首页 > 最新文献

International Journal of Plant Engineering and Management最新文献

英文 中文
We Never Built Small Modular Reactors (SMRs), but What Do We Know About Modularization in Construction? 我们从未建造过小型模块化反应堆(smr),但我们对建设中的模块化了解多少?
Pub Date : 2018-07-22 DOI: 10.1115/ICONE26-81604
Benito Mignacca, G. Locatelli, Mahmoud Alaassar, D. Invernizzi
The key characteristics of small modular reactors (SMRs), as their name emphasized, are their size and modularity. Since SMRs are a family of novel reactor designs, there is a gap of empirical knowledge about the cost/benefit analysis of modularization. Conversely, in other sectors (e.g. Oil & Gas) the empirical experience on modularization is much greater. This paper provides a structured knowledge transfer from the general literature (i.e. other major infrastructure) and the Oil & Gas sector to the nuclear power plant construction world. Indeed, in the project management literature, a number of references discuss the costs and benefits determined by the transition from the stick-built construction to modularization, and the main benefits presented in the literature are the reduction of the construction cost and the schedule compression. Additional costs might arise from an increased management hurdle and higher transportation expenses. The paper firstly provides a structured literature review of the benefits and costs of modularization divided into qualitative and quantitative references. In the second part, the paper presents the results of series of interviews with Oil & Gas project managers about the value of modularization in this sector.
小型模块化反应堆(smr)的主要特点,正如其名称所强调的,是它们的尺寸和模块化。由于小型反应堆是一种新型反应堆设计,因此关于模块化成本/效益分析的经验知识存在空白。相反,在其他行业(如石油和天然气),模块化的经验要丰富得多。本文提供了从一般文献(即其他主要基础设施)和石油和天然气部门到核电站建设领域的结构化知识转移。事实上,在项目管理文献中,许多参考文献讨论了从粘贴式建筑到模块化的转变所决定的成本和收益,文献中提出的主要收益是建筑成本的降低和进度的压缩。管理障碍的增加和运输费用的增加可能会产生额外的费用。本文首先对模块化的收益和成本进行了结构化的文献综述,分为定性参考文献和定量参考文献。在第二部分,本文介绍了对油气项目经理的一系列访谈结果,这些访谈是关于模块化在该领域的价值。
{"title":"We Never Built Small Modular Reactors (SMRs), but What Do We Know About Modularization in Construction?","authors":"Benito Mignacca, G. Locatelli, Mahmoud Alaassar, D. Invernizzi","doi":"10.1115/ICONE26-81604","DOIUrl":"https://doi.org/10.1115/ICONE26-81604","url":null,"abstract":"The key characteristics of small modular reactors (SMRs), as their name emphasized, are their size and modularity. Since SMRs are a family of novel reactor designs, there is a gap of empirical knowledge about the cost/benefit analysis of modularization. Conversely, in other sectors (e.g. Oil & Gas) the empirical experience on modularization is much greater. This paper provides a structured knowledge transfer from the general literature (i.e. other major infrastructure) and the Oil & Gas sector to the nuclear power plant construction world. Indeed, in the project management literature, a number of references discuss the costs and benefits determined by the transition from the stick-built construction to modularization, and the main benefits presented in the literature are the reduction of the construction cost and the schedule compression. Additional costs might arise from an increased management hurdle and higher transportation expenses. The paper firstly provides a structured literature review of the benefits and costs of modularization divided into qualitative and quantitative references. In the second part, the paper presents the results of series of interviews with Oil & Gas project managers about the value of modularization in this sector.","PeriodicalId":65607,"journal":{"name":"International Journal of Plant Engineering and Management","volume":"13 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2018-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87468330","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 26
Upgrade and Shakedown Test of a High Temperature Fluoride Salt Test Loop 高温氟盐试验回路的升级调试
Pub Date : 2018-07-22 DOI: 10.1115/ICONE26-81222
X. Kong, Yuan Fu, Jianyu Zhang, Hui-Ju Lu, Naxiu Wang
A FLiNaK high temperature test loop, which was designed to support the Thorium Molten Salt Reactor (TMSR) program, was constructed in 2012 and is the largest engineering-scale fluoride loop in the world. The loop is built of Hastelloy C276 and is capable of operating at the flow rate up to 25m3/h and at the temperature up to 650°C. It consists of an overhung impeller sump-type centrifugal pump, an electric heater, a heat exchanger, a freeze valve and a mechanical one, a storage tank, etc. Salt purification was conducted in batch mode before it was transferred to and then stored in the storage tank. The facility was upgraded in three ways last year, with aims of testing a 30kW electric heater and supporting the heat transfer experiment in heat exchanger. Firstly, an original 100kW electric heater was replaced with a 335kW one to compensate the overlarge heat loss in the radiator. A pressure transmitter was subsequently installed in the inlet pipe of this updated heater. Finally, a new 30kW electric heater was installed between the pump and radiator, the purpose of which was to verify the core’s convective heat transfer behavior of a simulator design of TMSR. Immediately after these above works, shakedown test of the loop was carried out step by step. At first the storage tank was gradually preheated to 500°C so as to melt the frozen salt. Afterwards, in order to make the operation of transferring salt from storage tank to loop achievable, the loop system was also preheated to a relatively higher temperature 530°C. Since the nickel-base alloy can be severely corroded by the FLiNaK salt once the moisture and oxygen concentration is high, vacuum pumping and argon purging of the entire system were alternatively performed throughout the preheating process, with the effect of controlling them to be lower than 100ppm. Once the salt was transferred into the loop, the pump was immediately put into service. At the very beginning of operation process, it was found that flow rate in the main piping could not be precisely measured by the ultrasonic flow meter. Ten days later, the pump’s dry running gas seal was out of order. As a result, the loop had to be closed down to resolve these issues.
