Pub Date : 2013-12-01DOI: 10.1109/IMWS-BIO.2013.6756228
Zhenguo Liu, Yong-xin Guo
A dual band low profile antenna for wireless body centric communications is presented in this paper. It is composed of a zeroth-order loop loaded periodically with mu-negative transmission line (MNG-TL) and a circular patch located in the center of loop. The MNG-TL loop based on the fundamental infinite wavelength property allows current along the loop to remain in phase and same magnitude so that a highly efficient and miniature loop antenna with omni-directional pattern in azimuth plane at low frequency band for on-body communications is generated. On the other hand, a unidirectional pattern in elevation plane at upper frequency band for off-body communications is also obtained by circular patch simultaneously. In order to improve the pattern in azimuth plane, a split ring resonator (SRR) element is used to direct the electromagnetic field propagation. By placing a single SRR at the near field of the loop in different location, the mechanic of function between SRR and loop is also presented.
{"title":"Dual band low profile antenna for body centric communications with a split ring resonator","authors":"Zhenguo Liu, Yong-xin Guo","doi":"10.1109/IMWS-BIO.2013.6756228","DOIUrl":"https://doi.org/10.1109/IMWS-BIO.2013.6756228","url":null,"abstract":"A dual band low profile antenna for wireless body centric communications is presented in this paper. It is composed of a zeroth-order loop loaded periodically with mu-negative transmission line (MNG-TL) and a circular patch located in the center of loop. The MNG-TL loop based on the fundamental infinite wavelength property allows current along the loop to remain in phase and same magnitude so that a highly efficient and miniature loop antenna with omni-directional pattern in azimuth plane at low frequency band for on-body communications is generated. On the other hand, a unidirectional pattern in elevation plane at upper frequency band for off-body communications is also obtained by circular patch simultaneously. In order to improve the pattern in azimuth plane, a split ring resonator (SRR) element is used to direct the electromagnetic field propagation. By placing a single SRR at the near field of the loop in different location, the mechanic of function between SRR and loop is also presented.","PeriodicalId":6321,"journal":{"name":"2013 IEEE MTT-S International Microwave Workshop Series on RF and Wireless Technologies for Biomedical and Healthcare Applications (IMWS-BIO)","volume":"1 1","pages":"1-3"},"PeriodicalIF":0.0,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76626166","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2013-12-01DOI: 10.1109/IMWS-BIO.2013.6756201
Yaping Wang, Xueguan Liu, Huiping Guo, Xinmi Yang
In mass production, the RF performance of wireless devices must be tested online. The directional capability of the antenna can be used to reduce the mutual interference between the testing systems. This paper designed a planar antenna for the above application. The planar horn-shaped structure is applied on the antenna to realize directional radiation and a ridge type slow-wave structure is introduced to reduce the antenna size. Simulation and measuring results meet well. The antenna has the advantages of good directivity, easy fabrication and low cost. So it has the potential to be applied to wireless device online test.
{"title":"Design of the directional horn-shaped planar antenna used for wireless mouse online test","authors":"Yaping Wang, Xueguan Liu, Huiping Guo, Xinmi Yang","doi":"10.1109/IMWS-BIO.2013.6756201","DOIUrl":"https://doi.org/10.1109/IMWS-BIO.2013.6756201","url":null,"abstract":"In mass production, the RF performance of wireless devices must be tested online. The directional capability of the antenna can be used to reduce the mutual interference between the testing systems. This paper designed a planar antenna for the above application. The planar horn-shaped structure is applied on the antenna to realize directional radiation and a ridge type slow-wave structure is introduced to reduce the antenna size. Simulation and measuring results meet well. The antenna has the advantages of good directivity, easy fabrication and low cost. So it has the potential to be applied to wireless device online test.","PeriodicalId":6321,"journal":{"name":"2013 IEEE MTT-S International Microwave Workshop Series on RF and Wireless Technologies for Biomedical and Healthcare Applications (IMWS-BIO)","volume":"274 1","pages":"1-3"},"PeriodicalIF":0.0,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76798326","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2013-12-01DOI: 10.1109/IMWS-BIO.2013.6756224
P. Du, S. Xiao
A fast fill-in technique of impedance matrix in the accurate subentire domain basis function method for analyzing large-scale planar periodic structures is presented. By using the proposed technique, the generation time can be reduced from O(N2c) to O(Nc), where Nc is the number of unit cells in the total periodic structure. To validate the accuracy and efficiency of the proposed method, several numerical examples are given.
