Pub Date : 2023-08-08DOI: 10.1007/s11669-023-01053-z
V. Venkata Trinadh, P. Manikandan, Suranjan Bera, C. V. S. Brahmananda Rao, T. S. Lakshmi Narasimhan
Vaporisation studies were carried out over the solid region of LiCl(cr), KCl(cr) and liquid region of LiCl-KCl-UCl3 ternary salt system by using Knudsen Effusion Mass Spectrometry (KEMS) in the temperature range of 715–913 K. Monomeric and dimeric species were observed in the vapour phase in equilibrium with their respective salts, LiCl(cr) and KCl(cr). LiCl(g), Li2Cl2(g), KCl(g), K2Cl2(g), and UCl3(g) were the neutral species observed in the equilibrium vapour over ternary salt. Partial pressure–temperature relations for vapour species were derived using in-situ calibration from pressure dependent equilibrium constants as well as using pure silver as external calibrant. Using p-T relations, various heterogeneous reaction equilibria that exist between condensed phase-gas phase and the dissociation equilibra of following gas phase reactions: Li2Cl2(g) = 2LiCl(g); K2Cl2(g) = 2KCl(g) were evaluated by using 2nd and 3rd law methods. Also, the enthalpies of pressure-independent reactions: LiCl(cr) + LiCl(g) = Li2Cl2(g); KCl(cr) + KCl(g) = K2Cl2(g) were evaluated by using 3rd law method. Knudsen effusion mass spectrometric studies on LiCl-KCl-UCl3 ternary salt system were carried out for the first time.
{"title":"Thermochemical Properties Over LiCl-KCl-UCl3 Ternary Salt System: Knudsen Effusion Mass Spectrometric Study","authors":"V. Venkata Trinadh, P. Manikandan, Suranjan Bera, C. V. S. Brahmananda Rao, T. S. Lakshmi Narasimhan","doi":"10.1007/s11669-023-01053-z","DOIUrl":"10.1007/s11669-023-01053-z","url":null,"abstract":"<div><p>Vaporisation studies were carried out over the solid region of LiCl(cr), KCl(cr) and liquid region of LiCl-KCl-UCl<sub>3</sub> ternary salt system by using Knudsen Effusion Mass Spectrometry (KEMS) in the temperature range of 715–913 K. Monomeric and dimeric species were observed in the vapour phase in equilibrium with their respective salts, LiCl(cr) and KCl(cr). LiCl(g), Li<sub>2</sub>Cl<sub>2</sub>(g), KCl(g), K<sub>2</sub>Cl<sub>2</sub>(g), and UCl<sub>3</sub>(g) were the neutral species observed in the equilibrium vapour over ternary salt. Partial pressure–temperature relations for vapour species were derived using in-situ calibration from pressure dependent equilibrium constants as well as using pure silver as external calibrant. Using p-T relations, various heterogeneous reaction equilibria that exist between condensed phase-gas phase and the dissociation equilibra of following gas phase reactions: Li<sub>2</sub>Cl<sub>2</sub>(g) = 2LiCl(g); K<sub>2</sub>Cl<sub>2</sub>(g) = 2KCl(g) were evaluated by using 2nd and 3rd law methods. Also, the enthalpies of pressure-independent reactions: LiCl(cr) + LiCl(g) = Li<sub>2</sub>Cl<sub>2</sub>(g); KCl(cr) + KCl(g) = K<sub>2</sub>Cl<sub>2</sub>(g) were evaluated by using 3rd law method. Knudsen effusion mass spectrometric studies on LiCl-KCl-UCl<sub>3</sub> ternary salt system were carried out for the first time.</p></div>","PeriodicalId":657,"journal":{"name":"Journal of Phase Equilibria and Diffusion","volume":"44 3","pages":"496 - 508"},"PeriodicalIF":1.4,"publicationDate":"2023-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"6551668","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-07-29DOI: 10.1007/s11669-023-01050-2
Yun-hung Lai, He-cheng Yang, Sinn-wen Chen
Sb2Te3 is an important thermoelectric material. Co is a potential diffusion barrier. This study examined the electroplated Co/Sb2Te3 interfacial reactions at 300 °C, 400 °C and 500 °C. To provide fundamental information and for better understanding the reaction paths, the Co-Sb-Te phase equilibria isothermal sections at these three temperatures are proposed. No ternary compound is found. The 400 °C isothermal section contains (Co), (Sb), (Te), β-CoSb, β-Co1−xTe, CoSb3, δ-(Sb2Te), γ-(SbTe), Sb2Te3 and a continuous solid solution γ-Co(Sb,Te)2. At 500 °C, except for Te being molten, the phase relationships are similar to those at 400 °C. At 300 °C, although γ-CoSb2 and γ-CoTe2 have very significant mutual solubilities, they are two