首页 > 最新文献

Journal of Cluster Science最新文献

英文 中文
Novel Z-Scheme g-C3N4/TiO2/NiCo2O4 Heterojunctions for Efficient Photocatalytic Degradation of Rhodamine B under Visible Light Irradiation 新型 Z 型结构 g-C3N4/TiO2/NiCo2O4 异质结在可见光照射下高效光催化降解罗丹明 B
IF 2.7 4区 化学 Q2 CHEMISTRY, INORGANIC & NUCLEAR Pub Date : 2024-08-14 DOI: 10.1007/s10876-024-02688-9
Aws Hamza, Hassan Alshamsi

In this study, a novel Z-scheme heterojunction based on g-C3N4/TiO2/NiCo2O4 nanocomposite was synthesized using a combination of hydrothermal and ultrasonic methods and investigated the photocatalytic degradation of Rhodamine B (RhB) dye. The synthesized nanocomposite was characterized XRD, FT-IR, FE-SEM, TEM, EDS, PL, UV–Vis DRS techniques. Subsequently, various parameters such as the effect of NiCo2O4 amount in the composite structure, pH, initial pollutant concentration, photocatalyst dosage, and different scavengers were investigated to determine the exact mechanism of the photocatalytic process. In different concentrations of NiCo2O4, the base value (X: 1) was determined as the optimal value in photocatalytic degradation. g-C3N4/TiO2/NiCo2O4 composite had the highest percentage of 99.5% Rh.B dye degradation in 60 min. In addition, by examining the pH, it was found that its optimal value is 7, and the rate of dye degradation in this condition is more than other materials, and the rate constant value is 0.069 min–1. In addition, the g-C3N4/TiO2/NiCo2O4 catalyst showed good performance for each reuse and retained about 82% of its initial photocatalytic activity after 5 cycles. The results indicate that photoinducd (RhB) holes play a crucial role in the photocatalytic degradation of RhB in the presence of the g-C3N4/TiO2/NiCo2O4 nanocomposite via pair Z-scheme system. In the Z-scheme system, the rapid recombination between the hole-electron pair is not observed due to the electron trapping effect of the needle-shaped NiCo2O4 structure, resulting in high photocatalytic efficiency and dye degradation. Therefore, Z-scheme systems are efficient and effective for the removal of water pollutants.

本研究采用水热法和超声法相结合的方法合成了一种基于 g-C3N4/TiO2/NiCo2O4 纳米复合材料的新型 Z 型异质结,并研究了其对罗丹明 B (RhB) 染料的光催化降解作用。对合成的纳米复合材料进行了 XRD、FT-IR、FE-SEM、TEM、EDS、PL、UV-Vis DRS 技术表征。随后,研究了各种参数,如复合结构中 NiCo2O4 的含量、pH 值、初始污染物浓度、光催化剂用量和不同清除剂的影响,以确定光催化过程的确切机制。g-C3N4/TiO2/NiCo2O4 复合材料在 60 分钟内降解 Rh.B 染料的比例最高,达到 99.5%。此外,通过研究 pH 值,发现其最佳值为 7,在此条件下染料降解速率高于其他材料,速率常数为 0.069 min-1。此外,g-CN4/TiO2/NiCo2O4 催化剂在每次重复使用时都表现出良好的性能,5 次循环后仍能保持约 82% 的初始光催化活性。结果表明,在 g-C3N4/TiO2/NiCo2O4 纳米复合材料存在下,光诱导(RhB)空穴通过对 Z 型体系在光催化降解 RhB 的过程中发挥了关键作用。在 Z 型体系中,由于针状镍钴氧化物结构的电子捕获效应,空穴-电子对之间不会发生快速重组,因此光催化效率高,染料降解效果好。因此,Z-scheme 系统在去除水污染物方面是高效和有效的。
{"title":"Novel Z-Scheme g-C3N4/TiO2/NiCo2O4 Heterojunctions for Efficient Photocatalytic Degradation of Rhodamine B under Visible Light Irradiation","authors":"Aws Hamza,&nbsp;Hassan Alshamsi","doi":"10.1007/s10876-024-02688-9","DOIUrl":"10.1007/s10876-024-02688-9","url":null,"abstract":"<div><p>In this study, a novel Z-scheme heterojunction based on g-C<sub>3</sub>N<sub>4</sub>/TiO<sub>2</sub>/NiCo<sub>2</sub>O<sub>4</sub> nanocomposite was synthesized using a combination of hydrothermal and ultrasonic methods and investigated the photocatalytic degradation of Rhodamine B (RhB) dye. The synthesized nanocomposite was characterized XRD, FT-IR, FE-SEM, TEM, EDS, PL, UV–Vis DRS techniques. Subsequently, various parameters such as the effect of NiCo<sub>2</sub>O<sub>4</sub> amount in the composite structure, pH, initial pollutant concentration, photocatalyst dosage, and different scavengers were investigated to determine the exact mechanism of the photocatalytic process. In different concentrations of NiCo<sub>2</sub>O<sub>4</sub>, the base value (X: 1) was determined as the optimal value in photocatalytic degradation. g-C<sub>3</sub>N<sub>4</sub>/TiO<sub>2</sub>/NiCo<sub>2</sub>O<sub>4</sub> composite had the highest percentage of 99.5% Rh.B dye degradation in 60 min. In addition, by examining the pH, it was found that its optimal value is 7, and the rate of dye degradation in this condition is more than other materials, and the rate constant value is 0.069 min<sup>–1</sup>. In addition, the g-C<sub>3</sub>N<sub>4</sub>/TiO<sub>2</sub>/NiCo<sub>2</sub>O<sub>4</sub> catalyst showed good performance for each reuse and retained about 82% of its initial photocatalytic activity after 5 cycles. The results indicate that photoinducd (RhB) holes play a crucial role in the photocatalytic degradation of RhB in the presence of the g-C<sub>3</sub>N<sub>4</sub>/TiO<sub>2</sub>/NiCo<sub>2</sub>O<sub>4</sub> nanocomposite via pair Z-scheme system. In the Z-scheme system, the rapid recombination between the hole-electron pair is not observed due to the electron trapping effect of the needle-shaped NiCo<sub>2</sub>O<sub>4</sub> structure, resulting in high photocatalytic efficiency and dye degradation. Therefore, Z-scheme systems are efficient and effective for the removal of water pollutants.</p></div>","PeriodicalId":618,"journal":{"name":"Journal of Cluster Science","volume":"35 7","pages":"2539 - 2556"},"PeriodicalIF":2.7,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142193375","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optical Biosensing of SARS-CoV-2 RNA Based on Positively Charged Poly-l-Lysine Functionalized Gold Nanoparticles 基于带正电荷的聚赖氨酸功能化金纳米粒子的 SARS-CoV-2 RNA 光学生物传感技术
IF 2.7 4区 化学 Q2 CHEMISTRY, INORGANIC & NUCLEAR Pub Date : 2024-08-09 DOI: 10.1007/s10876-024-02678-x
Tejaswini P. Patil, Arun Kumar Parthasarathy, Dhanaji Malavekar, JinHyeok Kim, Arpita P. Tiwari

