Pub Date : 2024-11-07DOI: 10.1021/acs.jpclett.4c0279110.1021/acs.jpclett.4c02791
Akshay Kumar Sahu, Anant Ram Satpathi, Saiprakash Rout, Pranay Mohanty, Laxmipriya Dash and Himansu S. Biswal*,
Aromaticity is a century-old concept that is even introduced in high school textbooks. However, the determination of the order of aromaticity of molecules as simple as furan, thiophene, and selenophene is still challenging. This work describes how different theoretical and experimental methods posit different aromaticity orders. To benchmark the theoretical results and arrive at a conclusion, mass-selective electronic and vibrational spectroscopy of these five-membered heterocycles under isolated supersonic-jet-cooled conditions was necessary. Since the aromaticity order can be unveiled from the magnitude of the electron density in the ring, we used hydrogen bonding as a probe. The experimental results revealed that selenophene forms the strongest π-hydrogen bond, suggesting that selenophene is the most aromatic, followed by thiophene and furan. It is concluded that gauge-including magnetically induced currents (GIMIC) and relative 1H and 13C NMR chemical shifts are better parameters to determine the aromaticity order in a similar class of molecules.
{"title":"Probing Aromaticity with Supersonic Jet Spectroscopy: A Case Study on Furan, Thiophene, and Selenophene","authors":"Akshay Kumar Sahu, Anant Ram Satpathi, Saiprakash Rout, Pranay Mohanty, Laxmipriya Dash and Himansu S. Biswal*, ","doi":"10.1021/acs.jpclett.4c0279110.1021/acs.jpclett.4c02791","DOIUrl":"https://doi.org/10.1021/acs.jpclett.4c02791https://doi.org/10.1021/acs.jpclett.4c02791","url":null,"abstract":"<p >Aromaticity is a century-old concept that is even introduced in high school textbooks. However, the determination of the order of aromaticity of molecules as simple as furan, thiophene, and selenophene is still challenging. This work describes how different theoretical and experimental methods posit different aromaticity orders. To benchmark the theoretical results and arrive at a conclusion, mass-selective electronic and vibrational spectroscopy of these five-membered heterocycles under isolated supersonic-jet-cooled conditions was necessary. Since the aromaticity order can be unveiled from the magnitude of the electron density in the ring, we used hydrogen bonding as a probe. The experimental results revealed that selenophene forms the strongest π-hydrogen bond, suggesting that selenophene is the most aromatic, followed by thiophene and furan. It is concluded that gauge-including magnetically induced currents (GIMIC) and relative <sup>1</sup>H and <sup>13</sup>C NMR chemical shifts are better parameters to determine the aromaticity order in a similar class of molecules.</p>","PeriodicalId":62,"journal":{"name":"The Journal of Physical Chemistry Letters","volume":"15 45","pages":"11445–11453 11445–11453"},"PeriodicalIF":4.8,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142640988","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-06DOI: 10.1021/acs.jpclett.4c0195810.1021/acs.jpclett.4c01958
Bálint Máté*, François Fleuret* and Tristan Bereau*,
Thermodynamic integration (TI) offers a rigorous method for estimating free-energy differences by integrating over a sequence of interpolating conformational ensembles. However, TI calculations are computationally expensive and typically limited to coupling a small number of degrees of freedom due to the need to sample numerous intermediate ensembles with sufficient conformational-space overlap. In this work, we propose to perform TI along an alchemical pathway represented by a trainable neural network, which we term Neural TI. Critically, we parametrize a time-dependent Hamiltonian interpolating between the interacting and noninteracting systems and optimize its gradient using a score matching objective. The ability of the resulting energy-based diffusion model to sample all intermediate ensembles allows us to perform TI from a single reference calculation. We apply our method to Lennard-Jones fluids, where we report accurate calculations of the excess chemical potential, demonstrating that Neural TI reproduces the underlying changes in free energy without the need for simulations at interpolating Hamiltonians.