separate phases and do not form a continuous solid solution. In the Co/Sb2Te3 couple reacted at 300 °C, only one reaction phase, γ-CoTe2 with Sb solubility, is formed. Similar results are found in the Co/Sb2Te3 couple reacted 400 °C, and the reaction phase is the continuous solid solution γ-Co(Sb,Te)2. Two reaction phases, β-Co1-xTe and γ-Co(Sb,Te)2, are found in the couple reacted at 500 °C. The compositional ratio of Sb/Te in the reaction phase remained at 2/3 indicates that Co is the dominating diffusion species. The reaction phases are formed rapidly by Co penetration into the Sb2Te3 substrate. A peculiar phenomenon was found with the reaction layer that formed on the side of Co that was not in direct contact with the Sb2Te3 substrate which will be further investigated.
{"title":"Co-Sb-Te Phase Equilibria and Co/Sb2Te3 Interfacial Reactions","authors":"Yun-hung Lai, He-cheng Yang, Sinn-wen Chen","doi":"10.1007/s11669-023-01050-2","DOIUrl":"10.1007/s11669-023-01050-2","url":null,"abstract":"<div><p>Sb<sub>2</sub>Te<sub>3</sub> is an important thermoelectric material. Co is a potential diffusion barrier. This study examined the electroplated Co/Sb<sub>2</sub>Te<sub>3</sub> interfacial reactions at 300 °C, 400 °C and 500 °C. To provide fundamental information and for better understanding the reaction paths, the Co-Sb-Te phase equilibria isothermal sections at these three temperatures are proposed. No ternary compound is found. The 400 °C isothermal section contains (Co), (Sb), (Te), β-CoSb, β-Co<sub>1−x</sub>Te, CoSb<sub>3</sub>, δ-(Sb<sub>2</sub>Te), γ-(SbTe), Sb<sub>2</sub>Te<sub>3</sub> and a continuous solid solution γ-Co(Sb,Te)<sub>2</sub>. At 500 °C, except for Te being molten, the phase relationships are similar to those at 400 °C. At 300 °C, although γ-CoSb<sub>2</sub> and γ-CoTe<sub>2</sub> have very significant mutual solubilities, they are two separate phases and do not form a continuous solid solution. In the Co/Sb<sub>2</sub>Te<sub>3</sub> couple reacted at 300 °C, only one reaction phase, γ-CoTe<sub>2</sub> with Sb solubility, is formed. Similar results are found in the Co/Sb<sub>2</sub>Te<sub>3</sub> couple reacted 400 °C, and the reaction phase is the continuous solid solution γ-Co(Sb,Te)<sub>2</sub>. Two reaction phases, β-Co<sub>1-x</sub>Te and γ-Co(Sb,Te)<sub>2</sub>, are found in the couple reacted at 500 °C. The compositional ratio of Sb/Te in the reaction phase remained at 2/3 indicates that Co is the dominating diffusion species. The reaction phases are formed rapidly by Co penetration into the Sb<sub>2</sub>Te<sub>3</sub> substrate. A peculiar phenomenon was found with the reaction layer that formed on the side of Co that was not in direct contact with the Sb<sub>2</sub>Te<sub>3</sub> substrate which will be further investigated.</p></div>","PeriodicalId":657,"journal":{"name":"Journal of Phase Equilibria and Diffusion","volume":"44 3","pages":"468 - 482"},"PeriodicalIF":1.4,"publicationDate":"2023-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"6551566","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-07-27DOI: 10.1007/s11669-023-01051-1
Dongyu Cui, Jiong Wang, Jiaqiang Zhou
Thermodynamic databases are essential to understanding alloy properties and guiding materials design. In this work, the mixing enthalpies of the liquid phase in the Gd-Te, Dy-Te and Ho-Te binary systems are calculated using Ab-initio Molecular Dynamics (AIMD) simulations and the thermodynamic parameters are determined using the CALculation of PHAse Diagrams (CALPHAD) method combined with the phase equilibrium data and thermodynamic data. The associated solution model is employed to describe the liquid phase of these systems. The sublattice model (Gd,Te)0.0296(Gd)0.4(Te)0.5714, (Dy,Te)0.0286(Dy)0.4286(Te)0.5714 and (Ho,Te)0.5(Te)0.5 are utilized to describe Gd2Te3, Dy2Te3 and HoTe, respectively. The line compounds, i.e. GdTe, DyTe, and DyTe2, are modeled using the stoichiometric model. The calculated results can describe the experimental and thermodynamic information reported in the literature. In addition, the existence of a liquid-liquid separation in the Dy-rich side in the Dy-Te binary system is proposed in this work.
