首页 > 最新文献

2013 IEEE MTT-S International Microwave Workshop Series on RF and Wireless Technologies for Biomedical and Healthcare Applications (IMWS-BIO)最新文献

英文 中文
Multi-channel transmit/receive RF coil arrays for cardiac MRI at ultrahigh fields: Design, validation and clinical application 用于心脏MRI超高场多通道发射/接收射频线圈阵列:设计、验证和临床应用
T. Niendorf
This work focuses on explorations into human magnetic resonance (MR) at ultrahigh magnetic fields (B0≥7.0 Tesla, f≥298 MHz). Current trends in enabling multi-channel radiofrequency (RF) technology tailored for MR in the low wavelength regime are presented with the ultimate goal to attain clinically acceptable image quality. Validation of RF coil performance, mapping and shimming of transmission fields together with RF power deposition considerations are presented. Early applications of cardiovascular MR at 7.0 T are provided and their clinical implications are discussed. A concluding section ventures a glance beyond the horizon and explores future directions of RF coil developments.
本研究的重点是探索超高磁场(B0≥7.0特斯拉,f≥298 MHz)下的人体磁共振(MR)。目前的趋势是在低波长范围内为MR量身定制多通道射频(RF)技术,其最终目标是获得临床可接受的图像质量。介绍了射频线圈性能的验证、传输场的映射和闪烁以及射频功率沉积的考虑。提供了心血管MR在7.0 T的早期应用,并讨论了其临床意义。结论部分冒险一瞥超越地平线,并探讨射频线圈发展的未来方向。
{"title":"Multi-channel transmit/receive RF coil arrays for cardiac MRI at ultrahigh fields: Design, validation and clinical application","authors":"T. Niendorf","doi":"10.1109/IMWS-BIO.2013.6756145","DOIUrl":"https://doi.org/10.1109/IMWS-BIO.2013.6756145","url":null,"abstract":"This work focuses on explorations into human magnetic resonance (MR) at ultrahigh magnetic fields (B0≥7.0 Tesla, f≥298 MHz). Current trends in enabling multi-channel radiofrequency (RF) technology tailored for MR in the low wavelength regime are presented with the ultimate goal to attain clinically acceptable image quality. Validation of RF coil performance, mapping and shimming of transmission fields together with RF power deposition considerations are presented. Early applications of cardiovascular MR at 7.0 T are provided and their clinical implications are discussed. A concluding section ventures a glance beyond the horizon and explores future directions of RF coil developments.","PeriodicalId":6321,"journal":{"name":"2013 IEEE MTT-S International Microwave Workshop Series on RF and Wireless Technologies for Biomedical and Healthcare Applications (IMWS-BIO)","volume":"11 1","pages":"1-3"},"PeriodicalIF":0.0,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87632122","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Magnetically mediated thermoacoustic imaging and technical considerations on its coil design 磁介导热声成像及其线圈设计的技术考虑
Feng Xiaohua, Gao Fei, Zheng Yuanjin
Magnetically mediated thermoacoustic imaging exploits the electromagnetic spectrum of radio frequency magnetic field under 20 MHz to perform thermoacoustic imaging, which can provide deeper penetration than microwave or light irradiation. To achieve effective imaging, current implementation relies on magnetic resonance of the coil to deliver sufficiently strong magnetic field into conductive objects, including tissues. Different kind of coils can be utilized, which affects both the magnetic field distribution and the design of the resonance circuits. We investigated here those various coils and their implications for the imaging system. Preliminary thermoacoustic signal generation and imaging results are also presented.