为支持钍熔盐反应堆(TMSR)计划而设计的弗林纳克高温测试回路于2012年建成,是世界上最大的工程规模氟化物回路。该回路由哈氏合金C276制成,能够以高达25m3/h的流速和高达650°C的温度运行。它由悬垂式叶轮污壳式离心泵、电加热器、热交换器、冷冻阀和机械冷冻阀、储罐等组成。盐的净化是分批进行的,然后转移到储罐中储存。该设施去年从三个方面进行了升级,目的是测试一台30kW的电加热器,并支持换热器的传热实验。首先,将原来的100kW电加热器更换为335kW电加热器,以补偿散热器中过大的热量损失。一个压力变送器随后被安装在这个更新后的加热器的进水管中。最后,在泵和散热器之间安装了一个新的30kW电加热器,目的是验证TMSR模拟器设计的堆芯对流换热行为。在完成上述工作后,对回路进行了逐步安定试验。首先将储罐逐渐预热到500℃,使冷冻盐融化。之后,为了使盐从储罐转移到回路的操作能够实现,回路系统也被预热到530℃的相对较高的温度。由于镍基合金在水分和氧气浓度较高的情况下会受到FLiNaK盐的严重腐蚀,因此在整个预热过程中交替进行整个系统的抽真空和吹氩,将其控制在100ppm以下。一旦盐被转移到循环中,泵立即投入使用。在运行过程一开始,就发现超声波流量计无法精确测量主管道的流量。10天后,泵的干运转气密封出现故障。因此,必须关闭循环以解决这些问题。
{"title":"Upgrade and Shakedown Test of a High Temperature Fluoride Salt Test Loop","authors":"X. Kong, Yuan Fu, Jianyu Zhang, Hui-Ju Lu, Naxiu Wang","doi":"10.1115/ICONE26-81222","DOIUrl":"https://doi.org/10.1115/ICONE26-81222","url":null,"abstract":"A FLiNaK high temperature test loop, which was designed to support the Thorium Molten Salt Reactor (TMSR) program, was constructed in 2012 and is the largest engineering-scale fluoride loop in the world. The loop is built of Hastelloy C276 and is capable of operating at the flow rate up to 25m3/h and at the temperature up to 650°C. It consists of an overhung impeller sump-type centrifugal pump, an electric heater, a heat exchanger, a freeze valve and a mechanical one, a storage tank, etc. Salt purification was conducted in batch mode before it was transferred to and then stored in the storage tank. The facility was upgraded in three ways last year, with aims of testing a 30kW electric heater and supporting the heat transfer experiment in heat exchanger. Firstly, an original 100kW electric heater was replaced with a 335kW one to compensate the overlarge heat loss in the radiator. A pressure transmitter was subsequently installed in the inlet pipe of this updated heater. Finally, a new 30kW electric heater was installed between the pump and radiator, the purpose of which was to verify the core’s convective heat transfer behavior of a simulator design of TMSR. Immediately after these above works, shakedown test of the loop was carried out step by step. At first the storage tank was gradually preheated to 500°C so as to melt the frozen salt. Afterwards, in order to make the operation of transferring salt from storage tank to loop achievable, the loop system was also preheated to a relatively higher temperature 530°C. Since the nickel-base alloy can be severely corroded by the FLiNaK salt once the moisture and oxygen concentration is high, vacuum pumping and argon purging of the entire system were alternatively performed throughout the preheating process, with the effect of controlling them to be lower than 100ppm. Once the salt was transferred into the loop, the pump was immediately put into service. At the very beginning of operation process, it was found that flow rate in the main piping could not be precisely measured by the ultrasonic flow meter. Ten days later, the pump’s dry running gas seal was out of order. As a result, the loop had to be closed down to resolve these issues.","PeriodicalId":65607,"journal":{"name":"International Journal of Plant Engineering and Management","volume":"139 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2018-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86263626","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Coordinated Control of a Small Pressurized Water Reactor 小型压水堆的协调控制
Pub Date : 2018-07-22 DOI: 10.1115/ICONE26-81156
Peiwei Sun, Chongwu Wang
Small Pressurized Water Reactors (SPWR) are different from those of the commercial large Pressurized Water Reactors (PWRs). There are no hot legs and cold legs between the reactor core and the steam generators like in the PWR. The coolant inventory is in a large amount. The inertia of the coolant is large and it takes a long time for the primary system to respond to disturbances. Once-through steam generator is adopted and its water inventory is small. It is very sensitive to disturbances. These unique characteristics challenge the control system design of an SPWR. Relap5 is used to model an SPWR. In the reactor power control system, both the reactor power and the coolant average temperature are regulated by the control rod reactivity. In the feedwater flow control system, the coordination between the reactor and the turbine is considered and coolant average temperature is adopted as one measurable disturbance to balance them. The coolant pressure is adjusted based on the heaters and spray in the pressurizer. The water level in the pressurizer is controlled by the charging flow. Transient simulations are carried out to evaluate the control system performance. When the reactor is perturbed, the reactor can be stabilized under the control system.
