Pub Date : 2024-03-08DOI: 10.1007/s11669-024-01103-0
H. Sato, H. Miyazaki, Y. Nishino, U. Mizutani
{"title":"Correction: Quantitative Evaluation of Seebeck Coefficient Using Linearized Boltzmann Transport Equation for Fe2VAl-Based Compounds","authors":"H. Sato, H. Miyazaki, Y. Nishino, U. Mizutani","doi":"10.1007/s11669-024-01103-0","DOIUrl":"10.1007/s11669-024-01103-0","url":null,"abstract":"","PeriodicalId":657,"journal":{"name":"Journal of Phase Equilibria and Diffusion","volume":"45 3","pages":"416 - 416"},"PeriodicalIF":1.5,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142410620","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-07DOI: 10.1007/s11669-024-01092-0
Binbin Yuan, Xuxu Deng, Zhiqiu Guo, Sharafadeen Kunle Kolawole, Changjun Wu, Haoping Peng, Ya Liu, Xuping Su
In this study, a continuous and dense FeAl/Al2O3 gradient coating was prepared on the surface of 316L stainless steel by hot-dipping aluminizing, vacuum annealing and low-oxygen pressure oxidation. The results showed that when a hot-dipping pure aluminum was applied, the alloy compound layer was composed of (Fe, Cr, Ni)2Al5 and (Fe, Cr, Ni)Al3 phases. When the Si content in the bath was higher than 2.5 wt.%, a new intermetallic compound, Al7(Fe, Cr)2Si, appeared at the interface, and the thickness of the metal compound layer decreased continuously upon increasing the silicon content in the melt pool. When the hot-dipped sample was annealed in vacuum at 900 °C for 3 h, the brittle (Fe, Cr, Ni)2Al5 phase was transformed into a ductile (Fe, Cr, Ni)Al phase. As low-oxygen pressure oxidation progressed, FeAl/Al2O3 gradient coatings were formed on the surface layer. The oxide film formed by the Al-2.5 Si wt.% sample was flatter and denser, which significantly improved its high-temperature oxidation resistance. Reducing the oxygen partial pressure promoted the external oxidation of Al element and the formation of Al2O3 oxide film.
摘要 本研究通过热浸镀铝、真空退火和低氧加压氧化,在 316L 不锈钢表面制备了连续致密的 FeAl/Al2O3 梯度涂层。结果表明,热浸纯铝时,合金复合层由(Fe、Cr、Ni)2Al5 和(Fe、Cr、Ni)Al3 相组成。当熔池中的硅含量高于 2.5 wt.%时,界面上会出现一种新的金属间化合物 Al7(Fe,Cr)2Si,随着熔池中硅含量的增加,金属化合物层的厚度不断减小。热浸样品在 900 °C 真空退火 3 小时后,脆性(铁、铬、镍)2Al5 相转变为韧性(铁、铬、镍)Al 相。随着低氧压力氧化的进行,表层形成了 FeAl/Al2O3 梯度涂层。Al-2.5 Si wt.%样品形成的氧化膜更加平整致密,从而显著提高了其高温抗氧化性。降低氧分压促进了 Al 元素的外部氧化和 Al2O3 氧化膜的形成。
{"title":"Effects of Annealing and Oxidation on the Microstructure of Hot-Dipped Aluminum–Silicon Coating of 316L Stainless Steel","authors":"Binbin Yuan, Xuxu Deng, Zhiqiu Guo, Sharafadeen Kunle Kolawole, Changjun Wu, Haoping Peng, Ya Liu, Xuping Su","doi":"10.1007/s11669-024-01092-0","DOIUrl":"10.1007/s11669-024-01092-0","url":null,"abstract":"<div><p>In this study, a continuous and dense FeAl/Al<sub>2</sub>O<sub>3</sub> gradient coating was prepared on the surface of 316L stainless steel by hot-dipping aluminizing, vacuum annealing and low-oxygen pressure oxidation. The results showed that when a hot-dipping pure aluminum was applied, the alloy compound layer was composed of (Fe, Cr, Ni)<sub>2</sub>Al<sub>5</sub> and (Fe, Cr, Ni)Al<sub>3</sub> phases. When the Si content in the bath was higher than 2.5 wt.%, a new intermetallic compound, Al<sub>7</sub>(Fe, Cr)<sub>2</sub>Si, appeared at the interface, and the thickness of the metal compound layer decreased continuously upon increasing the silicon content in the melt pool. When the hot-dipped sample was annealed in vacuum at 900 °C for 3 h, the brittle (Fe, Cr, Ni)<sub>2</sub>Al<sub>5</sub> phase was transformed into a ductile (Fe, Cr, Ni)Al phase. As low-oxygen pressure oxidation progressed, FeAl/Al<sub>2</sub>O<sub>3</sub> gradient coatings were formed on the surface layer. The oxide film formed by the Al-2.5 Si wt.% sample was flatter and denser, which significantly improved its high-temperature oxidation resistance. Reducing the oxygen partial pressure promoted the external oxidation of Al element and the formation of Al<sub>2</sub>O<sub>3</sub> oxide film.</p></div>","PeriodicalId":657,"journal":{"name":"Journal of Phase Equilibria and Diffusion","volume":"45 2","pages":"114 - 131"},"PeriodicalIF":1.5,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140075117","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-06DOI: 10.1007/s11669-024-01096-w
S. Z. Imamaliyeva, I. F. Huseynova, D. Daraselia, D. Japaridze, A. Shengelaya, M. B. Babanly