磁介导热声成像利用20 MHz以下射频磁场的电磁波谱进行热声成像,比微波或光照射具有更深的穿透性。为了实现有效的成像,目前的实现依赖于线圈的磁共振,以向导电物体(包括组织)提供足够强的磁场。采用不同的线圈,既影响了磁场分布,也影响了谐振电路的设计。我们在这里研究了这些不同的线圈及其对成像系统的影响。并给出了初步的热声信号生成和成像结果。
{"title":"Magnetically mediated thermoacoustic imaging and technical considerations on its coil design","authors":"Feng Xiaohua, Gao Fei, Zheng Yuanjin","doi":"10.1109/IMWS-BIO.2013.6756168","DOIUrl":"https://doi.org/10.1109/IMWS-BIO.2013.6756168","url":null,"abstract":"Magnetically mediated thermoacoustic imaging exploits the electromagnetic spectrum of radio frequency magnetic field under 20 MHz to perform thermoacoustic imaging, which can provide deeper penetration than microwave or light irradiation. To achieve effective imaging, current implementation relies on magnetic resonance of the coil to deliver sufficiently strong magnetic field into conductive objects, including tissues. Different kind of coils can be utilized, which affects both the magnetic field distribution and the design of the resonance circuits. We investigated here those various coils and their implications for the imaging system. Preliminary thermoacoustic signal generation and imaging results are also presented.","PeriodicalId":6321,"journal":{"name":"2013 IEEE MTT-S International Microwave Workshop Series on RF and Wireless Technologies for Biomedical and Healthcare Applications (IMWS-BIO)","volume":"6 1","pages":"1-3"},"PeriodicalIF":0.0,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90402842","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Matching network to improve the transmission level of capacitive intra-body communication (IBC) channels 匹配网络提高容性体内通信(IBC)信道的传输水平
Linsheng Wu, J. Sakai, Hucheng Sun, Yong-xin Guo
The method of conjugate-image impedance is used to design the matching network for the capacitive intra-body communication channel. Narrow passbands around 20 MHz are observed in the measured responses of the matched cases, where the transmission levels are about 20 dB higher than the unmatched ones. The method versatility is also validated.
采用共轭像阻抗法设计了容性体内通信信道的匹配网络。在匹配的情况下,在测量的响应中观察到20 MHz左右的窄通带,其中传输电平比未匹配的情况高约20 dB。验证了该方法的通用性。
{"title":"Matching network to improve the transmission level of capacitive intra-body communication (IBC) channels","authors":"Linsheng Wu, J. Sakai, Hucheng Sun, Yong-xin Guo","doi":"10.1109/IMWS-BIO.2013.6756197","DOIUrl":"https://doi.org/10.1109/IMWS-BIO.2013.6756197","url":null,"abstract":"The method of conjugate-image impedance is used to design the matching network for the capacitive intra-body communication channel. Narrow passbands around 20 MHz are observed in the measured responses of the matched cases, where the transmission levels are about 20 dB higher than the unmatched ones. The method versatility is also validated.","PeriodicalId":6321,"journal":{"name":"2013 IEEE MTT-S International Microwave Workshop Series on RF and Wireless Technologies for Biomedical and Healthcare Applications (IMWS-BIO)","volume":"131 1","pages":"1-3"},"PeriodicalIF":0.0,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85617394","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
An overview of cancer treatment by terahertz radiation 太赫兹辐射治疗癌症的概述
Mengxi Wang, Guohui Yang, Wan-lu Li, Qun Wu
Cancer claimed the death of over 7.6 million people each year all over the world. Many attempts have being practiced in clinical applications, yet some new technologies are believed to make up for the shortcomings of existing methods. Some latest advances have aroused interests in terahertz imaging and the biological effect as promising diagnostic methods for cancer. This review, however, taps into the biological effects of terahertz radiation as well as the possible mechanism to reveal the potentials and prospects of THz in cancer treatment.