小型压水堆(SPWR)不同于商用的大型压水堆(PWRs)。在反应堆核心和蒸汽发生器之间没有热腿和冷腿,就像在压水堆里一样。冷却剂库存数量很大。冷却剂的惯性很大,主系统对扰动的响应需要很长时间。采用直通式蒸汽发生器,储水量小。它对干扰非常敏感。这些独特的特性给SPWR的控制系统设计带来了挑战。Relap5用于为SPWR建模。在反应堆功率控制系统中,反应堆功率和冷却剂平均温度都由控制棒的反应性来调节。在给水流量控制系统中,考虑了反应堆与水轮机之间的协调性,采用冷却剂平均温度作为一种可测扰动来平衡两者。根据稳压器内的加热器和喷雾调节冷却液压力。稳压器内的水位是由增压流量控制的。通过瞬态仿真来评估控制系统的性能。当反应器受到扰动时,控制系统可以使反应器稳定。
{"title":"Coordinated Control of a Small Pressurized Water Reactor","authors":"Peiwei Sun, Chongwu Wang","doi":"10.1115/ICONE26-81156","DOIUrl":"https://doi.org/10.1115/ICONE26-81156","url":null,"abstract":"Small Pressurized Water Reactors (SPWR) are different from those of the commercial large Pressurized Water Reactors (PWRs). There are no hot legs and cold legs between the reactor core and the steam generators like in the PWR. The coolant inventory is in a large amount. The inertia of the coolant is large and it takes a long time for the primary system to respond to disturbances. Once-through steam generator is adopted and its water inventory is small. It is very sensitive to disturbances. These unique characteristics challenge the control system design of an SPWR. Relap5 is used to model an SPWR. In the reactor power control system, both the reactor power and the coolant average temperature are regulated by the control rod reactivity. In the feedwater flow control system, the coordination between the reactor and the turbine is considered and coolant average temperature is adopted as one measurable disturbance to balance them. The coolant pressure is adjusted based on the heaters and spray in the pressurizer. The water level in the pressurizer is controlled by the charging flow. Transient simulations are carried out to evaluate the control system performance. When the reactor is perturbed, the reactor can be stabilized under the control system.","PeriodicalId":65607,"journal":{"name":"International Journal of Plant Engineering and Management","volume":"114 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2018-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85498750","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Multi-Objective Optimization of the Reactor Power Plant 反应堆动力装置的多目标优化
Pub Date : 2018-07-22 DOI: 10.1115/ICONE26-82239
Chen Lei, Jia Zhen, W. Cong, Gong Zili, Liao Yi, Hu Chen
From the view of practical engineering application, a compacter nuclear power plant is expected. The weight and the volume of a nuclear power plant can be reduced by optimal selection of the operational parameters. In this work, a thermal-hydraulic model of the reactor, mathematical models of the reactor vessel, the main pipe, the pressurizer, the steam generator, the turbine and the condenser were established for the Qinshan-I nuclear power plant based on the related technical materials. The responses of the optimal targets to the changes of the design variables were studied by the sensitivity analyses. The non-dominated solution front of the nuclear power plant was obtained by means of the immune memory clone constrained multi-objective optimization algorithm. The study shows that the component mathematical models are reliable for the optimization process, the distribution of the non-dominated solution is decided by the steam generator secondary pressure. The volume and the weight of the system could be at least reduced by 23.0% and 9.5%, respectively.
