Pub Date : 2019-10-21DOI: 10.1109/IRMMW-THz.2019.8873990
M. Hibberd, A. Healy, D. Lake, V. Georgiadis, E. J. H. Smith, O. Finlay, T. Pacey, J. Jones, Y. Saveliev, D. Walsh, E. Snedden, R. Appleby, G. Burt, D. Graham, S. Jamison
We will present the first results from the CLARA research facility at Daresbury Laboratory demonstrating terahertz-driven acceleration of a relativistic 35 MeV electron beam. A polarization-tailored, frequency-tunable, narrowband terahertz source was used to directly excite the longitudinal accelerating mode of a dielectric-lined waveguide structure for collinear phase-velocity-matched THz-electron interaction.
{"title":"Terahertz-driven acceleration of a relativistic 35 MeV electron beam","authors":"M. Hibberd, A. Healy, D. Lake, V. Georgiadis, E. J. H. Smith, O. Finlay, T. Pacey, J. Jones, Y. Saveliev, D. Walsh, E. Snedden, R. Appleby, G. Burt, D. Graham, S. Jamison","doi":"10.1109/IRMMW-THz.2019.8873990","DOIUrl":"https://doi.org/10.1109/IRMMW-THz.2019.8873990","url":null,"abstract":"We will present the first results from the CLARA research facility at Daresbury Laboratory demonstrating terahertz-driven acceleration of a relativistic 35 MeV electron beam. A polarization-tailored, frequency-tunable, narrowband terahertz source was used to directly excite the longitudinal accelerating mode of a dielectric-lined waveguide structure for collinear phase-velocity-matched THz-electron interaction.","PeriodicalId":6686,"journal":{"name":"2019 44th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz)","volume":"44 1","pages":"1-2"},"PeriodicalIF":0.0,"publicationDate":"2019-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74117728","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-10-21DOI: 10.1109/IRMMW-THz.2019.8874199
Décio F. Alves de Lima, R. Letizia, Richard Dawson, Hungyen Lin
Nafion® polymeric membranes are the prime electrolyte material for proton exchange membrane fuel cells (PEMFC), requiring adequate hydration in order to reach high proton conductivity. The relatively high attenuation of terahertz (THz) radiation of liquid water compared to the surrounding polymer assembly enables a contrast to be observed for inspecting water build-up in Nafion® membranes. This paper investigates the feasibility of a compact THz camera for liquid water mapping and quantification in Nafion® polymeric membrane.
{"title":"Quantitative video-rate hydration imaging of Nafion® proton exchange membranes with THz radiation","authors":"Décio F. Alves de Lima, R. Letizia, Richard Dawson, Hungyen Lin","doi":"10.1109/IRMMW-THz.2019.8874199","DOIUrl":"https://doi.org/10.1109/IRMMW-THz.2019.8874199","url":null,"abstract":"Nafion® polymeric membranes are the prime electrolyte material for proton exchange membrane fuel cells (PEMFC), requiring adequate hydration in order to reach high proton conductivity. The relatively high attenuation of terahertz (THz) radiation of liquid water compared to the surrounding polymer assembly enables a contrast to be observed for inspecting water build-up in Nafion® membranes. This paper investigates the feasibility of a compact THz camera for liquid water mapping and quantification in Nafion® polymeric membrane.","PeriodicalId":6686,"journal":{"name":"2019 44th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz)","volume":"71 1","pages":"1-1"},"PeriodicalIF":0.0,"publicationDate":"2019-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86274459","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-10-21DOI: 10.1109/IRMMW-THz.2019.8874294
M. Montanari, C. Ciano, L. Persichetti, L. Gaspare, M. Virgilio, G. Capellini, M. Zoellner, O. Skibitzki, D. Stark, G. Scalari, J. Faist, D. Paul, T. Grange, S. Birner, M. Scuderi, G. Nicotra, O. Moutanabbir, S. Mukherjee, L. Baldassarre, M. Ortolani, M. Seta
The exploitation of intersubband transitions in Ge/SiGe quantum cascade devices could pave the way towards the integration of THz light emitters into the silicon-based technology. Aiming at the realization of a Ge/SiGe Quantum Cascade Laser (QCL), we investigate optical and structural properties of n-type Ge/SiGe coupled quantum well systems. The samples have been investigated by means of X-ray diffraction, scanning transmission electron microscopy, atom probe tomography and Fourier Transform Infrared absorption spectroscopy to assess the growth capability with respect to QCL design requirements, carefully identified by means of modelling based on the non-equilibrium Green function formalism.