全世界每年有超过760万人死于癌症。在临床应用中进行了许多尝试,但一些新技术被认为弥补了现有方法的不足。一些最新的进展引起了人们对太赫兹成像和生物效应作为有前途的癌症诊断方法的兴趣。然而,这篇综述探讨了太赫兹辐射的生物学效应以及可能的机制,以揭示太赫兹辐射在癌症治疗中的潜力和前景。
{"title":"An overview of cancer treatment by terahertz radiation","authors":"Mengxi Wang, Guohui Yang, Wan-lu Li, Qun Wu","doi":"10.1109/IMWS-BIO.2013.6756170","DOIUrl":"https://doi.org/10.1109/IMWS-BIO.2013.6756170","url":null,"abstract":"Cancer claimed the death of over 7.6 million people each year all over the world. Many attempts have being practiced in clinical applications, yet some new technologies are believed to make up for the shortcomings of existing methods. Some latest advances have aroused interests in terahertz imaging and the biological effect as promising diagnostic methods for cancer. This review, however, taps into the biological effects of terahertz radiation as well as the possible mechanism to reveal the potentials and prospects of THz in cancer treatment.","PeriodicalId":6321,"journal":{"name":"2013 IEEE MTT-S International Microwave Workshop Series on RF and Wireless Technologies for Biomedical and Healthcare Applications (IMWS-BIO)","volume":"121 4 1","pages":"1-3"},"PeriodicalIF":0.0,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88766595","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 15
Optimization of geometry for a dual-row MRI array at 400 MHz 400 MHz双排MRI阵列的几何结构优化
M. Kozlov, R. Turner
We numerically investigated several magnetic resonance imaging radiofrequency transmit coil arrays, with and without a local shield, and with a range of scanner bore configurations. The latter had a significant influence on safety excitation efficiency. It is therefore important to include the scanner magnet room in the simulation domain, when the scanner bore is not isolated from the rest of the scan room by an electric shield or RF absorber. All arrays investigated provided similar inhomogeneity over the entire brain for a given excitation condition. However, for CP excitation mode transmit excitation efficiency was found to be higher for an array without a local shield.
我们对几种磁共振成像射频发射线圈阵列进行了数值研究,包括带和不带局部屏蔽,以及一系列扫描孔配置。后者对安全激励效率有显著影响。因此,当扫描孔没有通过电屏蔽或射频吸收器与扫描室的其余部分隔离时,将扫描仪磁室包括在仿真域中是很重要的。在给定的激发条件下,所有被调查的阵列在整个大脑中都提供了类似的不均匀性。然而,对于CP激励模式,没有局部屏蔽的阵列的发射激励效率更高。
{"title":"Optimization of geometry for a dual-row MRI array at 400 MHz","authors":"M. Kozlov, R. Turner","doi":"10.1109/IMWS-BIO.2013.6756173","DOIUrl":"https://doi.org/10.1109/IMWS-BIO.2013.6756173","url":null,"abstract":"We numerically investigated several magnetic resonance imaging radiofrequency transmit coil arrays, with and without a local shield, and with a range of scanner bore configurations. The latter had a significant influence on safety excitation efficiency. It is therefore important to include the scanner magnet room in the simulation domain, when the scanner bore is not isolated from the rest of the scan room by an electric shield or RF absorber. All arrays investigated provided similar inhomogeneity over the entire brain for a given excitation condition. However, for CP excitation mode transmit excitation efficiency was found to be higher for an array without a local shield.","PeriodicalId":6321,"journal":{"name":"2013 IEEE MTT-S International Microwave Workshop Series on RF and Wireless Technologies for Biomedical and Healthcare Applications (IMWS-BIO)","volume":"66 1","pages":"1-3"},"PeriodicalIF":0.0,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89688907","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
An inductive biomedical communication processing chain 一种感应生物医学通信处理链
C. Gong, Kai-Wen Yao, Chih-Hung Wang, K. Wang, M. Shiue, Chih-Cheng Chris Lu, Yi-Feng Luo
This paper presents study for rapid prototyping of a low-frequency implantable transceiver system. The idea stems from behavior modeling, followed by circuit design phase, for electronic implant requiring wireless transmission.