The World Health Organization (WHO) announced corona virus disease 2019 (COVID-19) caused by severe acute respiratory syndrome corona virus 2 (SARS-CoV-2), a serious pandemic in March 2020. The situation demands, development of rapid, convenient and easy to handle detection system for SARS-CoV-2. In this regard, the optical biosensing assay was developed using antisense oligonucleotide (ASO) conjugated Poly-l-Lysine functionalized gold nanoparticles (PLL-AuNPs) for detection of SARS-CoV-2 RNA. The negatively charged ASOs were conjugated with positively charged PLL-AuNPs by electrostatic interactions which were characterized by UV–Vis spectroscopy and Transmission Electron Microscopy (TEM). ASO-PLL-AuNPs conjugate was used to detect target SARS-CoV-2 RNA within 5–6 min from COVID-19 positive samples. In presence of target SARS-CoV-2 RNA, the DNA-RNA (ASO-RNA) hybrid structure was formed that released PLL-AuNPs which was aggregated in presence of sodium chloride (NaCl). This has rendered observable red shift in Surface Plasmon Resonance (SPR) with maximum absorbance at 660 nm and visual aggregation of PLL-AuNPs. Selectivity of ASO-PLL-AuNPs conjugate was evaluated in presence of Influenza A RNA with limit of detection 0.52 ng/µL. The obtained results were compared with qRT-PCR results for nasopharyngeal samples collected from COVID-19 positive patients and were found in good agreement with qRT-PCR results. This study reports selective and sensitive optical biosensing assay for detection of SARS-CoV-2 RNA using ASO-PLL-AuNPs conjugate without utilization of any sophisticated instruments.

