首页 > 最新文献

2018 IEEE 14th International Conference on e-Science (e-Science)最新文献

英文 中文
Fast and Easy Mapping of Relational Data to RDF for Rapid Learning Health Care 用于快速学习医疗保健的关系数据到RDF的快速简便映射
Pub Date : 2018-10-01 DOI: 10.1109/eScience.2018.00110
M. Vos, Berend Weel, Adrienne Mendrik, A. Dekker, J. V. Soest
n/a
{"title":"Fast and Easy Mapping of Relational Data to RDF for Rapid Learning Health Care","authors":"M. Vos, Berend Weel, Adrienne Mendrik, A. Dekker, J. V. Soest","doi":"10.1109/eScience.2018.00110","DOIUrl":"https://doi.org/10.1109/eScience.2018.00110","url":null,"abstract":"n/a","PeriodicalId":6476,"journal":{"name":"2018 IEEE 14th International Conference on e-Science (e-Science)","volume":"1 1","pages":"382-383"},"PeriodicalIF":0.0,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79894146","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
FATBIRD: A Tool for Flight and Trajectories Analyses of Birds FATBIRD:鸟类飞行和轨迹分析工具
Pub Date : 2018-10-01 DOI: 10.1109/eScience.2018.00023
Daniyal Kazempour, A. Beer, Friederike Herzog, Daniel Kaltenthaler, Johannes-Y. Lohrer, T. Seidl
Abstract-Analyzing flyways of birds is one approach ornithologists pursue e.g. to be able to detect potential risks during the animal's migration. But this analysis is not trivial and the functionalities of existing supporting tools are neither perfect nor all-encompassing. In this paper, we introduce our new FATBIRD Tool, which not only visualizes flyways or arbitrary trajectories, but also helps the researchers in several aspects of the analysis. Similarities between all trajectories of the individual birds are calculated via Dynamic Time Warping distances, which is to the best of our knowledge the first usage in this field and delivers promising results. We show the functionalities of our tool on a use case based on real data of a GPS/GSM telemetry study of Eurasian curlews of the "Bavarian Society for the Protection of Birds". The similarities are shown in an intuitively understandable heat map colored distance matrix as well as a hierarchical clustering dendrogram. The clustering of all data points is performed and shown, and the data can be filtered by several parameters. With that, potential stop-over and wintering areas can be detected very fast and easily. After having obtained the similarities and differences of the trajectories in an automatic way, the researchers can focus on the biological reasons of the generated results of the FATBIRD Tool. These can lead to a better understanding of e.g. why certain birds die on their flyways and thus to new approaches to develop optimized conservation measures for the specific species.
分析鸟类的飞行路线是鸟类学家追求的一种方法,例如能够发现动物迁徙过程中的潜在风险。但是这种分析并不是微不足道的,现有支持工具的功能既不完美也不全面。在本文中,我们介绍了新的FATBIRD工具,它不仅可以可视化飞行路线或任意轨迹,而且可以帮助研究人员在几个方面进行分析。个体鸟的所有轨迹之间的相似性是通过动态时间翘曲距离计算的,据我们所知,这是该领域的第一次使用,并提供了有希望的结果。我们以“巴伐利亚鸟类保护协会”的欧亚鸻的GPS/GSM遥测研究的真实数据为例展示了我们的工具的功能。相似之处显示在直观易懂的热图彩色距离矩阵以及分层聚类树状图中。执行并显示所有数据点的聚类,并可以通过几个参数过滤数据。有了它,潜在的中途停留和越冬区域可以非常快速和容易地发现。在自动获得轨迹的异同之后,研究人员可以将重点放在FATBIRD工具生成结果的生物学原因上。这些可以帮助我们更好地理解为什么某些鸟类会在飞行途中死亡,从而找到针对特定物种制定优化保护措施的新方法。
{"title":"FATBIRD: A Tool for Flight and Trajectories Analyses of Birds","authors":"Daniyal Kazempour, A. Beer, Friederike Herzog, Daniel Kaltenthaler, Johannes-Y. Lohrer, T. Seidl","doi":"10.1109/eScience.2018.00023","DOIUrl":"https://doi.org/10.1109/eScience.2018.00023","url":null,"abstract":"Abstract-Analyzing flyways of birds is one approach ornithologists pursue e.g. to be able to detect potential risks during the animal's migration. But this analysis is not trivial and the functionalities of existing supporting tools are neither perfect nor all-encompassing. In this paper, we introduce our new FATBIRD Tool, which not only visualizes flyways or arbitrary trajectories, but also helps the researchers in several aspects of the analysis. Similarities between all trajectories of the individual birds are calculated via Dynamic Time Warping distances, which is to the best of