{"title":"High-Quality n-Type Ge/SiGe Multilayers for THz Quantum Cascade Lasers","authors":"M. Montanari, C. Ciano, L. Persichetti, L. Gaspare, M. Virgilio, G. Capellini, M. Zoellner, O. Skibitzki, D. Stark, G. Scalari, J. Faist, D. Paul, T. Grange, S. Birner, M. Scuderi, G. Nicotra, O. Moutanabbir, S. Mukherjee, L. Baldassarre, M. Ortolani, M. Seta","doi":"10.1109/IRMMW-THz.2019.8874294","DOIUrl":"https://doi.org/10.1109/IRMMW-THz.2019.8874294","url":null,"abstract":"The exploitation of intersubband transitions in Ge/SiGe quantum cascade devices could pave the way towards the integration of THz light emitters into the silicon-based technology. Aiming at the realization of a Ge/SiGe Quantum Cascade Laser (QCL), we investigate optical and structural properties of n-type Ge/SiGe coupled quantum well systems. The samples have been investigated by means of X-ray diffraction, scanning transmission electron microscopy, atom probe tomography and Fourier Transform Infrared absorption spectroscopy to assess the growth capability with respect to QCL design requirements, carefully identified by means of modelling based on the non-equilibrium Green function formalism.","PeriodicalId":6686,"journal":{"name":"2019 44th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz)","volume":"26 1","pages":"1-2"},"PeriodicalIF":0.0,"publicationDate":"2019-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75610535","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-10-21DOI: 10.1109/IRMMW-THz.2019.8874288
H. Hafez, Klaas-Jan Tielrooij, M. Bonn, D. Turchinovich
We study the dependence of the terahertz (THz) nonlinearity of graphene and its temporal dynamics on the free carrier concentration by THz-pump/THz-probe spectroscopy of a gated graphene at room temperature. The strong THz nonlinearity is attributed to electron heating by the driving THz field and shows a drastic dependence on the background electron concentration, demonstrating a wide-range tunability of the THz nonlinearity of graphene.
{"title":"Control of Terahertz Nonlinearity in Graphene by Gating","authors":"H. Hafez, Klaas-Jan Tielrooij, M. Bonn, D. Turchinovich","doi":"10.1109/IRMMW-THz.2019.8874288","DOIUrl":"https://doi.org/10.1109/IRMMW-THz.2019.8874288","url":null,"abstract":"We study the dependence of the terahertz (THz) nonlinearity of graphene and its temporal dynamics on the free carrier concentration by THz-pump/THz-probe spectroscopy of a gated graphene at room temperature. The strong THz nonlinearity is attributed to electron heating by the driving THz field and shows a drastic dependence on the background electron concentration, demonstrating a wide-range tunability of the THz nonlinearity of graphene.","PeriodicalId":6686,"journal":{"name":"2019 44th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz)","volume":"53 1","pages":"1-2"},"PeriodicalIF":0.0,"publicationDate":"2019-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90553364","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-10-21DOI: 10.1109/IRMMW-THz.2019.8873813
D. F. A. D. Lima, R. Letizia, R. Degl’Innocenti, Richard Dawson, Hungyen Lin
Nafion polymeric membranes are the most common electrolyte material for proton exchange membrane fuel cells (PEMFC), requiring adequate hydration in order to reach high proton conductivity. The relatively high attenuation of terahertz (THz) radiation of liquid water enables a contrast to be observed for inspecting water build-up in Nafion membranes. This paper investigates the feasibility of a compact THz system using a THz camera for liquid water imaging and quantification in a Nafion polymeric membrane.