热力学积分(TI)提供了一种严格的方法,通过对一连串内插构象集合进行积分来估算自由能差。然而,TI 计算的计算成本很高,而且由于需要采样大量具有足够构象空间重叠的中间组合,通常仅限于耦合少量自由度。在这项工作中,我们建议沿着可训练神经网络代表的炼金术途径执行 TI,我们称之为神经 TI。重要的是,我们在相互作用和非相互作用系统之间设置了一个随时间变化的哈密顿参数,并使用分数匹配目标优化其梯度。由此产生的基于能量的扩散模型能够对所有中间集合进行采样,这使我们能够从单一参考计算中执行 TI。我们将这一方法应用于伦纳德-琼斯流体,报告了过剩化学势的精确计算结果,证明了神经 TI 重现了自由能的基本变化,而无需对插值哈密顿进行模拟。
{"title":"Neural Thermodynamic Integration: Free Energies from Energy-Based Diffusion Models","authors":"Bálint Máté*, François Fleuret* and Tristan Bereau*, ","doi":"10.1021/acs.jpclett.4c0195810.1021/acs.jpclett.4c01958","DOIUrl":"https://doi.org/10.1021/acs.jpclett.4c01958https://doi.org/10.1021/acs.jpclett.4c01958","url":null,"abstract":"<p >Thermodynamic integration (TI) offers a rigorous method for estimating free-energy differences by integrating over a sequence of interpolating conformational ensembles. However, TI calculations are computationally expensive and typically limited to coupling a small number of degrees of freedom due to the need to sample numerous intermediate ensembles with sufficient conformational-space overlap. In this work, we propose to perform TI along an alchemical pathway represented by a trainable neural network, which we term Neural TI. Critically, we parametrize a time-dependent Hamiltonian interpolating between the interacting and noninteracting systems and optimize its gradient using a score matching objective. The ability of the resulting energy-based diffusion model to sample all intermediate ensembles allows us to perform TI from a single reference calculation. We apply our method to Lennard-Jones fluids, where we report accurate calculations of the excess chemical potential, demonstrating that Neural TI reproduces the underlying changes in free energy without the need for simulations at interpolating Hamiltonians.</p>","PeriodicalId":62,"journal":{"name":"The Journal of Physical Chemistry Letters","volume":"15 45","pages":"11395–11404 11395–11404"},"PeriodicalIF":4.8,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142640890","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-06DOI: 10.1021/acs.jpclett.4c0273310.1021/acs.jpclett.4c02733
Isabelle Weber, Prasad Ramesh Joshi, David T. Anderson* and Yuan-Pern Lee*,
Cryogenic solid para-hydrogen (p-H2) exhibits pronounced quantum effects, enabling unique experiments that are typically not possible in noble-gas matrices. The diminished cage effect facilitates the production of free radicals via in situ photolysis or photoinduced reactions. Electron bombardment during deposition readily produces protonated and hydrogenated species, such as polycyclic aromatic hydrocarbons, that are important in astrochemistry. In addition, quantum diffusion delocalizes hydrogen atoms in solid p-H2, allowing efficient H atom reactions with astrochemical species and introducing new concepts in astrochemical models. Some H atom reactions display anomalous temperature behaviors, highlighting the rich chemistry in p-H2. The investigation on quantum diffusion of heavier atoms and molecules is also important for our understanding of the chemistry in interstellar ice. Additionally, matrix shifts of electronic transitions of polycyclic aromatic hydrocarbons in p-H2 are less divergent than those in solid Ne such that systematic measurements in p-H2 might help in the assignment of diffuse interstellar bands.