our knowledge the first usage in this field and delivers promising results. We show the functionalities of our tool on a use case based on real data of a GPS/GSM telemetry study of Eurasian curlews of the \"Bavarian Society for the Protection of Birds\". The similarities are shown in an intuitively understandable heat map colored distance matrix as well as a hierarchical clustering dendrogram. The clustering of all data points is performed and shown, and the data can be filtered by several parameters. With that, potential stop-over and wintering areas can be detected very fast and easily. After having obtained the similarities and differences of the trajectories in an automatic way, the researchers can focus on the biological reasons of the generated results of the FATBIRD Tool. These can lead to a better understanding of e.g. why certain birds die on their flyways and thus to new approaches to develop optimized conservation measures for the specific species.","PeriodicalId":6476,"journal":{"name":"2018 IEEE 14th International Conference on e-Science (e-Science)","volume":"22 1","pages":"75-82"},"PeriodicalIF":0.0,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74052355","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
FDQ: Advance Analytics Over Real Scientific Array Datasets FDQ:基于真实科学阵列数据集的高级分析
Pub Date : 2018-10-01 DOI: 10.1109/eScience.2018.00134
Roee Ebenstein, G. Agrawal, Jiali Wang, J. Boley, R. Kettimuthu
Scientific data is not only rapidly increasing in size, but in complexity of operations performed upon as well. Compared to the prevalent use of ad-hoc approaches, structured operators provide many benefits. In this paper, we introduce FDQ - an Analytical Functions Distributed Querying Engine intended for Array Data. Motivated by needs of climate scientists in terms of both functionality and scalability, we make three major contributions: First, we introduce a new class of analytical querying - querying over windows where the planes that construct these windows are internally ordered. An example of this querying type is the introduced MINUS analytical function, a function that supports querying over accumulative measurements with data resets. Second, we describe in detail memory management optimizations for efficient processing of analytical (and other structured operators) querying over large datasets. Last, we provide efficient methods to execute these queries in parallel, using a sectioned (tiled) approach. We evaluate our methods using real multi-dimensional climate datasets, and show they outperform existing approaches. When running locally (not in a distributed manner), we observed an average performance improvement of 538% compared to other engines for analytical calculations. We also show our methods performance improve linearly with the provided computing resources (scale up and out).
科学数据不仅在规模上迅速增加,而且其操作的复杂性也在迅速增加。与普遍使用的特设方法相比,结构化操作符提供了许多好处。本文介绍了面向数组数据的分析函数分布式查询引擎FDQ。出于气候科学家在功能和可扩展性方面的需求,我们做出了三个主要贡献:首先,我们引入了一类新的分析查询-在构建这些窗口的平面内部有序的窗口上查询。这种查询类型的一个示例是引入的MINUS分析函数,该函数支持对具有数据重置的累积测量值进行查询。其次,我们详细描述了在大型数据集上有效处理分析(和其他结构化操作符)查询的内存管理优化。最后,我们提供了使用分段(平铺)方法并行执行这些查询的有效方法。我们使用真实的多维气候数据集来评估我们的方法,并表明它们优于现有的方法。在本地运行时(不是以分布式方式),我们观察到与其他引擎相比,用于分析计算的平均性能提高了538%。我们还展示了我们的方法性能随着所提供的计算资源(向上和向外扩展)而线性提高。
{"title":"FDQ: Advance Analytics Over Real Scientific Array Datasets","authors":"Roee Ebenstein, G. Agrawal, Jiali Wang, J. Boley, R. Kettimuthu","doi":"10.1109/eScience.2018.00134","DOIUrl":"https://doi.org/10.1109/eScience.2018.00134","url":null,"abstract":"Scientific data is not only rapidly increasing in size, but in complexity of operations performed upon as well. Compared to the prevalent use of ad-hoc approaches, structured operators provide many benefits. In this paper, we introduce FDQ - an Analytical Functions Distributed Querying Engine intended for Array Data. Motivated by needs of climate scientists in terms of both functionality and scalability, we make three major contributions: First, we