Graphical Abstract

世界卫生组织(WHO)宣布,由严重急性呼吸系统综合征电晕病毒 2(SARS-CoV-2)引起的电晕病毒病 2019(COVID-19)将于 2020 年 3 月严重流行。这一形势要求开发快速、便捷、易于操作的 SARS-CoV-2 检测系统。为此,我们利用反义寡核苷酸(ASO)共轭聚赖氨酸功能化金纳米粒子(PLL-AuNPs)开发了光学生物传感检测方法,用于检测 SARS-CoV-2 RNA。带负电荷的 ASO 与带正电荷的 PLL-AuNPs 通过静电作用共轭,并通过紫外可见光谱和透射电子显微镜(TEM)对其进行表征。ASO-PLL-AuNPs 共轭物可在 5-6 分钟内从 COVID-19 阳性样本中检测到目标 SARS-CoV-2 RNA。在目标 SARS-CoV-2 RNA 的存在下,DNA-RNA(ASO-RNA)杂交结构形成,释放出 PLL-AuNPs,PLL-AuNPs 在氯化钠(NaCl)的存在下聚集。这使得表面等离子体共振(SPR)出现明显的红移,最大吸光度为 660 纳米,PLL-AuNPs 出现可视聚集。在检测限为 0.52 纳克/微升的甲型流感 RNA 存在下,对 ASO-PLL-AuNPs 共轭物的选择性进行了评估。将所得结果与 COVID-19 阳性患者鼻咽样本的 qRT-PCR 结果进行了比较,发现两者的结果非常吻合。本研究报告了利用 ASO-PLL-AuNPs 共轭化合物检测 SARS-CoV-2 RNA 的选择性和灵敏度的光学生物传感测定,无需使用任何复杂的仪器。 图文摘要
{"title":"Optical Biosensing of SARS-CoV-2 RNA Based on Positively Charged Poly-l-Lysine Functionalized Gold Nanoparticles","authors":"Tejaswini P. Patil,&nbsp;Arun Kumar Parthasarathy,&nbsp;Dhanaji Malavekar,&nbsp;JinHyeok Kim,&nbsp;Arpita P. Tiwari","doi":"10.1007/s10876-024-02678-x","DOIUrl":"10.1007/s10876-024-02678-x","url":null,"abstract":"<div><p>The World Health Organization (WHO) announced corona virus disease 2019 (COVID-19) caused by severe acute respiratory syndrome corona virus 2 (SARS-CoV-2), a serious pandemic in March 2020. The situation demands, development of rapid, convenient and easy to handle detection system for SARS-CoV-2. In this regard, the optical biosensing assay was developed using antisense oligonucleotide (ASO) conjugated Poly-<span>l</span>-Lysine functionalized gold nanoparticles (PLL-AuNPs) for detection of SARS-CoV-2 RNA. The negatively charged ASOs were conjugated with positively charged PLL-AuNPs by electrostatic interactions which were characterized by UV–Vis spectroscopy and Transmission Electron Microscopy (TEM). ASO-PLL-AuNPs conjugate was used to detect target SARS-CoV-2 RNA within 5–6 min from COVID-19 positive samples. In presence of target SARS-CoV-2 RNA, the DNA-RNA (ASO-RNA) hybrid structure was formed that released PLL-AuNPs which was aggregated in presence of sodium chloride (NaCl). This has rendered observable red shift in Surface Plasmon Resonance (SPR) with maximum absorbance at 660 nm and visual aggregation of PLL-AuNPs. Selectivity of ASO-PLL-AuNPs conjugate was evaluated in presence of Influenza A RNA with limit of detection 0.52 ng/µL. The obtained results were compared with qRT-PCR results for nasopharyngeal samples collected from COVID-19 positive patients and were found in good agreement with qRT-PCR results. This study reports selective and sensitive optical biosensing assay for detection of SARS-CoV-2 RNA using ASO-PLL-AuNPs conjugate without utilization of any sophisticated instruments.</p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":618,"journal":{"name":"Journal of Cluster Science","volume":"35 7","pages":"2525 - 2538"},"PeriodicalIF":2.7,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141925370","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Silver Ions Modified α-Fe2O3 Nanoparticles: An Efficient Antibacterial Agent for Multidrug Resistant Bacteria 银离子修饰的 α-Fe2O3 纳米粒子:针对耐多药细菌的高效抗菌剂
IF 2.7 4区 化学 Q2 CHEMISTRY, INORGANIC & NUCLEAR Pub Date : 2024-08-08 DOI: 10.1007/s10876-024-02680-3
Ritesh Verma, Satheesh Selvaraj, Ankush Chauhan, Rajasekaran Subbarayan, G. S. Hikku, Aaliya Ali, Preeti Thakur, Atul Thakur

Herein, silver ions modified α-Fe2O3 (Ag: α-Fe2O3) nanoparticles were synthesized using a sol-gel auto-combustion method comprising of dual phase i.e. trigonal structure of α-Fe2O3 and FCC structure of Ag. The refinement results verified the existence of both the phase with R-3c: R s and Fm-3 m space group. Transmission Electron Microscopy (TEM) showed the crystallite size around 34.24 ± 2.00 nm. The percentage of Ag0 and Ag+ verified through X-ray Photoelectron Spectroscopy (XPS) clearly indicate that around 74% of the Ag present is in the metallic form. The cyclic voltammetry showed that the Csp of the Ag: α-Fe2O3 NPs modified electrode is 132 Fg − 1 and 100 Fg − 1 when recorded at a scan rate of 50 mVs− 1 and 75 mVs− 1, respectively. The Zones of Inhibition (ZOI) against bacterial strains generated by utilizing Ag: α-Fe2O3 NPs are clearly showed the ZOI of 19 ± 1 mm against Bacillus subtilis. The synthesized nanoparticles exhibited higher inhibition against the bacterial strains in comparison to the standard antibiotic ampicillin. Further, cell viability analysis suggested to use a concentration of 9 to 12 µg/ml for Ag: α-Fe2O3in invitro experiments.