Heavy p-elements-rare earth element tellurides are important multifunctional materials with thermoelectric, magnetic, optical, topological insulating, and other properties. This paper presents the results of a study of phase equilibria in the Tl2Te-TlBiTe2-TlGdTe2 system and the magnetic properties of the TlBi1−xGdxTe2 solid solutions. A diagram of solid-phase equilibria of the indicated system has been constructed. According to the data obtained, it is characterized by the formation of wide areas of homogeneity based on the initial compounds of the TlBiTe2-TlGdTe2 boundary system and a continuous series of solid solutions along the Tl9BiTe6-Tl9GdTe6 section (δ-phase). It has been shown that the homogeneity regions of the TlBiTe2 (β1) and TlGdTe2 (β2) compounds form a narrow (1-2 mol.%) band extending to 35 and 10 mol.% TlGdTe2 and TlBiTe2, respectively, along the boundary TlBiTe2-TlGdTe2 system while the homogeneity area of the δ-phase significantly extends into the compositions region rich in Tl2Te. Based on powder diffraction patterns, the phase compositions of the alloys and the crystallographic parameters of the identified solid solutions were determined. The work also presents several polythermal sections, isothermal sections at 760 and 800 K of the phase diagram, as well as a projection of the liquidus and solidus surface of the Tl2Te-Tl9BiTe6-Tl9GdTe6 subsystem. Magnetic properties of TlBi1−xGdxTe2 samples were investigated by magnetization and Electron Paramagnetic Resonance (EPR) measurements. It was found that these samples behave as a Curie-Weiss paramagnet containing Gd3+ ions with no indications of magnetic ordering or freezing down to 2 K.
{"title":"Phase Relations in the Tl2Te-TlBiTe2-TlGdTe2 Compositions Region of the Tl-Bi-Gd-Te System and Magnetic Properties of the TlBi1−xGdxTe2 Solid Solutions","authors":"S. Z. Imamaliyeva, I. F. Huseynova, D. Daraselia, D. Japaridze, A. Shengelaya, M. B. Babanly","doi":"10.1007/s11669-024-01096-w","DOIUrl":"10.1007/s11669-024-01096-w","url":null,"abstract":"<div><p>Heavy p-elements-rare earth element tellurides are important multifunctional materials with thermoelectric, magnetic, optical, topological insulating, and other properties. This paper presents the results of a study of phase equilibria in the Tl<sub>2</sub>Te-TlBiTe<sub>2</sub>-TlGdTe<sub>2</sub> system and the magnetic properties of the TlBi<sub>1−<i>x</i></sub>Gd<sub><i>x</i></sub>Te<sub>2</sub> solid solutions. A diagram of solid-phase equilibria of the indicated system has been constructed. According to the data obtained, it is characterized by the formation of wide areas of homogeneity based on the initial compounds of the TlBiTe<sub>2</sub>-TlGdTe<sub>2</sub> boundary system and a continuous series of solid solutions along the Tl<sub>9</sub>BiTe<sub>6</sub>-Tl<sub>9</sub>GdTe<sub>6</sub> section (<i>δ</i>-phase). It has been shown that the homogeneity regions of the TlBiTe<sub>2</sub> (<i>β</i><sub>1</sub>) and TlGdTe<sub>2</sub> (<i>β</i><sub>2</sub>) compounds form a narrow (1-2 mol.%) band extending to 35 and 10 mol.% TlGdTe<sub>2</sub> and TlBiTe<sub>2</sub>, respectively, along the boundary TlBiTe<sub>2</sub>-TlGdTe<sub>2</sub> system while the homogeneity area of the <i>δ</i>-phase significantly extends into the compositions region rich in Tl<sub>2</sub>Te. Based on powder diffraction patterns, the phase compositions of the alloys and the crystallographic parameters of the identified solid solutions were determined. The work also presents several polythermal sections, isothermal sections at 760 and 800 K of the phase diagram, as well as a projection of the liquidus and solidus surface of the Tl<sub>2</sub>Te-Tl<sub>9</sub>BiTe<sub>6</sub>-Tl<sub>9</sub>GdTe<sub>6</sub> subsystem. Magnetic properties of TlBi<sub>1−<i>x</i></sub>Gd<sub><i>x</i></sub>Te<sub>2</sub> samples were investigated by magnetization and Electron Paramagnetic Resonance (EPR) measurements. It was found that these samples behave as a Curie-Weiss paramagnet containing Gd<sup>3+</sup> ions with no indications of magnetic ordering or freezing down to 2 K.</p></div>","PeriodicalId":657,"journal":{"name":"Journal of Phase Equilibria and Diffusion","volume":"45 3","pages":"459 - 468"},"PeriodicalIF":1.5,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140075116","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-26DOI: 10.1007/s11669-024-01086-y
H. Sato, H. Miyazaki, Y. Nishino, U. Mizutani