introduce a new class of analytical querying - querying over windows where the planes that construct these windows are internally ordered. An example of this querying type is the introduced MINUS analytical function, a function that supports querying over accumulative measurements with data resets. Second, we describe in detail memory management optimizations for efficient processing of analytical (and other structured operators) querying over large datasets. Last, we provide efficient methods to execute these queries in parallel, using a sectioned (tiled) approach. We evaluate our methods using real multi-dimensional climate datasets, and show they outperform existing approaches. When running locally (not in a distributed manner), we observed an average performance improvement of 538% compared to other engines for analytical calculations. We also show our methods performance improve linearly with the provided computing resources (scale up and out).","PeriodicalId":6476,"journal":{"name":"2018 IEEE 14th International Conference on e-Science (e-Science)","volume":"1 1","pages":"453-463"},"PeriodicalIF":0.0,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82063966","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Mining Events Preceding a Cancer Diagnosis 癌症诊断前的事件挖掘
Pub Date : 2018-10-01 DOI: 10.1109/eScience.2018.00059
Rebecka Weegar
This study describes an approach for mining events preceding a cervical cancer diagnosis from health records.
本研究描述了一种从健康记录中挖掘宫颈癌诊断前事件的方法。
{"title":"Mining Events Preceding a Cancer Diagnosis","authors":"Rebecka Weegar","doi":"10.1109/eScience.2018.00059","DOIUrl":"https://doi.org/10.1109/eScience.2018.00059","url":null,"abstract":"This study describes an approach for mining events preceding a cervical cancer diagnosis from health records.","PeriodicalId":6476,"journal":{"name":"2018 IEEE 14th International Conference on e-Science (e-Science)","volume":"17 1","pages":"295-296"},"PeriodicalIF":0.0,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84338179","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Poster Abstracts eScience 2018 Conference eScience 2018会议海报摘要
Pub Date : 2018-10-01 DOI: 10.1109/eScience.2018.00092
B. V. Werkhoven, Adrienne Mendrik, R. V. Nieuwpoort
n/a
N/A
{"title":"Poster Abstracts eScience 2018 Conference","authors":"B. V. Werkhoven, Adrienne Mendrik, R. V. Nieuwpoort","doi":"10.1109/eScience.2018.00092","DOIUrl":"https://doi.org/10.1109/eScience.2018.00092","url":null,"abstract":"n/a","PeriodicalId":6476,"journal":{"name":"2018 IEEE 14th International Conference on e-Science (e-Science)","volume":"45 1","pages":"349-349"},"PeriodicalIF":0.0,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87214843","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Building the World's Largest Radio Telescope: The Square Kilometre Array Science Data Processor 建造世界上最大的射电望远镜:平方公里阵列科学数据处理器
Pub Date : 2018-10-01 DOI: 10.1109/eScience.2018.00101
J. Farnes, B. Mort, F. Dulwich, K. Adámek, Anna Brown, Jan Novotný, S. Salvini, W. Armour
The Square Kilometre Array (SKA) will be the largest radio telescope constructed to date and the largest Big Data project in the known Universe. The first phase of the project will generate 160 terabytes every second. This amounts to 5 zettabytes (5 million petabytes) of data that will be generated by the facility each year - a data rate equivalent to 5 times the estimated global internet traffic in 2015. These data need to be reduced and then continuously ingested by the SKA Science Data Processor (SDP). Within the SDP Consortium, we are contributing to various roles in the development of the telescope including building a lightweight end-to-end prototype of the major components of the SDP system - a project we call the SDP Integration Prototype (SIP). The aim is to build a mini, fully-operational SDP, for which we have been developing realistic SKA-like science pipelines that can handle these unprecedented data volumes.