本文采用溶胶-凝胶自动燃烧法合成了银离子修饰的α-Fe2O3(Ag: α-Fe2O3)纳米粒子,该纳米粒子具有双相结构,即α-Fe2O3的三叉结构和Ag的FCC结构。细化结果验证了 R-3c:R s 和 Fm-3 m 空间群相。透射电子显微镜(TEM)显示结晶尺寸约为 34.24 ± 2.00 nm。通过 X 射线光电子能谱(XPS)验证的 Ag0 和 Ag+ 的百分比清楚地表明,约 74% 的 Ag 以金属形式存在。循环伏安法显示,在扫描速率为 50 mVs- 1 和 75 mVs- 1 时,Ag:α-Fe2O3 NPs 修饰电极的 Csp 分别为 132 Fg - 1 和 100 Fg - 1。利用 Ag: α-Fe2O3 NPs 生成的细菌抑制区(ZOI)清楚地显示,对枯草杆菌的抑制区为 19 ± 1 mm。与标准抗生素氨苄西林相比,合成的纳米粒子对细菌菌株的抑制率更高。此外,细胞活力分析表明,在体外实验中,Ag: α-Fe2O3 的浓度应为 9 至 12 µg/ml。
{"title":"Silver Ions Modified α-Fe2O3 Nanoparticles: An Efficient Antibacterial Agent for Multidrug Resistant Bacteria","authors":"Ritesh Verma,&nbsp;Satheesh Selvaraj,&nbsp;Ankush Chauhan,&nbsp;Rajasekaran Subbarayan,&nbsp;G. S. Hikku,&nbsp;Aaliya Ali,&nbsp;Preeti Thakur,&nbsp;Atul Thakur","doi":"10.1007/s10876-024-02680-3","DOIUrl":"10.1007/s10876-024-02680-3","url":null,"abstract":"<div><p>Herein, silver ions modified α-Fe<sub>2</sub>O<sub>3</sub> (Ag: α-Fe<sub>2</sub>O<sub>3</sub>) nanoparticles were synthesized using a sol-gel auto-combustion method comprising of dual phase i.e. trigonal structure of α-Fe<sub>2</sub>O<sub>3</sub> and FCC structure of Ag. The refinement results verified the existence of both the phase with <i>R-3c: R</i> s and <i>Fm-3 m</i> space group. Transmission Electron Microscopy (TEM) showed the crystallite size around 34.24 ± 2.00 nm. The percentage of Ag<sup>0</sup> and Ag<sup>+</sup> verified through X-ray Photoelectron Spectroscopy (XPS) clearly indicate that around 74% of the Ag present is in the metallic form. The cyclic voltammetry showed that the C<sub>sp</sub> of the Ag: α-Fe<sub>2</sub>O<sub>3</sub> NPs modified electrode is 132 Fg <sup>− 1</sup> and 100 Fg <sup>− 1</sup> when recorded at a scan rate of 50 mVs<sup>− 1</sup> and 75 mVs<sup>− 1</sup>, respectively. The Zones of Inhibition (ZOI) against bacterial strains generated by utilizing Ag: α-Fe<sub>2</sub>O<sub>3</sub> NPs are clearly showed the ZOI of 19 ± 1 mm against <i>Bacillus subtilis</i>. The synthesized nanoparticles exhibited higher inhibition against the bacterial strains in comparison to the standard antibiotic ampicillin. Further, cell viability analysis suggested to use a concentration of 9 to 12 µg/ml for Ag: α-Fe<sub>2</sub>O<sub>3</sub>in invitro experiments.</p></div>","PeriodicalId":618,"journal":{"name":"Journal of Cluster Science","volume":"35 7","pages":"2511 - 2523"},"PeriodicalIF":2.7,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141927350","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction to: Photocatalytic Degradation of Crystal Violet Using SnO2/ZnO Nanocomposite Synthesized by Facile Sol-Gel Method 更正为利用便捷溶胶-凝胶法合成的 SnO2/ZnO 纳米复合材料光催化降解水晶紫
IF 2.7 4区 化学 Q2 CHEMISTRY, INORGANIC & NUCLEAR Pub Date : 2024-08-08 DOI: 10.1007/s10876-024-02683-0
S. Shabna, J. Eugin Shaji, S. Sahaya Jude Dhas, S. Suresh, Arun Aravind, Susmi Anna Thomas, V. Sherlin Vinita, J. Samuel, C. S. Biju
{"title":"Correction to: Photocatalytic Degradation of Crystal Violet Using SnO2/ZnO Nanocomposite Synthesized by Facile Sol-Gel Method","authors":"S. Shabna,&nbsp;J. Eugin Shaji,&nbsp;S. Sahaya Jude Dhas,&nbsp;S. Suresh,&nbsp;Arun Aravind,&nbsp;Susmi Anna Thomas,&nbsp;V. Sherlin Vinita,&nbsp;J. Samuel,&nbsp;C. S. Biju","doi":"10.1007/s10876-024-02683-0","DOIUrl":"10.1007/s10876-024-02683-0","url":null,"abstract":"","PeriodicalId":618,"journal":{"name":"Journal of Cluster Science","volume":"35 7","pages":"2605 - 2605"},"PeriodicalIF":2.7,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141929475","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Retraction Note: Near Infrared Light-Actuated PEG Wrapping Carbon Nanodots Loaded Cisplatin for Targeted Therapy of Lung Cancer Therapy 撤稿说明:用于肺癌靶向治疗的近红外光动PEG包裹碳纳米点载顺铂疗法
IF 2.7 4区 化学 Q2 CHEMISTRY, INORGANIC & NUCLEAR Pub Date : 2024-08-07 DOI: 10.1007/s10876-024-02685-y
Chan Lian, Jiangnan Zhang, Bingqing Ruan, Kangtai Ying, Wei Lin, Zhe Chen
{"title":"Retraction Note: Near Infrared Light-Actuated PEG Wrapping Carbon Nanodots Loaded Cisplatin for Targeted Therapy of Lung Cancer Therapy","authors":"Chan Lian,&nbsp;Jiangnan Zhang,&nbsp;Bingqing Ruan,&nbsp;Kangtai Ying,&nbsp;Wei Lin,&nbsp;Zhe Chen","doi":"10.1007/s10876-024-02685-y","DOIUrl":"10.1007/s10876-024-02685-y","url":null,"abstract":"","PeriodicalId":618,"journal":{"name":"Journal of Cluster Science","volume":"35 7","pages":"2603 - 2603"},"PeriodicalIF":2.7,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142409232","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Zinc Nanostructure: A Short Review on Phytochemicals-Mediated Biogenic Synthesis and Its Anti-Inflammatory Effects 锌纳米结构:植物化学物质介导的生物合成及其抗炎作用简评
IF 2.7 4区 化学 Q2 CHEMISTRY, INORGANIC & NUCLEAR Pub Date : 2024-08-07 DOI: 10.1007/s10876-024-02681-2
Omilla Ragavan, Muhammad Nazrul Hakim Abdullah, Lai Yen Fong, Vuanghao Lim, Yoke Keong Yong