从实际工程应用的角度来看,期望有一个更紧凑的核电站。通过对运行参数的优化选择,可以减少核电站的重量和体积。本文在查阅相关技术资料的基础上,建立了秦山一号核电站反应堆的热工水力模型,以及反应堆容器、主管道、稳压器、蒸汽发生器、水轮机和冷凝器的数学模型。通过灵敏度分析研究了优化目标对设计变量变化的响应。采用免疫记忆克隆约束多目标优化算法,得到核电厂的非支配解前沿。研究表明,所建立的数学模型对于优化过程是可靠的,非支配解的分布由蒸汽发生器二次压力决定。系统的体积和重量至少可以分别减少23.0%和9.5%。
{"title":"A Multi-Objective Optimization of the Reactor Power Plant","authors":"Chen Lei, Jia Zhen, W. Cong, Gong Zili, Liao Yi, Hu Chen","doi":"10.1115/ICONE26-82239","DOIUrl":"https://doi.org/10.1115/ICONE26-82239","url":null,"abstract":"From the view of practical engineering application, a compacter nuclear power plant is expected. The weight and the volume of a nuclear power plant can be reduced by optimal selection of the operational parameters. In this work, a thermal-hydraulic model of the reactor, mathematical models of the reactor vessel, the main pipe, the pressurizer, the steam generator, the turbine and the condenser were established for the Qinshan-I nuclear power plant based on the related technical materials. The responses of the optimal targets to the changes of the design variables were studied by the sensitivity analyses. The non-dominated solution front of the nuclear power plant was obtained by means of the immune memory clone constrained multi-objective optimization algorithm. The study shows that the component mathematical models are reliable for the optimization process, the distribution of the non-dominated solution is decided by the steam generator secondary pressure. The volume and the weight of the system could be at least reduced by 23.0% and 9.5%, respectively.","PeriodicalId":65607,"journal":{"name":"International Journal of Plant Engineering and Management","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2018-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89650334","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Design and Feasibility Analysis of the Electricity Generation System Based on Residual Heat 余热发电系统的设计与可行性分析
Pub Date : 2018-07-22 DOI: 10.1115/ICONE26-82558
Z. Dong, Miao Liu, Yifei Pan
Passive residual heat removal system (PRHRS) is of great significance for reactor shutdown safety. The PRHRS of a small modular reactor, such as the integral pressurized water reactor (iPWR) and the modular high temperature gas-cooled reactor (MHTRG), is composed of the primary loop (PL), intermediate loop (IL) and air-cooling loop (AL). The AL is a density-difference-driven natural circulation caused by the difference of air temperature at the inlet and outlet of the air-cooling tower. Thus, it is possible to adopt the air flow in AL to generate electricity for post-shutdown reactor monitoring. In this paper, a novel residual heat electricity generation system (RHEGS), which is composed of the PRHRS and a vertical wind generator installed in the air-cooling tower, is proposed for the power supply of post-shutdown monitoring instruments. To verify the feasibility of practical implementation, the dynamical model of this newly designed RHEGS including the dynamics of PRHRS, windmill, rotor as well as doubly-fed induction generator (DFIG) are all given. Then, both steady-state and transient verification for the RHEGS of a nuclear heating reactor NHR200-II plant with a rated thermal power of 200 MWth is carried out, which shows that the output active power of RHEGS can be 20∼30kW which is about 1% the residual heat flux and can fully meet the power requirements of post-shutdown monitoring instruments.
被动余热排出系统(PRHRS)对反应堆停堆安全具有重要意义。整体压水堆(iPWR)和模块化高温气冷堆(MHTRG)等小型模块化反应堆的PRHRS由主回路(PL)、中间回路(IL)和风冷回路(AL)组成。AL是一种密度差驱动的自然循环,由空气冷却塔进出口的空气温度差异引起。因此,可以利用AL中的气流发电,进行反应堆停堆后监测。本文提出了一种新型的余热发电系统(RHEGS),该系统由PRHRS和安装在空冷却塔内的垂直风力发电机组成,用于停机后监测仪器的供电。为了验证实际实现的可行性,给出了该系统的动力学模型,包括PRHRS、风车、转子和双馈感应发电机(DFIG)的动力学模型。然后,对额定热功率为200 MWth的NHR200-II型核加热堆机组的RHEGS进行了稳态和暂态验证,结果表明,RHEGS输出有功功率可达20 ~ 30kW,约为余热通量的1%,完全满足停后监测仪器的功率要求。
{"title":"Design and Feasibility Analysis of the Electricity Generation System Based on Residual Heat","authors":"Z. Dong, Miao Liu, Yifei Pan","doi":"10.1115/ICONE26-82558","DOIUrl":"https://doi.org/10.1115/ICONE26-82558","url":null,"abstract":"Passive residual heat removal system (PRHRS) is of great significance for reactor shutdown safety. The PRHRS of a small modular reactor, such as the integral pressurized water reactor (iPWR) and the modular high temperature gas-cooled reactor (MHTRG), is composed of the primary loop (PL), intermediate loop (IL) and air-cooling loop (AL). The AL is a density-difference-driven natural circulation caused by the difference of air temperature at the inlet and outlet of the air-cooling tower. Thus, it is possible to adopt the air flow in AL to generate electricity for post-shutdown reactor monitoring. In this paper, a novel residual heat electricity generation system (RHEGS), which is composed of the PRHRS and a vertical wind generator installed in the air-cooling tower, is proposed for the power supply of post-shutdown monitoring instruments. To verify the feasibility of practical implementation, the dynamical model of this newly designed RHEGS including the dynamics of PRHRS, windmill, rotor as well as doubly-fed induction generator (DFIG) are all given. Then, both steady-state and transient verification for the RHEGS of a nuclear heating reactor NHR200-II plant with a rated thermal power of 200 MWth is carried out, which shows that the output active power of RHEGS can be 20∼30kW which is about 1% the residual heat flux and can fully meet the power requirements of post-shutdown monitoring instruments.","PeriodicalId":65607,"journal":{"name":"International Journal of Plant Engineering and Management","volume":"21 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2018-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85862487","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Estimation of Mitigation Effects of Sodium Nanofluid for SGTR Accidents in SFR 纳米流体钠对SFR中SGTR事故缓解效果的评估
Pub Date : 2018-07-22 DOI: 10.1115/ICONE26-81309
K. Ichikawa, H. Kanda, N. Yoshioka, K. Ara, Jun-ichi Saito, K. Nagai
Studies on the suppression of the reactivity of sodium itself have been performed on the basis of the concept of suspended nanoparticles in liquid sodium (sodium nanofluid). According to the theoretical and experimental results of studies for sodium nanofluid, velocity and heat of sodium nanofluid reaction with water (sodium nanofluid/water reaction) are lower than those of the pure sodium/water reaction. The analytical model for the peak temperature of a sodium nanofluid/water reaction jet has been developed by the authors in consideration of these suppression effects. In this paper, the prediction method for mitigation effects on damage of adjacent tubes in steam generator tube rupture (SGTR) accidents is developed by applying this analytical model for the peak temperature of the reaction jet. On the assumption that the sodium nanofluid is used for the secondary coolant of sodium-cooled fast reactor (SFR), mitigation effects under the design basis accident (DBA) condition and the design extension condition (DEC) of SGTR are estimated by using this method. The results indicate a clear possibility to reduce the number of damaged tubes and to suppress the pressure generated in SGTR accidents by using sodium nanofluid as the secondary coolant.