平方公里阵列(SKA)将是迄今为止建造的最大的射电望远镜,也是已知宇宙中最大的大数据项目。该项目的第一阶段将每秒产生160tb的数据。这相当于该设施每年将产生5zb(500万拍字节)的数据,数据速率相当于2015年全球互联网流量的5倍。这些数据需要被简化,然后被SKA科学数据处理器(SDP)不断地吸收。在SDP联盟中,我们在望远镜的开发中扮演着不同的角色,包括构建SDP系统主要组件的轻量级端到端原型-我们称之为SDP集成原型(SIP)的项目。我们的目标是建立一个小型的、全功能的SDP,为此我们一直在开发类似ska的科学管道,可以处理这些前所未有的数据量。
{"title":"Building the World's Largest Radio Telescope: The Square Kilometre Array Science Data Processor","authors":"J. Farnes, B. Mort, F. Dulwich, K. Adámek, Anna Brown, Jan Novotný, S. Salvini, W. Armour","doi":"10.1109/eScience.2018.00101","DOIUrl":"https://doi.org/10.1109/eScience.2018.00101","url":null,"abstract":"The Square Kilometre Array (SKA) will be the largest radio telescope constructed to date and the largest Big Data project in the known Universe. The first phase of the project will generate 160 terabytes every second. This amounts to 5 zettabytes (5 million petabytes) of data that will be generated by the facility each year - a data rate equivalent to 5 times the estimated global internet traffic in 2015. These data need to be reduced and then continuously ingested by the SKA Science Data Processor (SDP). Within the SDP Consortium, we are contributing to various roles in the development of the telescope including building a lightweight end-to-end prototype of the major components of the SDP system - a project we call the SDP Integration Prototype (SIP). The aim is to build a mini, fully-operational SDP, for which we have been developing realistic SKA-like science pipelines that can handle these unprecedented data volumes.","PeriodicalId":6476,"journal":{"name":"2018 IEEE 14th International Conference on e-Science (e-Science)","volume":"75 1","pages":"366-367"},"PeriodicalIF":0.0,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88961051","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Analytics Pipeline for Left Ventricle Segmentation and Volume Estimation on Cardiac MRI Using Deep Learning 基于深度学习的心脏MRI左心室分割和体积估计分析流水线
Pub Date : 2018-10-01 DOI: 10.1109/eScience.2018.00065
M. H. Nguyen, Ehab Abdelmaguid, Jolene Huang, Sanjay Kenchareddy, D. Singla, L. Wilke, Marcus Bobar, Eric D. Carruth, Dylan Uys, I. Altintas, E. Muse, Giorgio Quer, S. Steinhubl
n/a
{"title":"Analytics Pipeline for Left Ventricle Segmentation and Volume Estimation on Cardiac MRI Using Deep Learning","authors":"M. H. Nguyen, Ehab Abdelmaguid, Jolene Huang, Sanjay Kenchareddy, D. Singla, L. Wilke, Marcus Bobar, Eric D. Carruth, Dylan Uys, I. Altintas, E. Muse, Giorgio Quer, S. Steinhubl","doi":"10.1109/eScience.2018.00065","DOIUrl":"https://doi.org/10.1109/eScience.2018.00065","url":null,"abstract":"n/a","PeriodicalId":6476,"journal":{"name":"2018 IEEE 14th International Conference on e-Science (e-Science)","volume":"28 1","pages":"305-306"},"PeriodicalIF":0.0,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89284851","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Automated Composition of Scientific Workflows in Mass Spectrometry-Based Proteomics 基于质谱的蛋白质组学科学工作流程的自动组成
Pub Date : 2018-10-01 DOI: 10.1109/eScience.2018.00098
Anna-Lena Lamprecht, Magnus Palmblad, J. Ison, V. Schwämmle
Numerous software utilities operating on mass spectrometry (MS) data are described in the literature that provide specific operations as building blocks for the assembly of purposespecific workflows. Working out which tools and combinations are applicable or optimal is often hard: insufficient annotation of tool functions and interfaces impedes finding viable tool combinations, and potentially compatible tools may not, in practice, operate together. Thus researchers face difficulties in selecting practical and effective data analysis pipelines for a specific experimental design.