Chronic inflammation underpins many severe diseases, often requiring anti-inflammatory drugs that can have adverse effects. Medicinal herbs offer an alternative but suffer from poor solubility, limiting their efficacy. Nanotechnology, particularly zinc oxide nanoparticles (ZnO NPs), presents a promising solution to enhance the therapeutic potential of herbal compounds. This review examines the nature and benefits of ZnO NPs in drug delivery systems compared to other nanomaterials. It highlights the advantages of biogenic synthesis of ZnO NPs, detailing the eco-friendly formation mechanisms and common characterization methods. The anti-inflammatory effects of biosynthesized ZnO NPs over the last five years are comprehensively reviewed, with insights into their mechanisms of action. Additionally, the pharmacokinetic and toxicokinetic profiles of ZnO NPs are explored to understand their biokinetics post-drug release. In conclusion, biogenically synthesized ZnO NPs enhance the bioavailability of medicinal plant compounds, offering a compelling alternative for treating inflammatory conditions.

慢性炎症是许多严重疾病的基础,通常需要服用消炎药,但消炎药可能会产生不良影响。药用草本植物提供了另一种选择,但其溶解性差,限制了药效。纳米技术,尤其是氧化锌纳米粒子(ZnO NPs),为提高草药化合物的治疗潜力提供了一种前景广阔的解决方案。与其他纳米材料相比,本综述探讨了 ZnO NPs 在给药系统中的性质和优势。它强调了生物合成氧化锌氮氧化物的优势,详细介绍了生态友好型的形成机制和常见的表征方法。全面回顾了过去五年中生物合成 ZnO NPs 的抗炎效果,并深入探讨了其作用机制。此外,还探讨了氧化锌氮氧化物的药代动力学和毒代动力学特征,以了解其药物释放后的生物动力学。总之,生物合成的氧化锌氮氧化物提高了药用植物化合物的生物利用度,为治疗炎症提供了一种令人信服的替代方法。
{"title":"Zinc Nanostructure: A Short Review on Phytochemicals-Mediated Biogenic Synthesis and Its Anti-Inflammatory Effects","authors":"Omilla Ragavan,&nbsp;Muhammad Nazrul Hakim Abdullah,&nbsp;Lai Yen Fong,&nbsp;Vuanghao Lim,&nbsp;Yoke Keong Yong","doi":"10.1007/s10876-024-02681-2","DOIUrl":"10.1007/s10876-024-02681-2","url":null,"abstract":"<div><p>Chronic inflammation underpins many severe diseases, often requiring anti-inflammatory drugs that can have adverse effects. Medicinal herbs offer an alternative but suffer from poor solubility, limiting their efficacy. Nanotechnology, particularly zinc oxide nanoparticles (ZnO NPs), presents a promising solution to enhance the therapeutic potential of herbal compounds. This review examines the nature and benefits of ZnO NPs in drug delivery systems compared to other nanomaterials. It highlights the advantages of biogenic synthesis of ZnO NPs, detailing the eco-friendly formation mechanisms and common characterization methods. The anti-inflammatory effects of biosynthesized ZnO NPs over the last five years are comprehensively reviewed, with insights into their mechanisms of action. Additionally, the pharmacokinetic and toxicokinetic profiles of ZnO NPs are explored to understand their biokinetics post-drug release. In conclusion, biogenically synthesized ZnO NPs enhance the bioavailability of medicinal plant compounds, offering a compelling alternative for treating inflammatory conditions.</p></div>","PeriodicalId":618,"journal":{"name":"Journal of Cluster Science","volume":"35 7","pages":"2213 - 2230"},"PeriodicalIF":2.7,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141943372","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Simple Preparation of Waste Boron Nitride/C3N4 Composites and Simulated Solar Photocatalytic Performance 废弃氮化硼/C3N4 复合材料的简单制备及模拟太阳能光催化性能
IF 2.7 4区 化学 Q2 CHEMISTRY, INORGANIC & NUCLEAR Pub Date : 2024-08-07 DOI: 10.1007/s10876-024-02674-1
Liang Cui, Wangxi Zhang, Xinyang Zheng, Shikai Zhao, Baoyan Liang, Mingli Jiao