{"title":"Thermodynamic Modeling of the Te-X (X = Gd, Dy, Ho) Binary Systems Combined with the First-Principles Method","authors":"Dongyu Cui, Jiong Wang, Jiaqiang Zhou","doi":"10.1007/s11669-023-01051-1","DOIUrl":"10.1007/s11669-023-01051-1","url":null,"abstract":"<div><p>Thermodynamic databases are essential to understanding alloy properties and guiding materials design. In this work, the mixing enthalpies of the liquid phase in the Gd-Te, Dy-Te and Ho-Te binary systems are calculated using Ab-initio Molecular Dynamics (AIMD) simulations and the thermodynamic parameters are determined using the CALculation of PHAse Diagrams (CALPHAD) method combined with the phase equilibrium data and thermodynamic data. The associated solution model is employed to describe the liquid phase of these systems. The sublattice model (Gd,Te)<sub>0.0296</sub>(Gd)<sub>0.4</sub>(Te)<sub>0.5714</sub>, (Dy,Te)<sub>0.0286</sub>(Dy)<sub>0.4286</sub>(Te)<sub>0.5714</sub> and (Ho,Te)<sub>0.5</sub>(Te)<sub>0.5</sub> are utilized to describe Gd<sub>2</sub>Te<sub>3</sub>, Dy<sub>2</sub>Te<sub>3</sub> and HoTe, respectively. The line compounds, i.e. GdTe, DyTe, and DyTe<sub>2</sub>, are modeled using the stoichiometric model. The calculated results can describe the experimental and thermodynamic information reported in the literature. In addition, the existence of a liquid-liquid separation in the Dy-rich side in the Dy-Te binary system is proposed in this work.</p></div>","PeriodicalId":657,"journal":{"name":"Journal of Phase Equilibria and Diffusion","volume":"44 3","pages":"456 - 467"},"PeriodicalIF":1.4,"publicationDate":"2023-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11669-023-01051-1.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"6551796","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-07-06DOI: 10.1007/s11669-023-01044-0
George Kaptay
The parallel tangent method widely applied to predict the composition and driving force to form a nucleus from an oversaturated solution is extended in this paper. The parallel tangent method is shown to (i) Over-estimates the composition difference between the first nucleus and the parent phase, (ii) Neglects the composition dependence of interfacial energies and (iii) Neglects the composition dependence of probability to form embryos prior to nucleation. New model equations are developed here for the composition dependence of the interfacial energies and probability to form the embryos as function of nucleus composition at given matrix composition. The most probable composition of the first nucleus is found at the maximum of the driving force of nucleation extended by the new model equations. The success of the extended method is demonstrated for an Al-Fe liquid alloy with 0.3 w% of Fe to predict the first nucleating intermetallic phases upon cooling after nucleation of the fcc phase. It is shown that although the prediction based on the parallel tangent method contradicts experimental observations, the prediction based on our extended method agrees with them.