低温固体对氢(p-H2)具有明显的量子效应,可以进行惰性气体基质通常无法进行的独特实验。笼效应的减弱有利于通过原位光解或光诱导反应产生自由基。沉积过程中的电子轰击很容易产生质子化和氢化物质,如多环芳烃,这在天体化学中非常重要。此外,量子扩散使固态 p-H2 中的氢原子分散,从而使氢原子与天体化学物质发生高效反应,并为天体化学模型引入了新概念。一些氢原子反应显示出反常的温度行为,凸显了 p-H2 中丰富的化学性质。对较重的原子和分子量子扩散的研究对于我们理解星际冰的化学性质也非常重要。此外,p-H2 中多环芳烃电子跃迁的矩阵偏移比固体 Ne 中的偏移小,因此在 p-H2 中进行系统测量可能有助于星际扩散带的分配。
{"title":"Unique Applications of para-Hydrogen Matrix Isolation to Spectroscopy and Astrochemistry","authors":"Isabelle Weber, Prasad Ramesh Joshi, David T. Anderson* and Yuan-Pern Lee*, ","doi":"10.1021/acs.jpclett.4c0273310.1021/acs.jpclett.4c02733","DOIUrl":"https://doi.org/10.1021/acs.jpclett.4c02733https://doi.org/10.1021/acs.jpclett.4c02733","url":null,"abstract":"<p >Cryogenic solid <i>para</i>-hydrogen (<i>p</i>-H<sub>2</sub>) exhibits pronounced quantum effects, enabling unique experiments that are typically not possible in noble-gas matrices. The diminished cage effect facilitates the production of free radicals via <i>in situ</i> photolysis or photoinduced reactions. Electron bombardment during deposition readily produces protonated and hydrogenated species, such as polycyclic aromatic hydrocarbons, that are important in astrochemistry. In addition, quantum diffusion delocalizes hydrogen atoms in solid <i>p</i>-H<sub>2</sub>, allowing efficient H atom reactions with astrochemical species and introducing new concepts in astrochemical models. Some H atom reactions display anomalous temperature behaviors, highlighting the rich chemistry in <i>p</i>-H<sub>2</sub>. The investigation on quantum diffusion of heavier atoms and molecules is also important for our understanding of the chemistry in interstellar ice. Additionally, matrix shifts of electronic transitions of polycyclic aromatic hydrocarbons in <i>p</i>-H<sub>2</sub> are less divergent than those in solid Ne such that systematic measurements in <i>p</i>-H<sub>2</sub> might help in the assignment of diffuse interstellar bands.</p>","PeriodicalId":62,"journal":{"name":"The Journal of Physical Chemistry Letters","volume":"15 45","pages":"11361–11373 11361–11373"},"PeriodicalIF":4.8,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acs.jpclett.4c02733","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142640766","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-06DOI: 10.1021/acs.jpclett.4c0255410.1021/acs.jpclett.4c02554
Yinghan Wang, Zeyue Zhang, Guohong Cai, Jingxie Xiong, Zhengren Tao, Chunhai Wang, Junliang Sun* and Shi Ye*,
The phenomenon of thermal quenching of luminescence can significantly compromise the efficiency of luminescent materials, a process accompanied by the generation of substantial phonon populations. While plenty of models for elucidating this behavior have been proposed, the crucial role of phonon transport has largely been neglected, particularly in the enigmatic incommensurate scheelite structure with good luminescence performance. In this study, we delve into the thermal quenching dynamics of the near-infrared emission in the incommensurately modulated CaGd2(MoO4)4:Yb/Er system. Our comprehensive investigation reveals distinct evolutionary patterns in electrical conductivity, luminescence intensity, thermal conductivity, and Raman scattering at varying temperature regimes. Notably, we have determined that thermally induced ion migration, occurring above ∼300 °C, serves as a pivotal trigger for the activation of all phonons and the enhancement of phonon–defect scattering within this incommensurate framework. This phenomenon not only diminishes the thermal conductivity but also accelerates the multiphonon relaxation of the Er3+ emission levels, culminating in a marked thermal quenching of luminescence. This work illuminates the thermal quenching mechanism of luminescence by focusing on phonon scattering dynamics, providing critical insights for the design of thermally robust near-infrared luminescent materials, which are essential for the advancement of optical amplification systems.