In industrial production, the preparation of cubic boron nitride (cBN) under high temperature and pressure wastes a large amount of unreacted hexagonal boron nitride (hBN). This study aims to use this BN waste (wBN) as a raw material, composite it with g-C3N4 to construct wBN/g-C3N4 composites, and apply the composites in the field of photocatalysis. wBN/g-C3N4 composites were prepared by simple calcination using wBN and ammonium cyanide as raw materials. Results showed that a heterogeneous structure was formed in the composite photocatalyst, with a decrease in its bandgap width and a significant increase in its ability to absorb light. The simulated sunlight photocatalytic activity of composite photocatalysts was significantly better than that of single wBN or g-C3N4. The photocatalytic performance of B2 sample, composed of a 4:3 ratio of wBN and melamine in the raw materials, demonstrated the highest efficiency. Under simulated solar illumination, it was capable of degrading 99.3% of MB within 60 min. The experimental results with additional capture agents indicated that the main reactive species of the composite photocatalyst were superoxide radicals (·O2) and holes (h+).

在工业生产中,在高温高压下制备立方氮化硼(cBN)会浪费大量未反应的六方氮化硼(hBN)。本研究旨在以这些氮化硼废料(wBN)为原料,将其与 g-C3N4 复合,制备出 wBN/g-C3N4 复合材料,并将其应用于光催化领域。结果表明,复合光催化剂形成了异质结构,其带隙宽度减小,吸光能力显著增强。复合光催化剂的模拟阳光光催化活性明显优于单一的 wBN 或 g-CN4。其中,由 4:3 比例的 wBN 和三聚氰胺组成的 B2 样品的光催化效率最高。在模拟太阳光照射下,它能在 60 分钟内降解 99.3% 的甲基溴。使用额外捕获剂的实验结果表明,复合光催化剂的主要反应物种是超氧自由基(-O2-)和空穴(h+)。
{"title":"Simple Preparation of Waste Boron Nitride/C3N4 Composites and Simulated Solar Photocatalytic Performance","authors":"Liang Cui,&nbsp;Wangxi Zhang,&nbsp;Xinyang Zheng,&nbsp;Shikai Zhao,&nbsp;Baoyan Liang,&nbsp;Mingli Jiao","doi":"10.1007/s10876-024-02674-1","DOIUrl":"10.1007/s10876-024-02674-1","url":null,"abstract":"<div><p>In industrial production, the preparation of cubic boron nitride (cBN) under high temperature and pressure wastes a large amount of unreacted hexagonal boron nitride (hBN). This study aims to use this BN waste (wBN) as a raw material, composite it with g-C<sub>3</sub>N<sub>4</sub> to construct wBN/g-C<sub>3</sub>N<sub>4</sub> composites, and apply the composites in the field of photocatalysis. wBN/g-C<sub>3</sub>N<sub>4</sub> composites were prepared by simple calcination using wBN and ammonium cyanide as raw materials. Results showed that a heterogeneous structure was formed in the composite photocatalyst, with a decrease in its bandgap width and a significant increase in its ability to absorb light. The simulated sunlight photocatalytic activity of composite photocatalysts was significantly better than that of single wBN or g-C<sub>3</sub>N<sub>4</sub>. The photocatalytic performance of B2 sample, composed of a 4:3 ratio of wBN and melamine in the raw materials, demonstrated the highest efficiency. Under simulated solar illumination, it was capable of degrading 99.3% of MB within 60 min. The experimental results with additional capture agents indicated that the main reactive species of the composite photocatalyst were superoxide radicals (·O<sub>2</sub><sup>−</sup>) and holes (h<sup>+</sup>).</p></div>","PeriodicalId":618,"journal":{"name":"Journal of Cluster Science","volume":"35 7","pages":"2503 - 2509"},"PeriodicalIF":2.7,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141943374","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Polyaniline Titanium (IV) Tungstomolybdate Composite Ion Exchanger: Fabrication and Binary Separation Studies for the Removal of Selected Toxic Heavy Metals 聚苯胺钛(IV)钨钼酸盐复合离子交换剂:用于去除某些有毒重金属的制造和二元分离研究
IF 2.7 4区 化学 Q2 CHEMISTRY, INORGANIC & NUCLEAR Pub Date : 2024-08-07 DOI: 10.1007/s10876-024-02673-2
Amane Gishere, Endale Teju, Abi M. Taddesse

Environmental pollution by toxic heavy metals is increasing at an alarming rate which demands the development of an appropriate analytical method to investigate and quantify the target analytes. In response to this call, polyaniline Titanium (IV) tungstomolybdate (PANI/TWM) nanocomposite was synthesized by incorporating polyaniline into Titanium (IV) tungstomolybdate using sol–gel method. The material was then characterized using X-ray diffraction (XRD), UV-Vis, Fourier transform infrared (FTIR), Thermogravimetric analysis (TGA-DTA), and Scanning electron microscope (SEM-EDX). It was amorphous with appreciable thermal stability as it retained 65.2% of its ion exchange capacity (IEC) up to 600 OC. It acts as a bifunctional strong acid cation exchanger with an IEC of 1.58 meq/g for Na+ ions. Moreover, the high distribution coefficients (Kd) of 1572 and 928 mL/g for Pb(II) and Co(II), respectively, indicate its potential to treat these ions in an aqueous matrix selectively. Real sample treatment with the prepared material was undertaken for binary separation of selected metal ions in column mode and practically appreciable efficiency (90.3 to 96.8%) was achieved. Therefore, the synthesized material can be considered as a promising cation exchanger to treat an environmental matrix containing toxic heavy metals.