基于悬浮在液态钠(纳米流体钠)中的纳米颗粒的概念,对钠本身反应性的抑制进行了研究。根据纳流体研究的理论和实验结果,纳流体与水反应(纳流体/水反应)的速度和热量低于纯钠/水反应。考虑到这些抑制效应,作者建立了钠纳米流体/水反应射流峰值温度的解析模型。本文应用该反应射流峰值温度分析模型,建立了蒸汽发生器爆管事故中相邻管损伤缓解效果的预测方法。假设钠纳米流体作为钠冷快堆(SFR)的二次冷却剂,利用该方法对SFR在设计基础事故(DBA)条件和设计延伸条件(DEC)下的缓解效果进行了评估。研究结果表明,纳米流体钠作为二次冷却剂,有可能减少SGTR事故中损坏管的数量,并抑制事故产生的压力。
{"title":"Estimation of Mitigation Effects of Sodium Nanofluid for SGTR Accidents in SFR","authors":"K. Ichikawa, H. Kanda, N. Yoshioka, K. Ara, Jun-ichi Saito, K. Nagai","doi":"10.1115/ICONE26-81309","DOIUrl":"https://doi.org/10.1115/ICONE26-81309","url":null,"abstract":"Studies on the suppression of the reactivity of sodium itself have been performed on the basis of the concept of suspended nanoparticles in liquid sodium (sodium nanofluid). According to the theoretical and experimental results of studies for sodium nanofluid, velocity and heat of sodium nanofluid reaction with water (sodium nanofluid/water reaction) are lower than those of the pure sodium/water reaction. The analytical model for the peak temperature of a sodium nanofluid/water reaction jet has been developed by the authors in consideration of these suppression effects. In this paper, the prediction method for mitigation effects on damage of adjacent tubes in steam generator tube rupture (SGTR) accidents is developed by applying this analytical model for the peak temperature of the reaction jet. On the assumption that the sodium nanofluid is used for the secondary coolant of sodium-cooled fast reactor (SFR), mitigation effects under the design basis accident (DBA) condition and the design extension condition (DEC) of SGTR are estimated by using this method. The results indicate a clear possibility to reduce the number of damaged tubes and to suppress the pressure generated in SGTR accidents by using sodium nanofluid as the secondary coolant.","PeriodicalId":65607,"journal":{"name":"International Journal of Plant Engineering and Management","volume":"19 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2018-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73425112","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Methodology to Determine SMR Build Schedule and the Impact of Modularisation 确定SMR构建进度的方法及模块化的影响
Pub Date : 2018-07-22 DOI: 10.1115/ICONE26-81550
C. Lloyd, A. Roulstone
Light-water cooled Small Modular Reactors (SMRs) are a potential game-changing technology for energy supply. The potential benefits of SMRs are however conditional on solving the key standardisation and construction issues that have troubled large reactor (LR) projects, which have in turn led to high build costs and long project durations. Initiatives to determine the build schedule of SMRs are hindered by a lack of SMR construction experience and related data. The methodology used in this paper, to deal with the lack of SMR-specific data, draws conclusions about SMRs based on data from actual large pressurised water reactor (PWR) construction experience. It is expected that SMR build schedules can be greatly reduced because of the smaller physical size of structures, fewer components, and other size-related features. However, the construction work space will be more constrained, which could negatively impact build durations. As a result, simple geometric scaling and reduction arguments cannot necessarily be applied to SMR schedules. This paper defines the key areas in which SMR construction differs from LRs, such as smaller geometries as well as modularised and standardised build processes, and describes how these differences might be expected to impact build duration quantitatively. The model developed in this paper presents an approach to determining SMR build schedule durations for a range of reactor sizes. It starts with an LR build schedule based on real data from the UK’s only PWR, Sizewell B. The available data are used to establish a reference point for a non-modular, stick-built SMR schedule. This scheduling approach assumes that, for each major element, part of the time spent on fabrication and installation tasks will vary with reactor size while the remaining fraction will remain constant regardless of reactor size (e.g. due to quality assurance and commissioning tasks). The accuracy of the model generated here is assessed against available construction data and models from a range of actual reactor build projects. The objective of this work is to consider how modularisation can reduce build schedule of SMRs of varying size, by employing modular design and construction principles to both remove tasks that are of long duration from the critical path and to improve construction productivity. Mechanisms by which modularisation reduces build schedule are investigated. Build reduction scenarios are presented based on analysis and subsequent modularisation of the SMR critical path and are compared with other related analyses.