{"title":"Fast fill-in of impedance matrix in the accurate subentire domain basis function method for large-scale planar periodic structures","authors":"P. Du, S. Xiao","doi":"10.1109/IMWS-BIO.2013.6756224","DOIUrl":"https://doi.org/10.1109/IMWS-BIO.2013.6756224","url":null,"abstract":"A fast fill-in technique of impedance matrix in the accurate subentire domain basis function method for analyzing large-scale planar periodic structures is presented. By using the proposed technique, the generation time can be reduced from O(N2c) to O(Nc), where Nc is the number of unit cells in the total periodic structure. To validate the accuracy and efficiency of the proposed method, several numerical examples are given.","PeriodicalId":6321,"journal":{"name":"2013 IEEE MTT-S International Microwave Workshop Series on RF and Wireless Technologies for Biomedical and Healthcare Applications (IMWS-BIO)","volume":"81 1","pages":"1-3"},"PeriodicalIF":0.0,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76845301","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2013-12-01DOI: 10.1109/IMWS-BIO.2013.6756237
J. Ha, S. Jung, M. Park, K. Lee, Y. Eo
A fully integrated 3-5 GHz CMOS UWB RF transceiver for wireless body area network (WBAN) is presented with the textile antenna in this paper. To achieve the low power and low complexity, OOK receiver topology and the digitally synthesized impulse generator are employed. For the rejection of the undesired interferers below 2.4 GHz, the tunable RF notch filter is integrated and the measured sensitivity shows 10 dB improvement of the sensitivity coexistent with the -30 dBm / 2.4 GHz interference. The transmitted UWB signal is generated in digital circuits, and both of the carrier frequency and bandwidth can be tunable. The measured energy efficiency of transmitter and the receiver sensitivity are 20.6 pJ/bit and -65 dBm, respectively. The measured maximum distance of communication is 1.5 m with the textile antenna in LOS channel.
{"title":"A fully integrated 3–5 GHz UWB RF transceiver for WBAN applications","authors":"J. Ha, S. Jung, M. Park, K. Lee, Y. Eo","doi":"10.1109/IMWS-BIO.2013.6756237","DOIUrl":"https://doi.org/10.1109/IMWS-BIO.2013.6756237","url":null,"abstract":"A fully integrated 3-5 GHz CMOS UWB RF transceiver for wireless body area network (WBAN) is presented with the textile antenna in this paper. To achieve the low power and low complexity, OOK receiver topology and the digitally synthesized impulse generator are employed. For the rejection of the undesired interferers below 2.4 GHz, the tunable RF notch filter is integrated and the measured sensitivity shows 10 dB improvement of the sensitivity coexistent with the -30 dBm / 2.4 GHz interference. The transmitted UWB signal is generated in digital circuits, and both of the carrier frequency and bandwidth can be tunable. The measured energy efficiency of transmitter and the receiver sensitivity are 20.6 pJ/bit and -65 dBm, respectively. The measured maximum distance of communication is 1.5 m with the textile antenna in LOS channel.","PeriodicalId":6321,"journal":{"name":"2013 IEEE MTT-S International Microwave Workshop Series on RF and Wireless Technologies for Biomedical and Healthcare Applications (IMWS-BIO)","volume":"30 1","pages":"1-3"},"PeriodicalIF":0.0,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73941613","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2013-12-01DOI: 10.1109/IMWS-BIO.2013.6756159
Songsong Zhang, Liang Lou, Tao Wang, W. Tsang, D. Kwong, Chengkuo Lee
Various Nanoelectromechanical Systems (NEMS) sensors using piezoresistive silicon nanowires (SiNWs) as the sensing elements for pressure, strain and flow detection are reported. Measurement results reveal both excellent scalability and sensing stability for SiNWs based NEMS devices. Additionally, the new ultracompact pressure sensor with novel micro-grooved diaphragm structure is reported for low pressure range measurement, which leads to potential bio-medical applications.
{"title":"Characterizations of silicon nanowires (SiNWs) embedded NEMS sensors and for potential biomedical applications","authors":"Songsong Zhang, Liang Lou, Tao Wang, W. Tsang, D. Kwong, Chengkuo Lee","doi":"10.1109/IMWS-BIO.2013.6756159","DOIUrl":"https://doi.org/10.1109/IMWS-BIO.2013.6756159","url":null,"abstract":"Various Nanoelectromechanical Systems (NEMS) sensors using piezoresistive silicon nanowires (SiNWs) as the sensing elements for pressure, strain and flow detection are reported. Measurement results reveal both excellent scalability and sensing stability for SiNWs based NEMS devices. Additionally, the new ultracompact pressure sensor with novel micro-grooved diaphragm structure is reported for low pressure range measurement, which leads to potential bio-medical applications.","PeriodicalId":6321,"journal":{"name":"2013 IEEE MTT-S International Microwave Workshop Series on RF and Wireless Technologies for Biomedical and Healthcare Applications (IMWS-BIO)","volume":"25 1","pages":"1-3"},"PeriodicalIF":0.0,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84556595","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2013-12-01DOI: 10.1109/IMWS-BIO.2013.6756249
Xiong Zhang, Yaxin Zheng, Ke-Qin Zhang
A simple electrochemical deposition method is introduced for the preparation of a hierarchical nanostructure comprised of graphene and carbon spheres. The carbon spheres are used as nano-spacers to separate graphene nanosheets, improving properties. This method allowed for the one-step preparation of a fibrous, flexible supercapacitor electrode. The fibrous, flexible supercapacitors fabricated based on this hierarchically nanostructured material achieved excellent electrochemical performance. With an areal capacitance of 60.02mF/cm2 (two-electrode system) in aqueous electrolyte, this structure displayed an areal capacitance three times than that of pure-graphene supercapacitors. This method can be employed to fabricate various graphene-based fibrous and flexible composite electrodes for wearable electronics and energy storage applications.