Using our new program code, we have calculated the temperature dependence of the Seebeck coefficient ((S-T)) in the linearized Boltzmann transport equation with a constant relaxation time (LBT-CRT) for Fe2VAl (cF16) and its quaternary compounds for the range from − 263 °C (10 K) to 727 °C (1000 K). We revealed that Fe2VAl compound free from any defects exhibited the Seebeck coefficient with a negative sign at odds with experimental data with a positive sign. However, this dilemma could be removed after the introduction of Al/V near neighbor inversion defects into the perfect Fe2VAl. A key point in developing a reliable temperature-dependent Seebeck coefficient software lies in how precisely we calculate the density of states times square of the group velocity ({left|{{text{v}}}_{x}right|}^{2}) along the direction (x) of thermal gradient. The present method is contrasted to the Fourier Transform Interpolation method in BoltzTraP developed by Madsen and Singh (2006). Nevertheless, both could reproduce the experimental data of Fe2VAl once the inversion effect was taken into account. Our new software allows us to seek the origin of characteristic behaviors in the (S-T) curve by decomposing the electronic parameter above into sub-bands and analyzing the sub-band dependence of the energy spectrum (Aleft(varepsilon right)) in the LBT-CRT equation.
{"title":"Quantitative Evaluation of Seebeck Coefficient using Linearized Boltzmann Transport Equation for Fe2VAl-Based Compounds","authors":"H. Sato, H. Miyazaki, Y. Nishino, U. Mizutani","doi":"10.1007/s11669-024-01086-y","DOIUrl":"10.1007/s11669-024-01086-y","url":null,"abstract":"<div><p>Using our new program code, we have calculated the temperature dependence of the Seebeck coefficient (<span>(S-T)</span>) in the linearized Boltzmann transport equation with a constant relaxation time (LBT-CRT) for Fe<sub>2</sub>VAl (cF16) and its quaternary compounds for the range from − 263 °C (10 K) to 727 °C (1000 K). We revealed that Fe<sub>2</sub>VAl compound free from any defects exhibited the Seebeck coefficient with a negative sign at odds with experimental data with a positive sign. However, this dilemma could be removed after the introduction of Al/V near neighbor inversion defects into the perfect Fe<sub>2</sub>VAl. A key point in developing a reliable temperature-dependent Seebeck coefficient software lies in how precisely we calculate the density of states times square of the group velocity <span>({left|{{text{v}}}_{x}right|}^{2})</span> along the direction <span>(x)</span> of thermal gradient. The present method is contrasted to the Fourier Transform Interpolation method in BoltzTraP developed by Madsen and Singh (2006). Nevertheless, both could reproduce the experimental data of Fe<sub>2</sub>VAl once the inversion effect was taken into account. Our new software allows us to seek the origin of characteristic behaviors in the <span>(S-T)</span> curve by decomposing the electronic parameter above into sub-bands and analyzing the sub-band dependence of the energy spectrum <span>(Aleft(varepsilon right))</span> in the LBT-CRT equation.</p></div>","PeriodicalId":657,"journal":{"name":"Journal of Phase Equilibria and Diffusion","volume":"45 3","pages":"397 - 415"},"PeriodicalIF":1.5,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139988288","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-23DOI: 10.1007/s11669-024-01095-x
Mykola Moroz, Fiseha Tesfaye, Pavlo Demchenko, Myroslava Prokhorenko, Emanuela Mastronardo, Oleksandr Reshetnyak, Daniel Lindberg, Leena Hupa
The equilibrium T − x space of the Ag-Ga-Te-AgBr system in the part Ag2Te-GaTe-Te-AgBr-Ag2Te below 600 K has been divided into separate phase regions using the electromotive force (EMF) method. Accurate experimental data were obtained using the following electrochemical cells (ECs): (−) IE | NE | SSE | R{Ag+} | PE | IE (+), where IE is the inert electrode (graphite powder), NE is the negative electrode (silver powder), SSE is the solid-state electrolyte (glassy Ag3GeS3Br), PE is the positive electrode, R{Ag+} is the region of PE that is contact in with SSE. At the stage of cell preparation, PE is a non-equilibrium phase mixture of the well-mixed powdered compounds Ag2Te, GaTe, Ga2Te3, AgBr, and tellurium, taken in ratios corresponding to two or three different points of interest for each of the phase regions. The equilibrium set of phases was formed in the R{Ag+} region at 600 K for 48 h with the participation of the Ag+ ions. Silver cations, displaced for thermodynamic reasons from the NE to the PE of ECs, acted as catalysts, i.e., small nucleation centers of equilibrium phases. The spatial position of the established phase regions relative to the position of silver was used to express the overall reactions of synthesis of the binary Ga2Te5, Ga7Te10, Ga3Te4, ternary AgGa5Te8, and quaternary Ag3Ga10Te16Br, Ag3Ga2Te4Br, Ag27Ga2Te12Br9 compounds in the PE of ECs. The values of the standard thermodynamic functions (Gibbs energies, enthalpies, and entropies) of these compounds were determined based on the temperature dependencies of the EMF of the ECs.