轻水冷却小型模块化反应堆(SMRs)是一种潜在的改变能源供应游戏规则的技术。然而,smr的潜在效益取决于能否解决困扰大型反应堆(LR)项目的关键标准化和建设问题,而这些问题又导致了高建设成本和长项目工期。由于缺乏SMR建设经验和相关数据,确定SMR建设进度的举措受到阻碍。本文采用的方法是根据实际大型压水堆(PWR)建设经验的数据得出关于smr的结论,以解决smr具体数据缺乏的问题。由于结构的物理尺寸更小,组件更少,以及其他与尺寸相关的特性,预计SMR的构建进度可以大大减少。然而,建设工作空间将受到更多限制,这可能会对建设持续时间产生负面影响。因此,简单的几何缩放和约简论证不一定适用于SMR调度。本文定义了SMR构建与lr不同的关键领域,例如较小的几何形状以及模块化和标准化的构建过程,并描述了这些差异如何定量地影响构建持续时间。本文开发的模型提供了一种确定一系列反应堆尺寸的小型堆建造计划持续时间的方法。首先,根据英国唯一的压水堆Sizewell b的真实数据,制定LR建造计划,可用数据用于建立非模块化、棒式SMR计划的参考点。这种调度方法假设,对于每个主要元件,用于制造和安装任务的部分时间将随反应堆大小而变化,而其余部分将保持不变,而不管反应堆大小如何(例如,由于质量保证和调试任务)。这里生成的模型的准确性是根据可用的建筑数据和来自一系列实际反应堆建造项目的模型进行评估的。这项工作的目标是考虑模块化如何通过采用模块化设计和施工原则来从关键路径上删除长时间的任务并提高施工生产率,从而减少不同大小的smr的建造进度。研究了模块化减少构建进度的机制。基于SMR关键路径的分析和随后的模块化,提出了构建减少方案,并与其他相关分析进行了比较。
{"title":"A Methodology to Determine SMR Build Schedule and the Impact of Modularisation","authors":"C. Lloyd, A. Roulstone","doi":"10.1115/ICONE26-81550","DOIUrl":"https://doi.org/10.1115/ICONE26-81550","url":null,"abstract":"Light-water cooled Small Modular Reactors (SMRs) are a potential game-changing technology for energy supply. The potential benefits of SMRs are however conditional on solving the key standardisation and construction issues that have troubled large reactor (LR) projects, which have in turn led to high build costs and long project durations.\u0000 Initiatives to determine the build schedule of SMRs are hindered by a lack of SMR construction experience and related data. The methodology used in this paper, to deal with the lack of SMR-specific data, draws conclusions about SMRs based on data from actual large pressurised water reactor (PWR) construction experience.\u0000 It is expected that SMR build schedules can be greatly reduced because of the smaller physical size of structures, fewer components, and other size-related features. However, the construction work space will be more constrained, which could negatively impact build durations. As a result, simple geometric scaling and reduction arguments cannot necessarily be applied to SMR schedules. This paper defines the key areas in which SMR construction differs from LRs, such as smaller geometries as well as modularised and standardised build processes, and describes how these differences might be expected to impact build duration quantitatively.\u0000 The model developed in this paper presents an approach to determining SMR build schedule durations for a range of reactor sizes. It starts with an LR build schedule based on real data from the UK’s only PWR, Sizewell B. The available data are used to establish a reference point for a non-modular, stick-built SMR schedule. This scheduling approach assumes that, for each major element, part of the time spent on fabrication and installation tasks will vary with reactor size while the remaining fraction will remain constant regardless of reactor size (e.g. due to quality assurance and commissioning tasks). The accuracy of the model generated here is assessed against available construction data and models from a range of actual reactor build projects.\u0000 The objective of this work is to consider how modularisation can reduce build schedule of SMRs of varying size, by employing modular design and construction principles to both remove tasks that are of long duration from the critical path and to improve construction productivity. Mechanisms by which modularisation reduces build schedule are investigated. Build reduction scenarios are presented based on analysis and subsequent modularisation of the SMR critical path and are compared with other related analyses.","PeriodicalId":65607,"journal":{"name":"International Journal of Plant Engineering and Management","volume":"68 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2018-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78203496","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 8
Characteristic Tests on Transition Core of HTR-10 HTR-10过渡堆芯特性试验
Pub Date : 2018-07-22 DOI: 10.1115/ICONE26-81797
Liqiang Wei, Dongmei Ding, Ling Liu, Yucheng Wang, Xiaoming Chen, F. Xie
After a long-term shutdown, the 10MW high temperature gas-cooled test reactor (HTR-10) was restarted, and the operation & safety characteristics of the HTR-10 transition core are tested and verified. A series of the characteristic tests have been implemented, such as the value calibrating test of the control rod and boron absorber ball, the disturbance characteristic of helium circulator, the start-stop characteristic and the stable power operation characteristic, which indicated the characteristics of the reactor transition core meet the design and safety requirements.