有毒重金属对环境的污染正在以惊人的速度加剧,这就需要开发一种适当的分析方法来研究和量化目标分析物。为了响应这一号召,我们采用溶胶-凝胶法将聚苯胺加入钨钼酸钛(IV)中,合成了聚苯胺钨钼酸钛(PANI/TWM)纳米复合材料。然后使用 X 射线衍射 (XRD)、紫外可见光 (UV-Vis)、傅立叶变换红外 (FTIR)、热重分析 (TGA-DTA) 和扫描电子显微镜 (SEM-EDX) 对该材料进行表征。它是无定形的,具有明显的热稳定性,在 600 OC 时仍能保持 65.2% 的离子交换容量(IEC)。它是一种双功能强酸阳离子交换剂,对 Na+ 离子的离子交换容量为 1.58 meq/g。此外,它对铅(II)和钴(II)的分布系数(Kd)分别为 1572 和 928 mL/g,这表明它具有选择性处理水基质中这些离子的潜力。使用所制备的材料进行了实际样品处理,在柱模式下对选定的金属离子进行了二元分离,并取得了可观的效率(90.3% 至 96.8%)。因此,可以认为合成材料是一种很有前途的阳离子交换剂,可用于处理含有有毒重金属的环境基质。
{"title":"Polyaniline Titanium (IV) Tungstomolybdate Composite Ion Exchanger: Fabrication and Binary Separation Studies for the Removal of Selected Toxic Heavy Metals","authors":"Amane Gishere,&nbsp;Endale Teju,&nbsp;Abi M. Taddesse","doi":"10.1007/s10876-024-02673-2","DOIUrl":"10.1007/s10876-024-02673-2","url":null,"abstract":"<div><p>Environmental pollution by toxic heavy metals is increasing at an alarming rate which demands the development of an appropriate analytical method to investigate and quantify the target analytes. In response to this call, polyaniline Titanium (IV) tungstomolybdate (PANI/TWM) nanocomposite was synthesized by incorporating polyaniline into Titanium (IV) tungstomolybdate using sol–gel method. The material was then characterized using X-ray diffraction (XRD), UV-Vis, Fourier transform infrared (FTIR), Thermogravimetric analysis (TGA-DTA), and Scanning electron microscope (SEM-EDX). It was amorphous with appreciable thermal stability as it retained 65.2% of its ion exchange capacity (IEC) up to 600 <sup>O</sup>C. It acts as a bifunctional strong acid cation exchanger with an IEC of 1.58 meq/g for Na<sup>+</sup> ions. Moreover, the high distribution coefficients (Kd) of 1572 and 928 mL/g for Pb(II) and Co(II), respectively, indicate its potential to treat these ions in an aqueous matrix selectively. Real sample treatment with the prepared material was undertaken for binary separation of selected metal ions in column mode and practically appreciable efficiency (90.3 to 96.8%) was achieved. Therefore, the synthesized material can be considered as a promising cation exchanger to treat an environmental matrix containing toxic heavy metals.</p></div>","PeriodicalId":618,"journal":{"name":"Journal of Cluster Science","volume":"35 7","pages":"2489 - 2501"},"PeriodicalIF":2.7,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141943371","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Retraction Note: Fabrication of Hexagonal Disc Shaped Nanoparticles g-C3N4/NiO Heterostructured Nanocomposites for Efficient Visible Light Photocatalytic Performance 撤回声明:制备具有高效可见光光催化性能的六角盘状纳米颗粒 g-C3N4/NiO 异质结构纳米复合材料
IF 2.7 4区 化学 Q2 CHEMISTRY, INORGANIC & NUCLEAR Pub Date : 2024-08-07 DOI: 10.1007/s10876-024-02686-x
M. Sumathi, A. Prakasam, P. M. Anbarasan
{"title":"Retraction Note: Fabrication of Hexagonal Disc Shaped Nanoparticles g-C3N4/NiO Heterostructured Nanocomposites for Efficient Visible Light Photocatalytic Performance","authors":"M. Sumathi,&nbsp;A. Prakasam,&nbsp;P. M. Anbarasan","doi":"10.1007/s10876-024-02686-x","DOIUrl":"10.1007/s10876-024-02686-x","url":null,"abstract":"","PeriodicalId":618,"journal":{"name":"Journal of Cluster Science","volume":"35 7","pages":"2601 - 2601"},"PeriodicalIF":2.7,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142410286","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Diclofenac Sodium and Gentamicin Co-Encapsulated PLGA Nanoparticles: Targeting Extracellular Matrix Components to Combat Biofilm Formation in Pseudomonas aeruginosa PAO1 双氯芬酸钠和庆大霉素共包封聚乳酸(PLGA)纳米颗粒:靶向细胞外基质成分对抗铜绿假单胞菌 PAO1 的生物膜形成
IF 2.7 4区 化学 Q2 CHEMISTRY, INORGANIC & NUCLEAR Pub Date : 2024-08-05 DOI: 10.1007/s10876-024-02675-0
Edris Mazloumi Jourkouyeh, Mahya Taslimi Eshkalak, Mohammad Faezi Ghasemi, Hossein Zahmatkesh, Behnam Rasti, Hojjatolah Zamani