{"title":"Luminescence and Transport Behavior in Incommensurately Modulated CaGd2(MoO4)4:Yb/Er","authors":"Yinghan Wang, Zeyue Zhang, Guohong Cai, Jingxie Xiong, Zhengren Tao, Chunhai Wang, Junliang Sun* and Shi Ye*, ","doi":"10.1021/acs.jpclett.4c0255410.1021/acs.jpclett.4c02554","DOIUrl":"https://doi.org/10.1021/acs.jpclett.4c02554https://doi.org/10.1021/acs.jpclett.4c02554","url":null,"abstract":"<p >The phenomenon of thermal quenching of luminescence can significantly compromise the efficiency of luminescent materials, a process accompanied by the generation of substantial phonon populations. While plenty of models for elucidating this behavior have been proposed, the crucial role of phonon transport has largely been neglected, particularly in the enigmatic incommensurate scheelite structure with good luminescence performance. In this study, we delve into the thermal quenching dynamics of the near-infrared emission in the incommensurately modulated CaGd<sub>2</sub>(MoO<sub>4</sub>)<sub>4</sub>:Yb/Er system. Our comprehensive investigation reveals distinct evolutionary patterns in electrical conductivity, luminescence intensity, thermal conductivity, and Raman scattering at varying temperature regimes. Notably, we have determined that thermally induced ion migration, occurring above ∼300 °C, serves as a pivotal trigger for the activation of all phonons and the enhancement of phonon–defect scattering within this incommensurate framework. This phenomenon not only diminishes the thermal conductivity but also accelerates the multiphonon relaxation of the Er<sup>3+</sup> emission levels, culminating in a marked thermal quenching of luminescence. This work illuminates the thermal quenching mechanism of luminescence by focusing on phonon scattering dynamics, providing critical insights for the design of thermally robust near-infrared luminescent materials, which are essential for the advancement of optical amplification systems.</p>","PeriodicalId":62,"journal":{"name":"The Journal of Physical Chemistry Letters","volume":"15 45","pages":"11374–11382 11374–11382"},"PeriodicalIF":4.8,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142640760","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-06DOI: 10.1021/acs.jpclett.4c0258210.1021/acs.jpclett.4c02582
Qiuying Du, Zhixun Luo*, Xiaopeng Xing* and Jijun Zhao*,
Gas phase reactions have been a subject of research interest, enabling reliable strategies to explore the stability and reactivity of metal clusters as well as to probe novel superatoms that form the building blocks to assemble new materials with tailored properties. Coinage metal clusters have attracted great research attention due to their simple electronic shell structures and rich photochemical and catalytic properties at relatively low cost. This perspective focuses on the recent progress made in studying the gas phase reactions of undamaged and single-atom-doped Cun±,0 and Agn±,0 clusters with O2, CO, and NO molecules. It covers various aspects, such as reaction mechanisms, relationships between structure and activity, control of reactivity by changing cluster size and composition, and the identification of novel superatoms (Cu18–, Ag13–, Ag17–, and Ag15O+). Lastly, we provide a detailed account of the obstacles and prospective avenues for future research in order to establish a connection between these findings and nanocluster systems that have practical applications.
{"title":"Gas Phase Reactions of Pristine and Single-Atom-Doped Copper and Silver Clusters: Probing Size-Dependent Stability and Novel Superatoms","authors":"Qiuying Du, Zhixun Luo*, Xiaopeng Xing* and Jijun Zhao*, ","doi":"10.1021/acs.jpclett.4c0258210.1021/acs.jpclett.4c02582","DOIUrl":"https://doi.org/10.1021/acs.jpclett.4c02582https://doi.org/10.1021/acs.jpclett.4c02582","url":null,"abstract":"<p >Gas phase reactions have been a subject of research interest, enabling reliable strategies to explore the stability and reactivity of metal clusters as well as to probe novel superatoms that form the building blocks to assemble new materials with tailored properties. Coinage metal clusters have attracted great research attention due to their simple electronic shell structures and rich photochemical and catalytic properties at relatively low cost. This perspective focuses on the recent progress made in studying the gas phase reactions of undamaged and single-atom-doped Cu<sub><i>n</i></sub><sup>±,0</sup> and Ag<sub><i>n</i></sub><sup>±,0</sup> clusters with O<sub>2</sub>, CO, and NO molecules. It covers various aspects, such as reaction mechanisms, relationships between structure and activity, control of reactivity by changing cluster size and composition, and the identification of novel superatoms (Cu<sub>18</sub><sup>–</sup>, Ag<sub>13</sub><sup>–</sup>, Ag<sub>17</sub><sup>–</sup>, and Ag<sub>15</sub>O<sup>+</sup>). Lastly, we provide a detailed account of the obstacles and prospective avenues for future research in order to establish a connection between these findings and nanocluster systems that have practical applications.</p>","PeriodicalId":62,"journal":{"name":"The Journal of Physical Chemistry Letters","volume":"15 45","pages":"11383–11394 11383–11394"},"PeriodicalIF":4.8,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142640761","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-05DOI: 10.1021/acs.jpclett.4c0265710.1021/acs.jpclett.4c02657
Lin-Na Xie, Chun-Hua Huang, Dan Xu, Zhen-Huan Li, Li Qin, Bo Shao, Li Mao, Jie Shao, Zhi-Sheng Liu, Jing Chen, Zhi-Guo Sheng, Zhi-Hui Zhang and Ben-Zhan Zhu*,
Aryl ketones are often used as photosensitizers and photoinitiators. Free radical intermediates have been suggested, but not confirmed, to be generated after photoirradiation. Here we found, unexpectedly, that a persistent radical was produced from di-2-pyridyl ketone after UV irradiation, which was detected by the direct ESR method. Interestingly, the persistent radical was very sensitive to oxygen and the pH of the reaction medium. A similar persistent radical was also observed from phenyl-2-pyridyl ketone, but not from 3-benzoylpyridine, 4-benzoylpyridine, and benzophenone, suggesting that the presence of a carbonyl group connected to the ortho-position of the pyridine ring is critical for such radical production. By complementary applications of ESR, HPLC, and ESI-Q-TOF-MS, the possible chemical structures of the persistent radical and final product were identified, and the possible underlying reaction mechanism was proposed. This represents the first report on UV-induced persistent radical generation from 2-pyridyl ketones, which should be of great significance for future studies.