本文研究了一种低频可植入收发器系统的快速原型设计。这个想法源于行为建模,然后是电路设计阶段,用于需要无线传输的电子植入物。
{"title":"An inductive biomedical communication processing chain","authors":"C. Gong, Kai-Wen Yao, Chih-Hung Wang, K. Wang, M. Shiue, Chih-Cheng Chris Lu, Yi-Feng Luo","doi":"10.1109/IMWS-BIO.2013.6756207","DOIUrl":"https://doi.org/10.1109/IMWS-BIO.2013.6756207","url":null,"abstract":"This paper presents study for rapid prototyping of a low-frequency implantable transceiver system. The idea stems from behavior modeling, followed by circuit design phase, for electronic implant requiring wireless transmission.","PeriodicalId":6321,"journal":{"name":"2013 IEEE MTT-S International Microwave Workshop Series on RF and Wireless Technologies for Biomedical and Healthcare Applications (IMWS-BIO)","volume":"22 1","pages":"1-3"},"PeriodicalIF":0.0,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88317953","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microwave based diagnostics and treatment in practice 基于微波的诊疗实践
M. Persson, A. Fhager, H. Trefná, P. Takook, Yinan Yu, T. McKelvey, J. Karlsson, X. Zeng, H. Zirath, M. Elam
Globally, around 15 million people each year suffer a stroke. Only a small fraction of stroke patients who could benefit from thrombolytic treatment reach diagnosis and treatment in time. To increase this low figure we have developed microwave technology aiming to differentiate hemorrhagic from ischemic stroke patients. The standard method for breast cancer diagnosis today is X-ray mammography. Despite its recognized ability to detect tumors it suffers from some limitations. Neither the false positive nor the false negative detection rates are negligible. An interesting alternative being researched extensively today is microwave tomography. In our current strive to develop a clinical prototype we have found that the most suitable design consists of an antenna array placed in a full 3D pattern. During the last decade clinical studies have demonstrated the ability of microwave hyperthermia to dramatically enhance cancer patient survival. The fundamental challenge is to adequately heat deep-seated tumors while preventing surrounding healthy tissue from undesired heating and damage. We are specifically addressing the challenge to deliver power levels with spatial control, patient treatment planning, and noninvasive temperature measurements.
全球每年约有1500万人患中风。只有一小部分可以受益于溶栓治疗的脑卒中患者能够及时得到诊断和治疗。为了提高这个低数字,我们开发了微波技术,旨在区分出血性和缺血性脑卒中患者。目前诊断乳腺癌的标准方法是x射线乳房x光检查。尽管它具有检测肿瘤的公认能力,但它仍有一些局限性。假阳性和假阴性检出率都不容忽视。目前正在广泛研究的一个有趣的替代方法是微波断层扫描。在我们目前努力开发临床原型的过程中,我们发现最合适的设计包括以全3D模式放置的天线阵列。在过去的十年中,临床研究已经证明微波热疗能够显著提高癌症患者的生存率。最根本的挑战是在充分加热深层肿瘤的同时,防止周围的健康组织受到不必要的加热和损伤。我们正在专门解决提供具有空间控制,患者治疗计划和非侵入性温度测量的功率水平的挑战。
{"title":"Microwave based diagnostics and treatment in practice","authors":"M. Persson, A. Fhager, H. Trefná, P. Takook, Yinan Yu, T. McKelvey, J. Karlsson, X. Zeng, H. Zirath, M. Elam","doi":"10.1109/IMWS-BIO.2013.6756231","DOIUrl":"https://doi.org/10.1109/IMWS-BIO.2013.6756231","url":null,"abstract":"Globally, around 15 million people each year suffer a stroke. Only a small fraction of stroke patients who could benefit from thrombolytic treatment reach diagnosis and treatment in time. To increase this low figure we have developed microwave technology aiming to differentiate hemorrhagic from ischemic stroke patients. The standard method for breast cancer diagnosis today is X-ray mammography. Despite its recognized ability to detect tumors it suffers from some limitations. Neither the false positive nor the false negative detection rates are negligible. An interesting alternative being researched extensively today is microwave tomography. In our current strive to develop a clinical prototype we have found that the most suitable design consists of an antenna array placed in a full 3D pattern. During the last decade clinical studies have demonstrated the ability of microwave hyperthermia to