Despite the demand for nanoscale thermal management technologies of material surfaces and interfaces using organic molecules, heat transport properties at the single molecular level remain elusive due to the experimental difficulty of measuring temperature at the nanoscopic scale. Here we show how chemical bonding modes can affect the heat transport properties of single molecules. We focused on four molecular systems: benzylthiol linked to another phenyl group by either a triple (compound 1), double (3), or amide (4) bond and a common linear alkanethiol (2), all of which are nearly identical in molecular length. We prepared binary self-assembled monolayers (SAMs) using 1 as a common reference in combination with 2-4 and investigated their relative heat transport properties using scanning thermal microscopy (SThM). Two-dimensional temperature mapping of the binary SAMs showed that C≡C and C=C bonds provide more effective pathways for heat transport compared to C-C bonds. Since the amide molecule has resonance structures with C=N double bond character, we expected that its heat transport properties would be comparable to those of the thiols containing triple or double bonds. However, the heat transport properties of this molecule prevailed over the others, most likely due to the formation of additional heat transport pathways caused by intermolecular hydrogen bonding. These findings may provide important guidelines for the design of organic materials for nanoscale thermal management.
Memristors have been extensively studied for tremendous potential for future neuromorphic computing hardware applications because of their ability to imitate biological synaptic processes. Herein, we report an interfacial memristor based on a Ga2O3/Nb:SrTiO3 heterojunction that shows stable bipolar resistive switching behavior, long retention time, and high switching ratio. The conductance of the Au/Ga2O3/Nb:SrTiO3/In memristor can be gradually modulated under the voltage sweep mode as well as positive and negative pulse voltage stimulations, respectively, thus realizing the long-term potentiation/depression characteristics of the simulated biological synapse. A neural network based on the prepared memristor was built to recognize the handwritten picture data set with a recognition accuracy of 92.78% by using the NeuroSimV3.0 platform. Our work indicates that the Ga2O3/Nb:SrTiO3 heterojunction memristor has significant potential in a neuromorphic computing system.
Conceptual Density Functional Theory (CDFT) has been extended beyond its traditional role in elucidating chemical reactivity to the development of density functional theory methods, e.g., the investigation of the delocalization error. This delocalization error causes the dependence of the energy on the number of electrons (N) to deviate from its exact piecewise linear behavior, an error which is the basis of many well-known limitations of commonly used density-functional approximations (DFAs). Following our previous work on the analytical hardness η± for pure functionals, we extend its application to hybrid and range-separated functionals. A comparison is made between the analytical hardness and the slope of the delocalization function introduced by Hait and Head-Gordon. Our results show that there is a linear relationship between its slope and the analytical hardness. An approximate scheme is presented to construct the energy vs N curve without fractional occupation number calculations. The extension to densities is discussed.
Aryl ketones are often used as photosensitizers and photoinitiators. Free radical intermediates have been suggested, but not confirmed, to be generated after photoirradiation. Here we found, unexpectedly, that a persistent radical was produced from di-2-pyridyl ketone after UV irradiation, which was detected by the direct ESR method. Interestingly, the persistent radical was very sensitive to oxygen and the pH of the reaction medium. A similar persistent radical was also observed from phenyl-2-pyridyl ketone, but not from 3-benzoylpyridine, 4-benzoylpyridine, and benzophenone, suggesting that the presence of a carbonyl group connected to the ortho-position of the pyridine ring is critical for such radical production. By complementary applications of ESR, HPLC, and ESI-Q-TOF-MS, the possible chemical structures of the persistent radical and final product were identified, and the possible underlying reaction mechanism was proposed. This represents the first report on UV-induced persistent radical generation from 2-pyridyl ketones, which should be of great significance for future studies.
Whether illumination influences the ion conductivity in lead-halide perovskite solar cells containing iodide halides has been an ongoing debate. Experiments to elucidate the presence of a photoconductive effect require special devices or measurement techniques and neglect possible influences of the enhanced electronic charge concentrations. Here, we assess the electronic-ionic charge transport using drift-diffusion simulations and show that the well-known increase in capacitance at low frequencies under illumination is caused by electronic currents that are amplified due to the screening of the alternating electric field by the ions. We propose a novel characterization technique to detect a potential photoinduced increase in ionic conductivity based on capacitance measurements on fully integrated devices. The method is applied to a range of perovskite solar cells with different active layer materials. Remarkably, all measured samples show a clear signature of photoenhanced ion conductivity, posing fundamental questions on the underlying nature of the photosensitive mechanism.
Double perovskite Cs2AgBiBr6 is a promising alternative to lead-based perovskites with excellent stability and attractive optoelectronic properties. However, a relatively large bandgap severely limits its performance in many applications such as solar cells and photodetectors. It has been reported that a random distribution of Ag and Bi atoms in Cs2AgBiBr6 effectively reduces its bandgap without introducing dopants or impurities, while the mechanism remains unclear. Here, using density functional theory calculations, we demonstrate that the Ag-Bi disorder in Cs2AgBiBr6 generates localized electronic states as band edges to regulate the bandgap. The disordered structures segregate Ag and Bi atoms in the lattice, and the formed homoatomic clusters lead to wave function localization. Moreover, the bandgap decrease exhibits a non-monotonic dependence on the degree of disorder. Our results are comparable with experimental observations and provide crucial insights into understanding the order-disorder transition in double perovskites.
The phenomenon of thermal quenching of luminescence can significantly compromise the efficiency of luminescent materials, a process accompanied by the generation of substantial phonon populations. While plenty of models for elucidating this behavior have been proposed, the crucial role of phonon transport has largely been neglected, particularly in the enigmatic incommensurate scheelite structure with good luminescence performance. In this study, we delve into the thermal quenching dynamics of the near-infrared emission in the incommensurately modulated CaGd2(MoO4)4:Yb/Er system. Our comprehensive investigation reveals distinct evolutionary patterns in electrical conductivity, luminescence intensity, thermal conductivity, and Raman scattering at varying temperature regimes. Notably, we have determined that thermally induced ion migration, occurring above ∼300 °C, serves as a pivotal trigger for the activation of all phonons and the enhancement of phonon-defect scattering within this incommensurate framework. This phenomenon not only diminishes the thermal conductivity but also accelerates the multiphonon relaxation of the Er3+ emission levels, culminating in a marked thermal quenching of luminescence. This work illuminates the thermal quenching mechanism of luminescence by focusing on phonon scattering dynamics, providing critical insights for the design of thermally robust near-infrared luminescent materials, which are essential for the advancement of optical amplification systems.