{"title":"Fibrous and flexible supercapacitors with a hierarchical nanostructure comprised of carbon spheres and graphene","authors":"Xiong Zhang, Yaxin Zheng, Ke-Qin Zhang","doi":"10.1109/IMWS-BIO.2013.6756249","DOIUrl":"https://doi.org/10.1109/IMWS-BIO.2013.6756249","url":null,"abstract":"A simple electrochemical deposition method is introduced for the preparation of a hierarchical nanostructure comprised of graphene and carbon spheres. The carbon spheres are used as nano-spacers to separate graphene nanosheets, improving properties. This method allowed for the one-step preparation of a fibrous, flexible supercapacitor electrode. The fibrous, flexible supercapacitors fabricated based on this hierarchically nanostructured material achieved excellent electrochemical performance. With an areal capacitance of 60.02mF/cm2 (two-electrode system) in aqueous electrolyte, this structure displayed an areal capacitance three times than that of pure-graphene supercapacitors. This method can be employed to fabricate various graphene-based fibrous and flexible composite electrodes for wearable electronics and energy storage applications.","PeriodicalId":6321,"journal":{"name":"2013 IEEE MTT-S International Microwave Workshop Series on RF and Wireless Technologies for Biomedical and Healthcare Applications (IMWS-BIO)","volume":"13 1","pages":"1-4"},"PeriodicalIF":0.0,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77350705","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2013-12-01DOI: 10.1109/IMWS-BIO.2013.6756166
Yilong Lu, Yi Huang
Many research results on biological effects of cellular phone radiations agree that the main possible hazards are the thermal effects while some other results reveal that the thermal effects due to handsets radiation are negligible. Few can deny the fact and puzzle that some users did suffer from such symptoms as headaches due to cellular phones. This paper provides a potential cause or possible answer to the puzzle through analysis and understanding of GSM standards. We can also reveal that the low power low duty cycle pulsed train amplitude envelop modulation of GSM uplink signals is the main cause of such non-thermal biological effect for non-ionizing radiation.
{"title":"Why headache using GSM cellular phones?","authors":"Yilong Lu, Yi Huang","doi":"10.1109/IMWS-BIO.2013.6756166","DOIUrl":"https://doi.org/10.1109/IMWS-BIO.2013.6756166","url":null,"abstract":"Many research results on biological effects of cellular phone radiations agree that the main possible hazards are the thermal effects while some other results reveal that the thermal effects due to handsets radiation are negligible. Few can deny the fact and puzzle that some users did suffer from such symptoms as headaches due to cellular phones. This paper provides a potential cause or possible answer to the puzzle through analysis and understanding of GSM standards. We can also reveal that the low power low duty cycle pulsed train amplitude envelop modulation of GSM uplink signals is the main cause of such non-thermal biological effect for non-ionizing radiation.","PeriodicalId":6321,"journal":{"name":"2013 IEEE MTT-S International Microwave Workshop Series on RF and Wireless Technologies for Biomedical and Healthcare Applications (IMWS-BIO)","volume":"51 6","pages":"1-4"},"PeriodicalIF":0.0,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72606642","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2013-12-01DOI: 10.1109/IMWS-BIO.2013.6756221
Wanlan Yang, Kaixue Ma, K. Yeo, W. M. Lim, Z. Kong
This paper presents the design of a low profile dual-band (on- / off-body modes) planar antenna in meandered shape with microstrip line feed for biomedical applications. The antenna is designed to operate in the ZigBee dual band 868-928 MHz and 2.4-2.5 GHz respectively. While the proposed antenna is simulated on direct surface of human skin model, it shows a good performance with the broad bandwidth for |S11| less than -10 dB. The antenna is designed with 50 Ω input port and on LTCC substrate (εr = 7.1, tanδ = 0.005) with miniaturized volume of 16.5 mm × 17 mm × 0.8 mm.