{"title":"Investigating liquid water distribution in Nafion polymer electrolyte membrane with terahertz imaging","authors":"D. F. A. D. Lima, R. Letizia, R. Degl’Innocenti, Richard Dawson, Hungyen Lin","doi":"10.1109/IRMMW-THz.2019.8873813","DOIUrl":"https://doi.org/10.1109/IRMMW-THz.2019.8873813","url":null,"abstract":"Nafion polymeric membranes are the most common electrolyte material for proton exchange membrane fuel cells (PEMFC), requiring adequate hydration in order to reach high proton conductivity. The relatively high attenuation of terahertz (THz) radiation of liquid water enables a contrast to be observed for inspecting water build-up in Nafion membranes. This paper investigates the feasibility of a compact THz system using a THz camera for liquid water imaging and quantification in a Nafion polymeric membrane.","PeriodicalId":6686,"journal":{"name":"2019 44th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz)","volume":"70 1","pages":"1-2"},"PeriodicalIF":0.0,"publicationDate":"2019-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84101473","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-10-21DOI: 10.1109/IRMMW-THz.2019.8874371
D. R. Bacon, M. Rosamond, T. Gill, A. Burnett, Lianhe H. Li, J. Cunningham, E. Linfield, A. Davies, P. Dean, J. Freeman
We report on the development of a large-area photoconductive THz array structure with an LT-GaAs active region fabricated on quartz substrates using a BCB bonding process. These are shown to generate high THz-fields greater than 100kV/cm, with a bandwidth greater than 6 THz.
{"title":"Photoconductive Arrays for High-Field Terahertz Generation","authors":"D. R. Bacon, M. Rosamond, T. Gill, A. Burnett, Lianhe H. Li, J. Cunningham, E. Linfield, A. Davies, P. Dean, J. Freeman","doi":"10.1109/IRMMW-THz.2019.8874371","DOIUrl":"https://doi.org/10.1109/IRMMW-THz.2019.8874371","url":null,"abstract":"We report on the development of a large-area photoconductive THz array structure with an LT-GaAs active region fabricated on quartz substrates using a BCB bonding process. These are shown to generate high THz-fields greater than 100kV/cm, with a bandwidth greater than 6 THz.","PeriodicalId":6686,"journal":{"name":"2019 44th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz)","volume":"30 1","pages":"1-2"},"PeriodicalIF":0.0,"publicationDate":"2019-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80288649","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-10-21DOI: 10.1109/IRMMW-THz.2019.8874148
Xiaoyu Jia, Klaas-Jan Tielrooij, M. Bonn, Hai I. Wang
Graphene has been widely used in various electrochemical applications owing to its outstanding electrical and chemical properties. The presence of electrolyte at the graphene surfaces affects graphene’s electronic properties, especially its electrical conductivity. The precise mechanism underlying the graphene-electrolyte interaction has remained elusive, despite the importance of graphene for electrochemical applications. Here, we employ optical-pump THz-probe spectroscopy as a contact-free and all-optical means to investigate the impact of cations on graphene conductivity in the electrolyte. We reveal ionic permeability though graphene, resulting in an interfacial doping effect in SiO2-supported graphene.
{"title":"Ionic permeability and interfacial doping of graphene on SiO2 measured with Terahertz photoconductivity measurements","authors":"Xiaoyu Jia, Klaas-Jan Tielrooij, M. Bonn, Hai I. Wang","doi":"10.1109/IRMMW-THz.2019.8874148","DOIUrl":"https://doi.org/10.1109/IRMMW-THz.2019.8874148","url":null,"abstract":"Graphene has been widely used in various electrochemical applications owing to its outstanding electrical and chemical properties. The presence of electrolyte at the graphene surfaces affects graphene’s electronic properties, especially its electrical conductivity. The precise mechanism underlying the graphene-electrolyte interaction has remained elusive, despite the importance of graphene for electrochemical applications. Here, we employ optical-pump THz-probe spectroscopy as a contact-free and all-optical means to investigate the impact of cations on graphene conductivity in the electrolyte. We reveal ionic permeability though graphene, resulting in an interfacial doping effect in SiO2-supported graphene.","PeriodicalId":6686,"journal":{"name":"2019 44th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz)","volume":"94 1","pages":"1-1"},"PeriodicalIF":0.0,"publicationDate":"2019-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74371434","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-10-21DOI: 10.1109/IRMMW-THz.2019.8874094
D. Naylor, I. Veenendaal, T. Fulton, B. Gom, Adam J. Christiansen, W. Jellema, C. Feenstra, M. Eggens, P. Ade
The sensitivity of state-of-the-art superconducting far-infrared detectors is such that astronomical observations at these wavelengths are limited by photon noise from the astronomical source unless a method of restricting the spectral bandpass is employed. One such method is to use a high resolution Fabry-Perot interferometer (FPI) in conjunction with a lower resolution, post-dispersing system, such as a grating spectrometer. The resonant wavelength of an FPI is typically tuned by changing the spacing or medium between the parallel reflecting plates of the etalon. We previously reported on a novel design in which the wavelength is tuned by scanning the angle of incidence, which simplifies the cryo-mechanical design, actuation and metrology. Here we present first light results from the realized instrument.