{"title":"Unusual and Persistent Free Radical Intermediate Production from 2-Pyridyl Ketones via UV Irradiation: A Direct ESR Study","authors":"Lin-Na Xie, Chun-Hua Huang, Dan Xu, Zhen-Huan Li, Li Qin, Bo Shao, Li Mao, Jie Shao, Zhi-Sheng Liu, Jing Chen, Zhi-Guo Sheng, Zhi-Hui Zhang and Ben-Zhan Zhu*, ","doi":"10.1021/acs.jpclett.4c0265710.1021/acs.jpclett.4c02657","DOIUrl":"https://doi.org/10.1021/acs.jpclett.4c02657https://doi.org/10.1021/acs.jpclett.4c02657","url":null,"abstract":"<p >Aryl ketones are often used as photosensitizers and photoinitiators. Free radical intermediates have been suggested, but not confirmed, to be generated after photoirradiation. Here we found, unexpectedly, that a persistent radical was produced from di-2-pyridyl ketone after UV irradiation, which was detected by the direct ESR method. Interestingly, the persistent radical was very sensitive to oxygen and the pH of the reaction medium. A similar persistent radical was also observed from phenyl-2-pyridyl ketone, but not from 3-benzoylpyridine, 4-benzoylpyridine, and benzophenone, suggesting that the presence of a carbonyl group connected to the <i>ortho</i>-position of the pyridine ring is critical for such radical production. By complementary applications of ESR, HPLC, and ESI-Q-TOF-MS, the possible chemical structures of the persistent radical and final product were identified, and the possible underlying reaction mechanism was proposed. This represents the first report on UV-induced persistent radical generation from 2-pyridyl ketones, which should be of great significance for future studies.</p>","PeriodicalId":62,"journal":{"name":"The Journal of Physical Chemistry Letters","volume":"15 45","pages":"11353–11360 11353–11360"},"PeriodicalIF":4.8,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142640677","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-05DOI: 10.1021/acs.jpclett.4c0236210.1021/acs.jpclett.4c02362
Xiaochuan Ren, Jingxiang Zou, Wei Li* and Shuhua Li*,
A block-correlated coupled cluster (BCCC) method based on the triplet generalized valence bond (GVB) wave function (GVB-BCCC) has been implemented for the first time. By introducing several techniques, we have developed a practical and efficient GVB-BCCC code. The GVB-BCCC3 method (with up to three-pair correlation) can be used to deal with strongly correlated (SC) systems with triplet or singlet ground states, allowing singlet–triplet (S-T) energy gaps in the active space of SC systems computationally available. For selected SC systems, our calculations show that GVB-BCCC3 can always provide correct ground-state spin multiplicity as the complete active space configuration interaction (CASCI) or density matrix renormalization group (DMRG). Furthermore, we found that the S-T energy gaps from GVB-BCCC3 are quite consistent with CASCI or DMRG results. This work demonstrates that GVB-BCCC3 is a promising theoretical tool for describing S-T energy gaps within the active space of SC systems with large active spaces.