利用电动势(EMF)方法将 600 K 以下 Ag2Te-GaTe-Te-AgBr-Ag2Te 部分中 Ag-Ga-Te-AgBr 系统的平衡 T - x 空间划分为不同的相区。使用以下电化学电池(EC)获得了精确的实验数据:(-) IE | NE | SSE | R{Ag+} | PE | IE| PE | IE (+),其中 IE 为惰性电极(石墨粉),NE 为负极(银粉),SSE 为固态电解质(玻璃状 Ag3GeS3Br),PE 为正极,R{Ag+} 为 PE 与 SSE 接触的区域。在电池制备阶段,PE 是由混合均匀的 Ag2Te、GaTe、Ga2Te3、AgBr 和碲化合物粉末组成的非平衡相混合物,其比例与每个相区的两个或三个不同关注点相对应。在 600 K 的 R{Ag+} 区域,在 Ag+ 离子的参与下,经过 48 小时形成了一组平衡相。由于热力学原因,银阳离子从电解质的近邻区移位到了远邻区,起到了催化剂的作用,即平衡相的小型成核中心。建立的相区相对于银位置的空间位置被用来表示二元 Ga2Te5、Ga7Te10、Ga3Te4、三元 AgGa5Te8 和四元 Ag3Ga10Te16Br、Ag3Ga2Te4Br、Ag27Ga2Te12Br9 化合物在电解质 PE 中合成的总体反应。这些化合物的标准热力学函数值(吉布斯能、焓和熵)是根据电子显微镜电磁场的温度相关性确定的。
{"title":"Phase Equilibria and Thermodynamic Properties of Selected Compounds in the Ag-Ga-Te-AgBr System","authors":"Mykola Moroz, Fiseha Tesfaye, Pavlo Demchenko, Myroslava Prokhorenko, Emanuela Mastronardo, Oleksandr Reshetnyak, Daniel Lindberg, Leena Hupa","doi":"10.1007/s11669-024-01095-x","DOIUrl":"10.1007/s11669-024-01095-x","url":null,"abstract":"<div><p>The equilibrium <i>T</i> − <i>x</i> space of the Ag-Ga-Te-AgBr system in the part Ag<sub>2</sub>Te-GaTe-Te-AgBr-Ag<sub>2</sub>Te below 600 K has been divided into separate phase regions using the electromotive force (EMF) method. Accurate experimental data were obtained using the following electrochemical cells (ECs): (−) IE | NE | SSE | R{Ag<sup>+</sup>} | PE | IE (+), where IE is the inert electrode (graphite powder), NE is the negative electrode (silver powder), SSE is the solid-state electrolyte (glassy Ag<sub>3</sub>GeS<sub>3</sub>Br), PE is the positive electrode, R{Ag<sup>+</sup>} is the region of PE that is contact in with SSE. At the stage of cell preparation, PE is a non-equilibrium phase mixture of the well-mixed powdered compounds Ag<sub>2</sub>Te, GaTe, Ga<sub>2</sub>Te<sub>3</sub>, AgBr, and tellurium, taken in ratios corresponding to two or three different points of interest for each of the phase regions. The equilibrium set of phases was formed in the R{Ag<sup>+</sup>} region at 600 K for 48 h with the participation of the Ag<sup>+</sup> ions. Silver cations, displaced for thermodynamic reasons from the NE to the PE of ECs, acted as catalysts, i.e., small nucleation centers of equilibrium phases. The spatial position of the established phase regions relative to the position of silver was used to express the overall reactions of synthesis of the binary Ga<sub>2</sub>Te<sub>5</sub>, Ga<sub>7</sub>Te<sub>10</sub>, Ga<sub>3</sub>Te<sub>4</sub>, ternary AgGa<sub>5</sub>Te<sub>8</sub>, and quaternary Ag<sub>3</sub>Ga<sub>10</sub>Te<sub>16</sub>Br, Ag<sub>3</sub>Ga<sub>2</sub>Te<sub>4</sub>Br, Ag<sub>27</sub>Ga<sub>2</sub>Te<sub>12</sub>Br<sub>9</sub> compounds in the PE of ECs. The values of the standard thermodynamic functions (Gibbs energies, enthalpies, and entropies) of these compounds were determined based on the temperature dependencies of the EMF of the ECs.</p></div>","PeriodicalId":657,"journal":{"name":"Journal of Phase Equilibria and Diffusion","volume":"45 3","pages":"447 - 458"},"PeriodicalIF":1.5,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139955081","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-23DOI: 10.1007/s11669-024-01093-z
Jiaqiang Zhou, Jiong Wang, Biao Hu, Dongyu Cui