dramatically enhance cancer patient survival. The fundamental challenge is to adequately heat deep-seated tumors while preventing surrounding healthy tissue from undesired heating and damage. We are specifically addressing the challenge to deliver power levels with spatial control, patient treatment planning, and noninvasive temperature measurements.","PeriodicalId":6321,"journal":{"name":"2013 IEEE MTT-S International Microwave Workshop Series on RF and Wireless Technologies for Biomedical and Healthcare Applications (IMWS-BIO)","volume":"5 1","pages":"1-3"},"PeriodicalIF":0.0,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86820964","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Efficient low-frequency integral equation solver for wireless power transfer modeling 无线电力传输建模的高效低频积分方程求解器
Yin Li, Sheng Sun
In this paper, the wireless power transfer system based on magnetic-coupled resonators is modeled and optimized by using low-frequency integral equation solver. For the low-frequency transfer system, the mesh size after discretization is usually much smaller than the wavelength. Hence, the low-frequency solvers are proposed to model this kind of structures with tiny meshes. After the spiral resonators are determined at specific frequency, we only need to optimize the distance between resonators and two loops. The numerical results show that we are no need to re-mesh the whole transfer system during the distance searching procedure, and the optimized distance can be easily obtained.
本文利用低频积分方程求解器对基于磁耦合谐振器的无线电力传输系统进行了建模和优化。对于低频传输系统,离散化后的网格尺寸通常比波长小得多。因此,提出了低频求解器来模拟这类具有微小网格的结构。在确定螺旋谐振器的特定频率后,我们只需要优化谐振器与两个回路之间的距离。数值计算结果表明,在距离搜索过程中不需要对整个传输系统进行重新网格划分,可以很容易地得到最优的传输距离。
{"title":"Efficient low-frequency integral equation solver for wireless power transfer modeling","authors":"Yin Li, Sheng Sun","doi":"10.1109/IMWS-BIO.2013.6756141","DOIUrl":"https://doi.org/10.1109/IMWS-BIO.2013.6756141","url":null,"abstract":"In this paper, the wireless power transfer system based on magnetic-coupled resonators is modeled and optimized by using low-frequency integral equation solver. For the low-frequency transfer system, the mesh size after discretization is usually much smaller than the wavelength. Hence, the low-frequency solvers are proposed to model this kind of structures with tiny meshes. After the spiral resonators are determined at specific frequency, we only need to optimize the distance between resonators and two loops. The numerical results show that we are no need to re-mesh the whole transfer system during the distance searching procedure, and the optimized distance can be easily obtained.","PeriodicalId":6321,"journal":{"name":"2013 IEEE MTT-S International Microwave Workshop Series on RF and Wireless Technologies for Biomedical and Healthcare Applications (IMWS-BIO)","volume":"23 1","pages":"1-3"},"PeriodicalIF":0.0,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85821543","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A non-invasive lung monitoring sensor with integrated body-area network 一种集成体域网络的无创肺监测传感器
S. Salman, Zheyu Wang, A. Kiourti, E. Topsakal, J. Volakis
This paper discusses the design and testing of a new robust system for in-situ continuous monitoring of the lung's condition. The system is composed of a body worn medical sensor with an accompanying wireless body area network (BAN) for remote health monitoring. The lung sensor consists of 17 electrodes, and operates at 40MHz. It aims to approximate the dielectric constant of the underlying lung tissue independent of variations in the outer layers (skin, fat, muscle and bone). Concurrently, the wireless BAN is used to transmit the measured dielectric constant to a mobile device via Bluetooth for continuous remote healthcare monitoring. In this paper, we present the design and experimental validation of the proposed lung sensor integrated with wireless BAN data link.