{"title":"Block-Correlated Coupled Cluster Theory Based on the Generalized Valence Bond Reference for Singlet–Triplet Energy Gaps of Strongly Correlated Systems","authors":"Xiaochuan Ren, Jingxiang Zou, Wei Li* and Shuhua Li*, ","doi":"10.1021/acs.jpclett.4c0236210.1021/acs.jpclett.4c02362","DOIUrl":"https://doi.org/10.1021/acs.jpclett.4c02362https://doi.org/10.1021/acs.jpclett.4c02362","url":null,"abstract":"<p >A block-correlated coupled cluster (BCCC) method based on the triplet generalized valence bond (GVB) wave function (GVB-BCCC) has been implemented for the first time. By introducing several techniques, we have developed a practical and efficient GVB-BCCC code. The GVB-BCCC3 method (with up to three-pair correlation) can be used to deal with strongly correlated (SC) systems with triplet or singlet ground states, allowing singlet–triplet (S-T) energy gaps in the active space of SC systems computationally available. For selected SC systems, our calculations show that GVB-BCCC3 can always provide correct ground-state spin multiplicity as the complete active space configuration interaction (CASCI) or density matrix renormalization group (DMRG). Furthermore, we found that the S-T energy gaps from GVB-BCCC3 are quite consistent with CASCI or DMRG results. This work demonstrates that GVB-BCCC3 is a promising theoretical tool for describing S-T energy gaps within the active space of SC systems with large active spaces.</p>","PeriodicalId":62,"journal":{"name":"The Journal of Physical Chemistry Letters","volume":"15 45","pages":"11342–11352 11342–11352"},"PeriodicalIF":4.8,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142641056","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-05DOI: 10.1021/acs.jpclett.4c0238310.1021/acs.jpclett.4c02383
Yunlei Zhang, Carmine Putignano, Changmin Qi, Weiyi Zhao, Bo Yu, Shuanhong Ma, Daniele Dini and Feng Zhou*,
Fluid exudation in cartilage under normal loading can be counteracted by a sliding-induced rehydration phenomenon, which has a hydrodynamic origin related to a wedge effect at the contact inlet. Similar to cartilage, hydrogels also exhibit tribological rehydration properties, and we mimic this phenomenon to restore hydration lubrication and overcome creeping. It occurs within a specific velocity range and is mainly dependent on the applied load and hydrogel network structures. Crucially, a certain velocity in the mixed lubrication regime can produce a hydrodynamic pressure peak at the wedge and drive the rehydration inflow to overcome the extrusion. At lower sliding velocities in the boundary lubrication regime, inflows are insufficient to counteract fluid exudation, whereas at higher velocities in the hydrodynamic lubrication regime, the inlet wedge effect would diminish. These results suggest that tribological rehydration offers a novel approach to enhancing load-bearing capacity and maintaining lubrication in the hydrogels.
{"title":"Sliding-Induced Rehydration in Hydrogels for Restoring Lubrication and Anticreeping Capability","authors":"Yunlei Zhang, Carmine Putignano, Changmin Qi, Weiyi Zhao, Bo Yu, Shuanhong Ma, Daniele Dini and Feng Zhou*, ","doi":"10.1021/acs.jpclett.4c0238310.1021/acs.jpclett.4c02383","DOIUrl":"https://doi.org/10.1021/acs.jpclett.4c02383https://doi.org/10.1021/acs.jpclett.4c02383","url":null,"abstract":"<p >Fluid exudation in cartilage under normal loading can be counteracted by a sliding-induced rehydration phenomenon, which has a hydrodynamic origin related to a wedge effect at the contact inlet. Similar to cartilage, hydrogels also exhibit tribological rehydration properties, and we mimic this phenomenon to restore hydration lubrication and overcome creeping. It occurs within a specific velocity range and is mainly dependent on the applied load and hydrogel network structures. Crucially, a certain velocity in the mixed lubrication regime can produce a hydrodynamic pressure peak at the wedge and drive the rehydration inflow to overcome the extrusion. At lower sliding velocities in the boundary lubrication regime, inflows are insufficient to counteract fluid exudation, whereas at higher velocities in the hydrodynamic lubrication regime, the inlet wedge effect would diminish. These results suggest that tribological rehydration offers a novel approach to enhancing load-bearing capacity and maintaining lubrication in the hydrogels.</p>","PeriodicalId":62,"journal":{"name":"The Journal of Physical Chemistry Letters","volume":"15 45","pages":"11328–11334 11328–11334"},"PeriodicalIF":4.8,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142640676","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-05DOI: 10.1021/acs.jpclett.4c0259010.1021/acs.jpclett.4c02590
Bulat Gizatullin, Carlos Mattea and Siegfried Stapf*,
The interaction of molecules, in particular, water, with solid interfaces has been studied by a multitude of methods, among them nuclear magnetic resonance spin relaxation. The frequency dependence of the relaxation times follows patterns that have been interpreted in terms of the molecular orientation and dynamics. Several different model approaches could successfully explain limiting cases of 1H relaxation dispersion in systems with rigid surfaces such as silica gel or glass, but none of them can reproduce the relaxation of both 1H and 2H nuclei, which differ in their respective relaxation mechanisms, dipolar vs quadrupolar. From detailed studies of the dynamics of hydration of water in biological materials, the importance of hydrogen and molecular exchange to the longitudinal relaxation time of T1 was demonstrated. In this work, exchange times of both H2O and D2O in hydrophilic silica gel are varied in a controlled fashion in a wide range using disodium hydrogen phosphate, and the effect of physical exchange on spin relaxation is quantified for the first time in such systems using the exchange-mediated reorientation model.