Thermodynamic descriptions of the Bi-Se and Bi-Te systems have been developed using the CALculation of PHAse Diagrams (CALPHAD) method based on the experimental data available in the literature. The liquid phases were described by the associated solution model for the Bi-Se and Bi-Te systems with Bi2Se3 and Bi2Te3 as associates, respectively. The intermetallics Bi2Se3, Bi3Se4, Bi8Se9, BiSe, Bi8Se7, Bi4Se3, Bi3Se2, Bi4Te5, Bi8Te9, BiTe, Bi4Te3, Bi2Te and Bi7Te3 were treated as stoichiometric compounds while Bi2Te3 was modeled by the sublattice model based on its homogeneity range and crystal structure. A set of self-consistent thermodynamic parameters for the Bi-Se and Bi-Te systems was obtained. Comparisons between the calculated results and experimental data available in the literature show that the most reliable experimental information can be satisfactorily accounted for by the present modeling.
{"title":"Thermodynamic Modeling of the Bi-Se and Bi-Te Binary Systems","authors":"Jiaqiang Zhou, Jiong Wang, Biao Hu, Dongyu Cui","doi":"10.1007/s11669-024-01093-z","DOIUrl":"10.1007/s11669-024-01093-z","url":null,"abstract":"<div><p>Thermodynamic descriptions of the Bi-Se and Bi-Te systems have been developed using the CALculation of PHAse Diagrams (CALPHAD) method based on the experimental data available in the literature. The liquid phases were described by the associated solution model for the Bi-Se and Bi-Te systems with Bi<sub>2</sub>Se<sub>3</sub> and Bi<sub>2</sub>Te<sub>3</sub> as associates, respectively. The intermetallics Bi<sub>2</sub>Se<sub>3</sub>, Bi<sub>3</sub>Se<sub>4</sub>, Bi<sub>8</sub>Se<sub>9</sub>, BiSe, Bi<sub>8</sub>Se<sub>7</sub>, Bi<sub>4</sub>Se<sub>3</sub>, Bi<sub>3</sub>Se<sub>2</sub>, Bi<sub>4</sub>Te<sub>5</sub>, Bi<sub>8</sub>Te<sub>9</sub>, BiTe, Bi<sub>4</sub>Te<sub>3</sub>, Bi<sub>2</sub>Te and Bi<sub>7</sub>Te<sub>3</sub> were treated as stoichiometric compounds while Bi<sub>2</sub>Te<sub>3</sub> was modeled by the sublattice model based on its homogeneity range and crystal structure. A set of self-consistent thermodynamic parameters for the Bi-Se and Bi-Te systems was obtained. Comparisons between the calculated results and experimental data available in the literature show that the most reliable experimental information can be satisfactorily accounted for by the present modeling.</p></div>","PeriodicalId":657,"journal":{"name":"Journal of Phase Equilibria and Diffusion","volume":"45 2","pages":"89 - 113"},"PeriodicalIF":1.5,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139955038","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-23DOI: 10.1007/s11669-024-01090-2
Agustin Flores, Sylvie Chatain, Paul Fossati, Frank Stein, Jean-Marc Joubert
The Cr–Ti system was investigated by several experimental methods and first-principles calculations. The thermodynamic activity of the body-centered cubic solid solution was measured by Knudsen effusion mass spectrometry. The stability of all three polymorphic structures of the Laves phase (C14, C15, and C36) was determined by differential thermal analysis, and the equilibrium tie-lines with the solid solution were obtained by combining results from diffusion couples and equilibrated alloys. The enthalpy of formation of the Laves phases with the corresponding end-members were calculated using density functional theory and the obtained values were integrated in the models. The experimental and computed data available in the literature was reviewed and the binary system was assessed by the Calphad method. The present evaluation results in an improved thermodynamic description, which can describe the experimentally observed activity in a large temperature range. The temperatures of the invariant reactions between the C15 and the C36 phase with the Cr-rich and the Ti-rich bcc solid solution were significantly modified. The difference of the temperature of transformation between the C15 and the C36 polytypes on both sides of the Laves phase is much smaller than reported previously.