在长期停堆后,重新启动了10MW高温气冷试验堆(HTR-10),并对HTR-10过渡堆芯的运行和安全特性进行了测试和验证。进行了控制棒和吸硼球的数值标定试验、氦气循环器的扰动特性、启停特性和功率稳定运行特性等一系列特性试验,表明该堆过渡堆芯的特性满足设计和安全要求。
{"title":"Characteristic Tests on Transition Core of HTR-10","authors":"Liqiang Wei, Dongmei Ding, Ling Liu, Yucheng Wang, Xiaoming Chen, F. Xie","doi":"10.1115/ICONE26-81797","DOIUrl":"https://doi.org/10.1115/ICONE26-81797","url":null,"abstract":"After a long-term shutdown, the 10MW high temperature gas-cooled test reactor (HTR-10) was restarted, and the operation & safety characteristics of the HTR-10 transition core are tested and verified. A series of the characteristic tests have been implemented, such as the value calibrating test of the control rod and boron absorber ball, the disturbance characteristic of helium circulator, the start-stop characteristic and the stable power operation characteristic, which indicated the characteristics of the reactor transition core meet the design and safety requirements.","PeriodicalId":65607,"journal":{"name":"International Journal of Plant Engineering and Management","volume":"27 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2018-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83307602","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Approach to UK SMR Component Design 英国SMR组件设计方法
Pub Date : 2018-07-22 DOI: 10.1115/ICONE26-81188
C. Bell
The United Kingdom (UK) Small Modular Reactor (SMR) is being developed by a Rolls-Royce led consortium to provide a market driven, affordable, low carbon energy, generation capability. The UK SMR is a Pressurised Water Reactor (PWR) design based on proven technology with a high level of safety achieved through multiple active and passive systems. This paper presents the approach that has been taken in the early design phases of the pressure vessels for the UK SMR. It considers the key design principles e.g. standardisation, simplification and design for manufacture, inspection and assembly which are being applied to enable the cost and lead-time reductions which are necessary for the UK SMR to be a viable alternative to larger conventional nuclear plants. The Reactor Pressure Vessel (RPV) is used as an example to illustrate some of the key design requirements which need to be addressed. Nuclear components are required to be designed and constructed to standards which are commensurate with the significance of the safety functions which they perform. This paper covers the practice established in the UK of designing to Incredibility of Failure for those components with catastrophic failure modes such as the RPV. It describes the additional features including more stringent materials specification and testing, additional defect tolerance studies and the qualification of manufacturing inspections which need to be addressed in the design to satisfy the high reliability claim.
英国小型模块化反应堆(SMR)正在由罗尔斯·罗伊斯公司牵头的财团开发,以提供市场驱动的、负担得起的低碳能源发电能力。英国SMR是一种压水反应堆(PWR),其设计基于成熟的技术,通过多个主动和被动系统实现了高水平的安全性。本文介绍了在英国SMR压力容器的早期设计阶段所采用的方法。它考虑了关键的设计原则,例如标准化,简化和制造,检查和组装设计,这些原则正在应用于使成本和交货时间减少,这是英国SMR成为大型常规核电站的可行替代方案所必需的。以反应堆压力容器(RPV)为例,说明需要解决的一些关键设计要求。核部件的设计和制造必须符合与其所执行的安全功能的重要性相称的标准。本文介绍了英国对具有灾难性失效模式的部件(如RPV)进行失效不可思议设计的实践。它描述了额外的功能,包括更严格的材料规格和测试,额外的缺陷公差研究和制造检查的资格,这些需要在设计中解决,以满足高可靠性要求。
{"title":"Approach to UK SMR Component Design","authors":"C. Bell","doi":"10.1115/ICONE26-81188","DOIUrl":"https://doi.org/10.1115/ICONE26-81188","url":null,"abstract":"The United Kingdom (UK) Small Modular Reactor (SMR) is being developed by a Rolls-Royce led consortium to provide a market driven, affordable, low carbon energy, generation capability. The UK SMR is a Pressurised Water Reactor (PWR) design based on proven technology with a high level of safety achieved through multiple active and passive systems. This paper presents the approach that has been taken in the early design phases of the pressure vessels for the UK SMR. It considers the key design principles e.g. standardisation, simplification and design for manufacture, inspection and assembly which are being applied to enable the cost and lead-time reductions which are necessary for the UK SMR to be a viable alternative to larger conventional nuclear plants. The Reactor Pressure Vessel (RPV) is used as an example to illustrate some of the key design requirements which need to be addressed. Nuclear components are required to be designed and constructed to standards which are commensurate with the significance of the safety functions which they perform. This paper covers the practice established in the UK of designing to Incredibility of Failure for those components with catastrophic failure modes such as the RPV. It describes the additional features including more stringent materials specification and testing, additional defect tolerance studies and the qualification of manufacturing inspections which need to be addressed in the design to satisfy the high reliability claim.","PeriodicalId":65607,"journal":{"name":"International Journal of Plant Engineering and Management","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2018-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76529999","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Non-Contact Ultrasonic Sensor for General Corrosion Inspection of Thin Plates 用于薄板一般腐蚀检测的非接触式超声传感器
