CuCl5-(C2H5NO2)}n。该化合物在非中心对称的三菱 P1 空间群中结晶,晶格参数 a = 5.1277(2)埃,b = 9.1412(6)埃,c = 12.2023(5)埃,α = 101.407(4)°,β = 97.460(3)°,γ = 105.832(4)°,Z = 1。单胞中含有四个甘氨酸离子--三个甘氨酸阳离子和一个通过氢键网络连接的齐聚物离子。化合物的阴离子部分由变形(拉长)八面体的无限链 [CuCl6]n 构成,这些八面体由顶点和拉长轴的交替方向连接。氢原子的位置是通过密度泛函理论(DFT)方法进行几何优化后确定的。热重分析(TGA)显示,标题化合物在空气气氛中稳定至 388-393 K,并在进一步加热时分解。图解摘要通过 SC XRD 分析确定的甘氨酸-三氯化铵五氯杯酸盐的单细胞含量
{"title":"The Crystal Structure of a Catena-Triglycinium-µ-Chlorido-Tetrachloridocuprate(II) Glycine Co-crystal","authors":"M. O. Mazurin,&nbsp;D. S. Tsvetkov,&nbsp;P. A. Slepukhin","doi":"10.1007/s10870-023-01002-1","DOIUrl":"10.1007/s10870-023-01002-1","url":null,"abstract":"<div><p>A new complex compound, catena-triglycinium-µ-chlorido-tetrachloridocuprate(II) glycine co-crystal (or glycine-triglycinium pentachlorocuprate), {(C<sub>2</sub>H<sub>6</sub>NO<sub>2</sub>)<sub>3</sub>CuCl<sub>5</sub>·(C<sub>2</sub>H<sub>5</sub>NO<sub>2</sub>)}<sub>n</sub>, was synthesized and studied by single crystal X-ray diffraction (SC XRD) and mid-range infrared spectroscopy. The compound crystallizes in a non-centrosymmetric triclinic <i>P</i>1 space group with lattice parameters <i>a</i> = 5.1277(2) Å, <i>b</i> = 9.1412(6) Å, <i>c</i> = 12.2023(5) Å, <i>α</i> = 101.407(4)°, <i>β</i> = 97.460(3)°, <i>γ</i> = 105.832(4)°, Z = 1. The unit cell contains four glycine ions—three glycinium cations and single zwitter-ion—linked through hydrogen bonds network. The anionic part of the compound is presented by infinite chains [CuCl<sub>6</sub>]<sub>n</sub> of distorted (elongated) octahedra, connected by vertices and alternating direction of elongated axis. Positions of hydrogen atoms were refined using geometry optimization via density functional theory (DFT) approach. Thermogravimetric analysis (TGA) showed the title compound to be stable in air atmosphere up to ∼ 388‒393 K and decomposes upon further heating.</p><h3>Graphical Abstract</h3><p>Unit cell content of the glycine-triglycinium pentachlorocuprate, determined by the SC XRD analysis</p>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":615,"journal":{"name":"Journal of Chemical Crystallography","volume":"54 1","pages":"84 - 98"},"PeriodicalIF":0.4,"publicationDate":"2023-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138945522","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Chemical Crystallography
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1