文献中描述了许多在质谱(MS)数据上操作的软件实用程序,它们提供了作为特定目的工作流组装的构建块的特定操作。确定哪些工具和组合是适用的或最优的通常是困难的:工具功能和接口的注释不足阻碍了找到可行的工具组合,并且潜在的兼容工具在实践中可能不能一起操作。因此,研究人员在为特定的实验设计选择实用有效的数据分析管道时面临困难。
{"title":"Automated Composition of Scientific Workflows in Mass Spectrometry-Based Proteomics","authors":"Anna-Lena Lamprecht, Magnus Palmblad, J. Ison, V. Schwämmle","doi":"10.1109/eScience.2018.00098","DOIUrl":"https://doi.org/10.1109/eScience.2018.00098","url":null,"abstract":"Numerous software utilities operating on mass spectrometry (MS) data are described in the literature that provide specific operations as building blocks for the assembly of purposespecific workflows. Working out which tools and combinations are applicable or optimal is often hard: insufficient annotation of tool functions and interfaces impedes finding viable tool combinations, and potentially compatible tools may not, in practice, operate together. Thus researchers face difficulties in selecting practical and effective data analysis pipelines for a specific experimental design.","PeriodicalId":6476,"journal":{"name":"2018 IEEE 14th International Conference on e-Science (e-Science)","volume":"101 1","pages":"360-361"},"PeriodicalIF":0.0,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77443171","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sight-Seeing in the Eyes of Deep Neural Networks 深度神经网络眼中的观光
Pub Date : 2018-10-01 DOI: 10.1109/eScience.2018.00125
Seyran Khademi, Xiangwei Shi, Tino Mager, R. Siebes, C. Hein, V. D. Boer, J. V. Gemert
We address the interpretability of convolutional neural networks (CNNs) for predicting a geo-location from an image. In a pilot experiment we classify images of Pittsburgh vs Tokyo and visualize the learned CNN filters. We found that varying the CNN architecture leads to variating in the visualized filters. This calls for further investigation of the effective parameters on the interpretability of CNNs.
我们解决了卷积神经网络(cnn)从图像预测地理位置的可解释性。在一个试点实验中,我们对匹兹堡和东京的图像进行分类,并将学习到的CNN过滤器可视化。我们发现,改变CNN架构会导致可视化滤波器的变化。这就需要进一步研究影响cnn可解释性的有效参数。
{"title":"Sight-Seeing in the Eyes of Deep Neural Networks","authors":"Seyran Khademi, Xiangwei Shi, Tino Mager, R. Siebes, C. Hein, V. D. Boer, J. V. Gemert","doi":"10.1109/eScience.2018.00125","DOIUrl":"https://doi.org/10.1109/eScience.2018.00125","url":null,"abstract":"We address the interpretability of convolutional neural networks (CNNs) for predicting a geo-location from an image. In a pilot experiment we classify images of Pittsburgh vs Tokyo and visualize the learned CNN filters. We found that varying the CNN architecture leads to variating in the visualized filters. This calls for further investigation of the effective parameters on the interpretability of CNNs.","PeriodicalId":6476,"journal":{"name":"2018 IEEE 14th International Conference on e-Science (e-Science)","volume":"107 1","pages":"407-408"},"PeriodicalIF":0.0,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77863354","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
TrackML: A High Energy Physics Particle Tracking Challenge TrackML:高能物理粒子跟踪挑战
Pub Date : 2018-10-01 DOI: 10.1109/eScience.2018.00088
P. Calafiura, S. Farrell, H. Gray, J. Vlimant, V. Innocente, A. Salzburger, S. Amrouche, T. Golling, M. Kiehn, Victor Estrade, Cécile Germain, Isabelle M Guyon, E. Moyse, D. Rousseau, Y. Yilmaz, V. Gligorov, M. Hushchyn, A. Ustyuzhanin
n/a
{"title":"TrackML: A High Energy Physics Particle Tracking Challenge","authors":"P. Calafiura, S. Farrell, H. Gray, J. Vlimant, V. Innocente, A. Salzburger, S. Amrouche, T. Golling, M. Kiehn, Victor Estrade, Cécile Germain, Isabelle M Guyon, E. Moyse, D. Rousseau, Y. Yilmaz, V. Gligorov, M. Hushchyn, A. Ustyuzhanin","doi":"10.1109/eScience.2018.00088","DOIUrl":"https://doi.org/10.1109/eScience.2018.00088","url":null,"abstract":"n/a","PeriodicalId":6476,"journal":{"name":"2018 IEEE 14th International Conference on e-Science (e-Science)","volume":"163 1","pages":"344-344"},"PeriodicalIF":0.0,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80300544","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 8
期刊
2018 IEEE 14th International Conference on e-Science (e-Science)
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1