本文讨论了一种新的鲁棒的原位连续监测系统的设计和测试。该系统由穿戴式医疗传感器和用于远程健康监测的无线身体区域网络(BAN)组成。肺传感器由17个电极组成,工作频率为40MHz。它的目的是近似的介电常数的底层肺组织独立的变化在外层(皮肤,脂肪,肌肉和骨骼)。同时,利用无线BAN将测量到的介电常数通过蓝牙传输到移动设备,实现连续远程医疗监测。本文介绍了基于无线BAN数据链路的肺传感器的设计和实验验证。
{"title":"A non-invasive lung monitoring sensor with integrated body-area network","authors":"S. Salman, Zheyu Wang, A. Kiourti, E. Topsakal, J. Volakis","doi":"10.1109/IMWS-BIO.2013.6756243","DOIUrl":"https://doi.org/10.1109/IMWS-BIO.2013.6756243","url":null,"abstract":"This paper discusses the design and testing of a new robust system for in-situ continuous monitoring of the lung's condition. The system is composed of a body worn medical sensor with an accompanying wireless body area network (BAN) for remote health monitoring. The lung sensor consists of 17 electrodes, and operates at 40MHz. It aims to approximate the dielectric constant of the underlying lung tissue independent of variations in the outer layers (skin, fat, muscle and bone). Concurrently, the wireless BAN is used to transmit the measured dielectric constant to a mobile device via Bluetooth for continuous remote healthcare monitoring. In this paper, we present the design and experimental validation of the proposed lung sensor integrated with wireless BAN data link.","PeriodicalId":6321,"journal":{"name":"2013 IEEE MTT-S International Microwave Workshop Series on RF and Wireless Technologies for Biomedical and Healthcare Applications (IMWS-BIO)","volume":"22 1","pages":"1-3"},"PeriodicalIF":0.0,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86510486","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Electromagnetic modelling and measurement of antennas for wireless brain-machine interface systems 无线脑机接口系统天线的电磁建模与测量
T. Bjorninen, E. Moradi, L. Sydanheimo, J. Carmena, J. Rabaey, L. Ukkonen
We analyze the power and voltage transfer in a wireless link from an on-body transmit antenna to 1×1×1 mm3 antenna in a cortical implant to provide power and data telemetry for a battery-free brain-machine interface microelectronic system. We compare the wireless link performance with regular, segmented, and tilted transmit loop antennas. Moreover, we analyze the performance improvement achieved by inserting a magneto-dielectric core in the implant antenna. We also attest the simulation model through measurements in a liquid head phantom.
我们分析了皮质植入物中从身体传输天线到1×1×1 mm3天线的无线链路中的功率和电压传输,为无电池脑机接口微电子系统提供功率和数据遥测。我们比较了常规、分段和倾斜发射环路天线的无线链路性能。此外,我们还分析了在植入天线中插入磁介电磁芯所获得的性能改进。并通过液头模型的测量验证了仿真模型的正确性。
{"title":"Electromagnetic modelling and measurement of antennas for wireless brain-machine interface systems","authors":"T. Bjorninen, E. Moradi, L. Sydanheimo, J. Carmena, J. Rabaey, L. Ukkonen","doi":"10.1109/IMWS-BIO.2013.6756196","DOIUrl":"https://doi.org/10.1109/IMWS-BIO.2013.6756196","url":null,"abstract":"We analyze the power and voltage transfer in a wireless link from an on-body transmit antenna to 1×1×1 mm3 antenna in a cortical implant to provide power and data telemetry for a battery-free brain-machine interface microelectronic system. We compare the wireless link performance with regular, segmented, and tilted transmit loop antennas. Moreover, we analyze the performance improvement achieved by inserting a magneto-dielectric core in the implant antenna. We also attest the simulation model through measurements in a liquid head phantom.","PeriodicalId":6321,"journal":{"name":"2013 IEEE MTT-S International Microwave Workshop Series on RF and Wireless Technologies for Biomedical and Healthcare Applications (IMWS-BIO)","volume":"144 1","pages":"1-3"},"PeriodicalIF":0.0,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85672101","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 10
期刊
2013 IEEE MTT-S International Microwave Workshop Series on RF and Wireless Technologies for Biomedical and Healthcare Applications (IMWS-BIO)
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1