{"title":"Experimental Investigation and Thermodynamic Assessment of the Cr–Ti System","authors":"Agustin Flores, Sylvie Chatain, Paul Fossati, Frank Stein, Jean-Marc Joubert","doi":"10.1007/s11669-024-01090-2","DOIUrl":"10.1007/s11669-024-01090-2","url":null,"abstract":"<div><p>The Cr–Ti system was investigated by several experimental methods and first-principles calculations. The thermodynamic activity of the body-centered cubic solid solution was measured by Knudsen effusion mass spectrometry. The stability of all three polymorphic structures of the Laves phase (<i>C</i>14, <i>C</i>15, and <i>C</i>36) was determined by differential thermal analysis, and the equilibrium tie-lines with the solid solution were obtained by combining results from diffusion couples and equilibrated alloys. The enthalpy of formation of the Laves phases with the corresponding end-members were calculated using density functional theory and the obtained values were integrated in the models. The experimental and computed data available in the literature was reviewed and the binary system was assessed by the Calphad method. The present evaluation results in an improved thermodynamic description, which can describe the experimentally observed activity in a large temperature range. The temperatures of the invariant reactions between the <i>C</i>15 and the <i>C</i>36 phase with the Cr-rich and the Ti-rich bcc solid solution were significantly modified. The difference of the temperature of transformation between the <i>C</i>15 and the <i>C</i>36 polytypes on both sides of the Laves phase is much smaller than reported previously.</p></div>","PeriodicalId":657,"journal":{"name":"Journal of Phase Equilibria and Diffusion","volume":"45 3","pages":"417 - 432"},"PeriodicalIF":1.5,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139955088","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-22DOI: 10.1007/s11669-024-01089-9
Z. Rahou, D. Moustaine, Y. Ben-Ali, A. Hallaoui
First-principles calculations based on density functional theory (DFT) were employed to investigate the Tb-Ni binary system, and its thermodynamic characterization was reassessed utilizing the CALPHAD (CALculation of PHAse Diagram) methodology. The liquid solution is described by the Redlich-Kister polynomials model, while the binary compounds are treated as stoichiometric phases. The predicted formation enthalpies of all intermediate compounds in the Tb-Ni binary system were used to support the optimization. Leveraging the Thermo-Calc software, a self-consistent set of thermodynamic parameters was obtained. The calculated phase diagram aligns well with experimental phase equilibrium data from the literature, and the resulting thermodynamic properties exhibit greater reasonability. The trend in thermodynamic information across rare earth (RE)-Ni systems is highlighted, showing that with an increase in the RE atomic number, both the enthalpies of mixing of liquid alloys and the enthalpies of formation of intermetallic compounds become more negative.