{"title":"Effect of Exchange Dynamics on the NMR Relaxation of Water in Porous Silica","authors":"Bulat Gizatullin, Carlos Mattea and Siegfried Stapf*, ","doi":"10.1021/acs.jpclett.4c0259010.1021/acs.jpclett.4c02590","DOIUrl":"https://doi.org/10.1021/acs.jpclett.4c02590https://doi.org/10.1021/acs.jpclett.4c02590","url":null,"abstract":"<p >The interaction of molecules, in particular, water, with solid interfaces has been studied by a multitude of methods, among them nuclear magnetic resonance spin relaxation. The frequency dependence of the relaxation times follows patterns that have been interpreted in terms of the molecular orientation and dynamics. Several different model approaches could successfully explain limiting cases of <sup>1</sup>H relaxation dispersion in systems with rigid surfaces such as silica gel or glass, but none of them can reproduce the relaxation of both <sup>1</sup>H and <sup>2</sup>H nuclei, which differ in their respective relaxation mechanisms, dipolar vs quadrupolar. From detailed studies of the dynamics of hydration of water in biological materials, the importance of hydrogen and molecular exchange to the longitudinal relaxation time of T<sub>1</sub> was demonstrated. In this work, exchange times of both H<sub>2</sub>O and D<sub>2</sub>O in hydrophilic silica gel are varied in a controlled fashion in a wide range using disodium hydrogen phosphate, and the effect of physical exchange on spin relaxation is quantified for the first time in such systems using the exchange-mediated reorientation model.</p>","PeriodicalId":62,"journal":{"name":"The Journal of Physical Chemistry Letters","volume":"15 45","pages":"11335–11341 11335–11341"},"PeriodicalIF":4.8,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acs.jpclett.4c02590","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142640678","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-05DOI: 10.1021/acs.jpclett.4c0281910.1021/acs.jpclett.4c02819
T. Hanke, A. L. Upterworth and D. Sebastiani*,
The entropy of mixing of a multicomponent system of particles is a simple expression of the molar fractions for the equilibrium state, but its intermediate values for transient (nonequilibrium) states can not be calculated directly from the particle coordinates so far. We propose a simple expression for the configurational entropy of mixing based solely on the set of instantaneous coordinates, which is suitable for the on-the-fly determination of the degree of mixing along a molecular dynamics trajectory. We illustrate the applicability of our scheme with the example of several molecular mixtures that exhibit fast and slow mixing and demixing processes within a molecular dynamics simulation.
{"title":"Explicit Configurational Entropy of Mixing in Molecular Dynamics Simulations","authors":"T. Hanke, A. L. Upterworth and D. Sebastiani*, ","doi":"10.1021/acs.jpclett.4c0281910.1021/acs.jpclett.4c02819","DOIUrl":"https://doi.org/10.1021/acs.jpclett.4c02819https://doi.org/10.1021/acs.jpclett.4c02819","url":null,"abstract":"<p >The entropy of mixing of a multicomponent system of particles is a simple expression of the molar fractions for the equilibrium state, but its intermediate values for transient (nonequilibrium) states can not be calculated directly from the particle coordinates so far. We propose a simple expression for the configurational entropy of mixing based solely on the set of instantaneous coordinates, which is suitable for the on-the-fly determination of the degree of mixing along a molecular dynamics trajectory. We illustrate the applicability of our scheme with the example of several molecular mixtures that exhibit fast and slow mixing and demixing processes within a molecular dynamics simulation.</p>","PeriodicalId":62,"journal":{"name":"The Journal of Physical Chemistry Letters","volume":"15 45","pages":"11320–11327 11320–11327"},"PeriodicalIF":4.8,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acs.jpclett.4c02819","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142640675","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}