Pub Date : 2018-07-22 DOI: 10.1115/ICONE26-82560
A. Tamura, M. Miki, N. Kono, H. Okazawa, S. Okido, C. Zhong, E. Fabre, A. Croxford, P. Wilcox
In power plants, there are structures made up of thin plates, such as air-conditioning ducts or thin-walled pipes, where corrosion can occur. In this study, we provide a solution to reduce inspection time of the thin plate corrosion measurement and enable monitoring, using a non-contact ultrasonic sensor. The sensor can measure the reduction in thickness of thin plates due to general corrosion without the need to remove or reinstall insulating material that is on the outside of the plate. The proposed sensor is based on the non-contact ultrasonic measurement technique which was originally proposed by Greve et al, further developed and patented by Zhong et al. at the University of Bristol, and commercialized by Inductosense Ltd. In order to ultrasonically measure the thin plate thickness, we use a method based on the group velocity of the guided waves. The proposed method was tested theoretically with numerical simulations and experimentally against our target conditions. The results of the numerical simulations and experiments confirm that the proposed method can be applied to thickness measurements of thin-plates in our target condition. Based on the feasibility test results, we developed a prototype sensor and measurement software. From the results of the performance evaluation tests, we have confirmed that the prototype sensor has sufficient capability to measure the thickness of the thin plates without the removal of the insulator. Even if the offset between the plate and the inspection probe is 100 mm, the prototype sensor still works well.
在发电厂,有些结构是由薄板组成的,比如空调管道或薄壁管道,这些地方可能会发生腐蚀。在本研究中,我们提供了一种使用非接触式超声波传感器来减少薄板腐蚀测量的检测时间并实现监测的解决方案。该传感器可以测量由于一般腐蚀导致的薄板厚度下降,而不需要移除或重新安装板外部的绝缘材料。该传感器基于非接触式超声波测量技术,该技术最初由Greve等人提出,由Bristol大学的Zhong等人进一步开发并获得专利,由Inductosense Ltd公司商业化。为了对薄板进行超声测量,我们采用了一种基于导波群速度的方法。针对我们的目标条件,对所提出的方法进行了理论、数值模拟和实验验证。数值模拟和实验结果表明,该方法可用于目标条件下薄板的厚度测量。在可行性测试结果的基础上,开发了传感器样机和测量软件。从性能评估测试的结果来看,我们已经确认原型传感器有足够的能力在不去除绝缘体的情况下测量薄板的厚度。即使板与检测探头之间的偏移量为100mm,原型传感器仍然工作良好。
{"title":"A Non-Contact Ultrasonic Sensor for General Corrosion Inspection of Thin Plates","authors":"A. Tamura, M. Miki, N. Kono, H. Okazawa, S. Okido, C. Zhong, E. Fabre, A. Croxford, P. Wilcox","doi":"10.1115/ICONE26-82560","DOIUrl":"https://doi.org/10.1115/ICONE26-82560","url":null,"abstract":"In power plants, there are structures made up of thin plates, such as air-conditioning ducts or thin-walled pipes, where corrosion can occur. In this study, we provide a solution to reduce inspection time of the thin plate corrosion measurement and enable monitoring, using a non-contact ultrasonic sensor. The sensor can measure the reduction in thickness of thin plates due to general corrosion without the need to remove or reinstall insulating material that is on the outside of the plate. The proposed sensor is based on the non-contact ultrasonic measurement technique which was originally proposed by Greve et al, further developed and patented by Zhong et al. at the University of Bristol, and commercialized by Inductosense Ltd. In order to ultrasonically measure the thin plate thickness, we use a method based on the group velocity of the guided waves. The proposed method was tested theoretically with numerical simulations and experimentally against our target conditions. The results of the numerical simulations and experiments confirm that the proposed method can be applied to thickness measurements of thin-plates in our target condition. Based on the feasibility test results, we developed a prototype sensor and measurement software. From the results of the performance evaluation tests, we have confirmed that the prototype sensor has sufficient capability to measure the thickness of the thin plates without the removal of the insulator. Even if the offset between the plate and the inspection probe is 100 mm, the prototype sensor still works well.","PeriodicalId":65607,"journal":{"name":"International Journal of Plant Engineering and Management","volume":"77 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2018-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76062641","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
International Journal of Plant Engineering and Management
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1