Globally, the major threat is the rise of antimicrobial-resistant diseases and the increasing incidence of cancer, both of which are leading causes of death due to a lack of effective therapies. Nanocomposites (NCs) have recently emerged as an alternative therapeutic agent for the development of novel medications. The current study demonstrates the fast production of Ag-HAp NCs with an aqueous bark extract of Acacia nilotica and evaluates their antiquorum sensing and anticancer activities. UV-vis spectroscopy, Fourier-transformed infrared spectroscopy, X-ray diffraction analysis, zeta sizer, field emission scanning electron microscopy, and high-resolution transmission electron microscopy were used to evaluate the physicochemical and morphological observations of Ag-HAp NCs. The biofabricated NCs demonstrated the ability to inhibit the violacein production in bioreporter strain Chromobacterium violaceum and mitigate the virulent factors in multidrug-resistant Proteus mirabilis. Sub-MIC concentrations of 2% Ag-HAp NCs (80 µg/mL) efficiently decreased the quorum sensing regulated virulence factors such as biofilm formation, exopolysaccharide synthesis, urease, hemolysin, and cell motility, that contribute to antibiotic resistance. Furthermore, an invitro cytotoxicity study of 2% Ag-HAp NCs revealed exceptional anticancer potential against the MCF-7 cell line using MTT assay. The microscopic studies (ROS and DAPI assay) demonstrated that the synthesized NCs elicit cellular cytotoxicity at a low dosage (IC50 − 23.2 µg/mL). All experiments were carried out in triplicate (n = 3) to establish the statistical significance. Thus, phyto-mediated synthesized 2% Ag-HAp NCs are environmentally acceptable and non-toxic nanomaterials suitable for biomedical applications.