Non-steroidal anti-inflammatory drugs (NSAIDs) have received attention to be used in combination with antibiotics in antibacterial chemotherapy. However, this study is the first to explore the impact of dual encapsulation of diclofenac sodium and gentamicin within PLGA nanoparticles (DS-GEN-PLGA NPs) on inhibiting extracellular matrix components and biofilm eradication of Pseudomonas aeruginosa PAO1. DS-GEN-PLGA NPs were prepared using the double emulsion solvent evaporation (DESE) technique and characterized by various characterization techniques. Subsequently, the inhibition and eradication potential of DS-GEN-PLGA NPs against P. aeruginosa biofilm was explored. The DS-GEN-PLGA NPs are spherical and oval and 80–200 nm in diameter. DS-GEN-PLGA NPs significantly reduced biofilm formation by 76.28%, biofilm metabolic level by 69.8%, biofilm exopolysaccharide by 75.3%, alginate production by 32.56%, and eDNA release by 60.2%. The expression level of the lasI and rhlI decreased by 0.29 and 0.44 folds compared with untreated cells. This study indicates that DS-GEN-PLGA NPs have promising antibiofilm activity against P. aeruginosa, highlighting its potential as a novel therapeutic formulation to combat biofilm-related infections.

非甾体抗炎药(NSAIDs)与抗生素联合用于抗菌化疗已受到关注。然而,本研究首次探讨了在 PLGA 纳米粒子(DS-GEN-PLGA NPs)中双重封装双氯芬酸钠和庆大霉素对抑制铜绿假单胞菌 PAO1 细胞外基质成分和生物膜根除的影响。采用双乳液溶剂蒸发(DESE)技术制备了 DS-GEN-PLGA NPs,并通过各种表征技术对其进行了表征。随后,探讨了 DS-GEN-PLGA NPs 对铜绿假单胞菌生物膜的抑制和消除潜力。DS-GEN-PLGA NPs 呈球形和椭圆形,直径为 80-200 nm。DS-GEN-PLGA NPs 能显著减少 76.28% 的生物膜形成、69.8% 的生物膜代谢水平、75.3% 的生物膜外多糖、32.56% 的藻酸盐产生和 60.2% 的 eDNA 释放。与未处理的细胞相比,lasI 和 rhlI 的表达水平分别下降了 0.29 和 0.44 倍。这项研究表明,DS-GEN-PLGA NPs 对铜绿假单胞菌具有良好的抗生物膜活性,凸显了其作为一种新型治疗制剂来抗击生物膜相关感染的潜力。
{"title":"Diclofenac Sodium and Gentamicin Co-Encapsulated PLGA Nanoparticles: Targeting Extracellular Matrix Components to Combat Biofilm Formation in Pseudomonas aeruginosa PAO1","authors":"Edris Mazloumi Jourkouyeh,&nbsp;Mahya Taslimi Eshkalak,&nbsp;Mohammad Faezi Ghasemi,&nbsp;Hossein Zahmatkesh,&nbsp;Behnam Rasti,&nbsp;Hojjatolah Zamani","doi":"10.1007/s10876-024-02675-0","DOIUrl":"10.1007/s10876-024-02675-0","url":null,"abstract":"<div><p>Non-steroidal anti-inflammatory drugs (NSAIDs) have received attention to be used in combination with antibiotics in antibacterial chemotherapy. However, this study is the first to explore the impact of dual encapsulation of diclofenac sodium and gentamicin within PLGA nanoparticles (DS-GEN-PLGA NPs) on inhibiting extracellular matrix components and biofilm eradication of <i>Pseudomonas aeruginosa</i> PAO1. DS-GEN-PLGA NPs were prepared using the double emulsion solvent evaporation (DESE) technique and characterized by various characterization techniques. Subsequently, the inhibition and eradication potential of DS-GEN-PLGA NPs against <i>P. aeruginosa</i> biofilm was explored. The DS-GEN-PLGA NPs are spherical and oval and 80–200 nm in diameter. DS-GEN-PLGA NPs significantly reduced biofilm formation by 76.28%, biofilm metabolic level by 69.8%, biofilm exopolysaccharide by 75.3%, alginate production by 32.56%, and eDNA release by 60.2%. The expression level of the <i>lasI</i> and <i>rhlI</i> decreased by 0.29 and 0.44 folds compared with untreated cells. This study indicates that DS-GEN-PLGA NPs have promising antibiofilm activity against <i>P. aeruginosa</i>, highlighting its potential as a novel therapeutic formulation to combat biofilm-related infections.</p></div>","PeriodicalId":618,"journal":{"name":"Journal of Cluster Science","volume":"35 7","pages":"2475 - 2488"},"PeriodicalIF":2.7,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141943373","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Cluster Science
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1