本文提出了一种低轮廓双频(开/离体模式)弯曲微带馈线平面天线的设计。该天线设计工作在ZigBee双频868-928 MHz和2.4-2.5 GHz。该天线在人体皮肤模型的直接表面上进行了仿真,结果表明该天线具有良好的性能,且带宽小于-10 dB。该天线设计为50 Ω输入端口,采用LTCC衬底(εr = 7.1, tanδ = 0.005),小型化体积为16.5 mm × 17 mm × 0.8 mm。
{"title":"A compact dual-band meander-line antenna for biomedical applications","authors":"Wanlan Yang, Kaixue Ma, K. Yeo, W. M. Lim, Z. Kong","doi":"10.1109/IMWS-BIO.2013.6756221","DOIUrl":"https://doi.org/10.1109/IMWS-BIO.2013.6756221","url":null,"abstract":"This paper presents the design of a low profile dual-band (on- / off-body modes) planar antenna in meandered shape with microstrip line feed for biomedical applications. The antenna is designed to operate in the ZigBee dual band 868-928 MHz and 2.4-2.5 GHz respectively. While the proposed antenna is simulated on direct surface of human skin model, it shows a good performance with the broad bandwidth for |S11| less than -10 dB. The antenna is designed with 50 Ω input port and on LTCC substrate (εr = 7.1, tanδ = 0.005) with miniaturized volume of 16.5 mm × 17 mm × 0.8 mm.","PeriodicalId":6321,"journal":{"name":"2013 IEEE MTT-S International Microwave Workshop Series on RF and Wireless Technologies for Biomedical and Healthcare Applications (IMWS-BIO)","volume":"46 1","pages":"1-3"},"PeriodicalIF":0.0,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73818218","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2013-12-01DOI: 10.1109/IMWS-BIO.2013.6756205
Liyun Yan, Wenmei Zhang, R. Ma, Xinwei Chen
This paper presents a novel chipless radio frequency identification (RFID) tag that encodes data based on space angle information. The radiating unit of the proposed tag has the obvious character of the space angle. Compared with that based on the time domain reflectometry and spectral signature, the chipless tags based on space angle information can obtain the larger encoding capacity. Also, the proposed tag is identified by the complex scattered field in two orthogonal polarization directions.
{"title":"Chipless RFID tag based on space angle information","authors":"Liyun Yan, Wenmei Zhang, R. Ma, Xinwei Chen","doi":"10.1109/IMWS-BIO.2013.6756205","DOIUrl":"https://doi.org/10.1109/IMWS-BIO.2013.6756205","url":null,"abstract":"This paper presents a novel chipless radio frequency identification (RFID) tag that encodes data based on space angle information. The radiating unit of the proposed tag has the obvious character of the space angle. Compared with that based on the time domain reflectometry and spectral signature, the chipless tags based on space angle information can obtain the larger encoding capacity. Also, the proposed tag is identified by the complex scattered field in two orthogonal polarization directions.","PeriodicalId":6321,"journal":{"name":"2013 IEEE MTT-S International Microwave Workshop Series on RF and Wireless Technologies for Biomedical and Healthcare Applications (IMWS-BIO)","volume":"19 1","pages":"1-3"},"PeriodicalIF":0.0,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75339509","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2013-12-01DOI: 10.1109/IMWS-BIO.2013.6756194
T. Basmer, Nicole Todtenberg, Frank Popiela, Steffen Ortmann, M. Birkholz
A path loss determination for 403 MHz MICS band antennas based on measurements in body phantom liquid is presented. Suitable antennas were identified that can be used in medical implants. A reproducible measurement setup has been tested that allows for a quantitative comparison of different implant antennas.
{"title":"Antennas for medical implant applications operating in the MICS band","authors":"T. Basmer, Nicole Todtenberg, Frank Popiela, Steffen Ortmann, M. Birkholz","doi":"10.1109/IMWS-BIO.2013.6756194","DOIUrl":"https://doi.org/10.1109/IMWS-BIO.2013.6756194","url":null,"abstract":"A path loss determination for 403 MHz MICS band antennas based on measurements in body phantom liquid is presented. Suitable antennas were identified that can be used in medical implants. A reproducible measurement setup has been tested that allows for a quantitative comparison of different implant antennas.","PeriodicalId":6321,"journal":{"name":"2013 IEEE MTT-S International Microwave Workshop Series on RF and Wireless Technologies for Biomedical and Healthcare Applications (IMWS-BIO)","volume":"62 1","pages":"1-3"},"PeriodicalIF":0.0,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90688622","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}