研究采用了基于密度泛函理论(DFT)的第一性原理计算来研究锑镍二元体系,并利用 CALPHAD(CALculation of PHAse Diagram)方法对其热力学特性进行了重新评估。液态溶液由 Redlich-Kister 多项式模型描述,而二元化合物则被视为化学计量相。锑镍二元体系中所有中间化合物的预测形成焓被用于支持优化。利用 Thermo-Calc 软件,获得了一组自洽的热力学参数。计算得出的相图与文献中的实验相平衡数据十分吻合,由此得出的热力学性质也更加合理。稀土(RE)-镍体系的热力学信息趋势得到了强调,这表明随着稀土原子序数的增加,液态合金的混合焓和金属间化合物的形成焓都变得更负。
{"title":"CALPHAD-Based Thermodynamic Reassessment of Tb-Ni Binary System Supported by Ab-Initio Calculations","authors":"Z. Rahou, D. Moustaine, Y. Ben-Ali, A. Hallaoui","doi":"10.1007/s11669-024-01089-9","DOIUrl":"10.1007/s11669-024-01089-9","url":null,"abstract":"<div><p>First-principles calculations based on density functional theory (DFT) were employed to investigate the Tb-Ni binary system, and its thermodynamic characterization was reassessed utilizing the CALPHAD (CALculation of PHAse Diagram) methodology. The liquid solution is described by the Redlich-Kister polynomials model, while the binary compounds are treated as stoichiometric phases. The predicted formation enthalpies of all intermediate compounds in the Tb-Ni binary system were used to support the optimization. Leveraging the Thermo-Calc software, a self-consistent set of thermodynamic parameters was obtained. The calculated phase diagram aligns well with experimental phase equilibrium data from the literature, and the resulting thermodynamic properties exhibit greater reasonability. The trend in thermodynamic information across rare earth (RE)-Ni systems is highlighted, showing that with an increase in the RE atomic number, both the enthalpies of mixing of liquid alloys and the enthalpies of formation of intermetallic compounds become more negative.</p></div>","PeriodicalId":657,"journal":{"name":"Journal of Phase Equilibria and Diffusion","volume":"45 1","pages":"75 - 85"},"PeriodicalIF":1.5,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139924618","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-14DOI: 10.1007/s11669-024-01082-2
D. A. de Abreu, M. Löffler, M. J. Kriegel, O. Fabrichnaya
In the present work, phase equilibria in the Li(_2)O–Al(_2)O(_3) system were experimentally studied and calorimetric measurements were performed. Based on obtained results and data from literature, thermodynamic parameters of the system were assessed. The solid solution phases were modeled using Compound Energy Formalism (CEF) and liquid phase was described by two-sublattice partially ionic liquid model. The experimental investigations for selected compositions of isothermally heat-treated samples were performed using x-ray Diffraction (XRD) and Scanning Electron Microscopy (SEM). Differential Thermal Analysis (DTA) and Differential Scanning Calorimetry (DSC) were used to measure the temperature of the reactions as well as the heat capacities, respectively. After DTA, the microstructure was analyzed using SEM. Temperature of peritectic melting of h-LiAl(_5)O(_8) was determined to be 2222 K and temperature of eutectic reaction Liq (leftrightarrow)(gamma)-LiAlO(_2) + h-LiAl(_5)O(_8) to be 1965 K. Heat capacity of LiAlO(_2) and LiAl(_5)O(_8) was measured in the temperature range of 100-1300 K. The degree of inversion of spinel phase (Al(^{+3}), Li(^{+1}))(_1^T):(Al(^{+3}), Li(^{+1}), Va)(_2^O):O(_4) was modelled assuming Al(^{+3}) and Li(^{+1}) can occupy tetrahedral (T) and octahedral (O) cationic sublattices while its composition extension in Al(_2)O(_3) enriched region was described by introducing vacancies in octahedral sites. Thermodynamic description derived in the present study reproduces the degree of inversion close to that of the high-temperature spinel phase, which means that Al(^{+3}) ions preferentially occupy the tetrahedral sites. The calculated phase diagram satisfactorily agrees with the experimental results. Available experimental thermodynamic data are also reproduced within uncertainty limits.
本研究对 Li(_2)O-Al(_2)O(_3) 体系中的相平衡进行了实验研究,并进行了量热测量。根据获得的结果和文献数据,对体系的热力学参数进行了评估。固溶体相采用化合物能量形式主义(CEF)建模,液相采用双亚晶格部分离子液体模型描述。使用 X 射线衍射(XRD)和扫描电子显微镜(SEM)对等温热处理样品的选定成分进行了实验研究。差热分析(DTA)和差示扫描量热仪(DSC)分别用于测量反应温度和热容量。DTA 之后,使用扫描电镜分析了微观结构。h-LiAl(_5)O(_8) 的包晶熔化温度被确定为 2222 K,共晶反应 Liq ((左)右)((加)-LiAlO(_2) + h-LiAl(_5)O(_8) 的温度为 1965 K。LiAlO(_2) 和 LiAl(_5)O(_8) 的热容量是在 100-1300 K 的温度范围内测量的。尖晶石相(Al (^{+3}), Li (^{+1}))的反转程度(_1^T):(Al (^{+3}), Li (^{+1}), Va)(_2^O):假设 Al (^{+3})和 Li (^{+1})可以占据四面体(T)和八面体(O)阳离子子晶格,而其在 Al (_2)O (_3)富集区的成分扩展是通过在八面体位点引入空位来描述的。本研究得出的热力学描述再现了接近高温尖晶石相的反转程度,这意味着 Al(^{+3})离子优先占据了四面体位点。计算得出的相图与实验结果完全吻合。现有的实验热力学数据也在不确定范围内得到了重现。