{"title":"First light results from a novel cryogenic Fabry-Pérot interferometer","authors":"D. Naylor, I. Veenendaal, T. Fulton, B. Gom, Adam J. Christiansen, W. Jellema, C. Feenstra, M. Eggens, P. Ade","doi":"10.1109/IRMMW-THz.2019.8874094","DOIUrl":"https://doi.org/10.1109/IRMMW-THz.2019.8874094","url":null,"abstract":"The sensitivity of state-of-the-art superconducting far-infrared detectors is such that astronomical observations at these wavelengths are limited by photon noise from the astronomical source unless a method of restricting the spectral bandpass is employed. One such method is to use a high resolution Fabry-Perot interferometer (FPI) in conjunction with a lower resolution, post-dispersing system, such as a grating spectrometer. The resonant wavelength of an FPI is typically tuned by changing the spacing or medium between the parallel reflecting plates of the etalon. We previously reported on a novel design in which the wavelength is tuned by scanning the angle of incidence, which simplifies the cryo-mechanical design, actuation and metrology. Here we present first light results from the realized instrument.","PeriodicalId":6686,"journal":{"name":"2019 44th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz)","volume":"50 1","pages":"1-2"},"PeriodicalIF":0.0,"publicationDate":"2019-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90225835","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-10-21DOI: 10.1109/IRMMW-THz.2019.8874023
Iliya Tikhomirov, D. Markl, M. Naftaly
The pharmaceutical industry requires a rapid nondestructive technique for monitoring porosity of tablets. Here effective porosity of compressed lactose pellets was investigated using THz time-domain spectroscopy (THz TDS).
{"title":"Measurements of effective porosity of pharmaceutical tablets using THz TDS","authors":"Iliya Tikhomirov, D. Markl, M. Naftaly","doi":"10.1109/IRMMW-THz.2019.8874023","DOIUrl":"https://doi.org/10.1109/IRMMW-THz.2019.8874023","url":null,"abstract":"The pharmaceutical industry requires a rapid nondestructive technique for monitoring porosity of tablets. Here effective porosity of compressed lactose pellets was investigated using THz time-domain spectroscopy (THz TDS).","PeriodicalId":6686,"journal":{"name":"2019 44th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz)","volume":"164 1","pages":"1-2"},"PeriodicalIF":0.0,"publicationDate":"2019-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73941768","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-10-21DOI: 10.1109/IRMMW-THz.2019.8874114
C. Belem-Goncalves, Andre Sarker, H. Giddens, C. Biurrun, C. D. Boccio, C. Luxey, Y. Hao, Rupa Basu, C. Paoloni, G. Ducournau
We present in this paper an ongoing project will is targeting the combination of several technologies to achieve high-data-rate and long-range links using a mW level source with fast modulation, waveguide coupled to drive a traveling-wave tube amplifier towards a modulated in the 210-250 GHz range. In this project we are also investigating antennas structures, high-gain for outdoor links and using lens or cassegrain design or lower gain systems with steerable capability for indoor links.
{"title":"THz links using tube amplifiers and steerable beams for indoor applications","authors":"C. Belem-Goncalves, Andre Sarker, H. Giddens, C. Biurrun, C. D. Boccio, C. Luxey, Y. Hao, Rupa Basu, C. Paoloni, G. Ducournau","doi":"10.1109/IRMMW-THz.2019.8874114","DOIUrl":"https://doi.org/10.1109/IRMMW-THz.2019.8874114","url":null,"abstract":"We present in this paper an ongoing project will is targeting the combination of several technologies to achieve high-data-rate and long-range links using a mW level source with fast modulation, waveguide coupled to drive a traveling-wave tube amplifier towards a modulated in the 210-250 GHz range. In this project we are also investigating antennas structures, high-gain for outdoor links and using lens or cassegrain design or lower gain systems with steerable capability for indoor links.","PeriodicalId":6686,"journal":{"name":"2019 44th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz)","volume":"1 1","pages":"1-2"},"PeriodicalIF":0.0,"publicationDate":"2019-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86441815","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}