{"title":"Experimental Investigation and Thermodynamic Modeling of the Li(_2)O–Al(_2)O(_3) System","authors":"D. A. de Abreu, M. Löffler, M. J. Kriegel, O. Fabrichnaya","doi":"10.1007/s11669-024-01082-2","DOIUrl":"10.1007/s11669-024-01082-2","url":null,"abstract":"<div><p>In the present work, phase equilibria in the Li<span>(_2)</span>O–Al<span>(_2)</span>O<span>(_3)</span> system were experimentally studied and calorimetric measurements were performed. Based on obtained results and data from literature, thermodynamic parameters of the system were assessed. The solid solution phases were modeled using Compound Energy Formalism (CEF) and liquid phase was described by two-sublattice partially ionic liquid model. The experimental investigations for selected compositions of isothermally heat-treated samples were performed using x-ray Diffraction (XRD) and Scanning Electron Microscopy (SEM). Differential Thermal Analysis (DTA) and Differential Scanning Calorimetry (DSC) were used to measure the temperature of the reactions as well as the heat capacities, respectively. After DTA, the microstructure was analyzed using SEM. Temperature of peritectic melting of h-LiAl<span>(_5)</span>O<span>(_8)</span> was determined to be 2222 K and temperature of eutectic reaction Liq <span>(leftrightarrow)</span> <span>(gamma)</span>-LiAlO<span>(_2)</span> + h-LiAl<span>(_5)</span>O<span>(_8)</span> to be 1965 K. Heat capacity of LiAlO<span>(_2)</span> and LiAl<span>(_5)</span>O<span>(_8)</span> was measured in the temperature range of 100-1300 K. The degree of inversion of spinel phase (Al<span>(^{+3})</span>, Li<span>(^{+1})</span>)<span>(_1^T)</span>:(Al<span>(^{+3})</span>, Li<span>(^{+1})</span>, Va)<span>(_2^O)</span>:O<span>(_4)</span> was modelled assuming Al<span>(^{+3})</span> and Li<span>(^{+1})</span> can occupy tetrahedral (T) and octahedral (O) cationic sublattices while its composition extension in Al<span>(_2)</span>O<span>(_3)</span> enriched region was described by introducing vacancies in octahedral sites. Thermodynamic description derived in the present study reproduces the degree of inversion close to that of the high-temperature spinel phase, which means that Al<span>(^{+3})</span> ions preferentially occupy the tetrahedral sites. The calculated phase diagram satisfactorily agrees with the experimental results. Available experimental thermodynamic data are also reproduced within uncertainty limits.</p></div>","PeriodicalId":657,"journal":{"name":"Journal of Phase Equilibria and Diffusion","volume":"45 1","pages":"36 - 55"},"PeriodicalIF":1.5,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11669-024-01082-2.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139773333","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-10DOI: 10.1007/s11669-024-01085-z
Tetsuo Mohri
Systematic studies on the lattice expansion and order-disorder phase equilibria are attempted for the A-B binary alloy on the two-dimensional square lattice. The atomic pair potentials are described by the Morse potential and the configurational entropy is formulated within the pair approximation of the Cluster Variation Method (CVM). The lattice expansion of the uniformly deformable lattice is enhanced by introducing lattice vibration effects through the Debye–Grüneisen model. The introduction of the local lattice distortion by continuous displacement CVM (CDCVM) further increases the lattice expansion. The transition temperature obtained for a uniformly deformable lattice is reduced by the thermal vibration effects, which is interpreted as the curvature effects of atomic pair potentials. The local lattice relaxation further reduced the transition temperature, which is ascribed to the additional freedom of distributing atomic pairs over a wide range of distances.
{"title":"Continuous Displacement Cluster Variation Method for the Study of Local Lattice Distortion in an Alloy","authors":"Tetsuo Mohri","doi":"10.1007/s11669-024-01085-z","DOIUrl":"10.1007/s11669-024-01085-z","url":null,"abstract":"<div><p>Systematic studies on the lattice expansion and order-disorder phase equilibria are attempted for the A-B binary alloy on the two-dimensional square lattice. The atomic pair potentials are described by the Morse potential and the configurational entropy is formulated within the pair approximation of the Cluster Variation Method (CVM). The lattice expansion of the uniformly deformable lattice is enhanced by introducing lattice vibration effects through the Debye–Grüneisen model. The introduction of the local lattice distortion by continuous displacement CVM (CDCVM) further increases the lattice expansion. The transition temperature obtained for a uniformly deformable lattice is reduced by the thermal vibration effects, which is interpreted as the curvature effects of atomic pair potentials. The local lattice relaxation further reduced the transition temperature, which is ascribed to the additional freedom of distributing atomic pairs over a wide range of distances.</p></div>","PeriodicalId":657,"journal":{"name":"Journal of Phase Equilibria and Diffusion","volume":"45 3","pages":"358 - 366"},"PeriodicalIF":1.5,"publicationDate":"2024-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139761352","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}