首页 > 最新文献

能源化学最新文献

英文 中文
Microwave shock motivating the Sr substitution of 2D porous GdFeO3 perovskite for highly active oxygen evolution 微波冲击激发二维多孔GdFeO3钙钛矿Sr取代高活性氧析出
1区 化学 Q1 CHEMISTRY, APPLIED Pub Date : 2023-09-27 DOI: 10.1016/j.jechem.2023.09.016
Jinglin Xian , Huiyu Jiang , Zhiao Wu , Huimin Yu , Kaisi Liu , Miao Fan , Rong Hu , Guangyu Fang , Liyun Wei , Jingyan Cai , Weilin Xu , Huanyu Jin , Jun Wan

The incorporation of partial A-site substitution in perovskite oxides represents a promising strategy for precisely controlling the electronic configuration and enhancing its intrinsic catalytic activity. Conventional methods for A-site substitution typically involve prolonged high-temperature processes. While these processes promote the development of unique nanostructures with highly exposed active sites, they often result in the uncontrolled configuration of introduced elements. Herein, we present a novel approach for synthesizing two-dimensional (2D) porous GdFeO3 perovskite with A-site strontium (Sr) substitution utilizing microwave shock method. This technique enables precise control of the Sr content and simultaneous construction of 2D porous structures in one step, capitalizing on the advantages of rapid heating and cooling (temperature ∼1100 K, rate ∼70 K s−1). The active sites of this oxygen-rich defect structure can be clearly revealed through the simulation of the electronic configuration and the comprehensive analysis of the crystal structure. For electrocatalytic oxygen evolution reaction application, the synthesized 2D porous Gd0.8Sr0.2FeO3 electrocatalyst exhibits an exceptional overpotential of 294 mV at a current density of 10 mA cm−2 and a small Tafel slope of 55.85 mV dec−1 in alkaline electrolytes. This study offers a fresh perspective on designing crystal configurations and the construction of nanostructures in perovskite.

在钙钛矿氧化物中加入部分a位取代是精确控制电子构型和提高其内在催化活性的一种有前途的策略。传统的a位取代方法通常涉及长时间的高温过程。虽然这些过程促进了具有高度暴露活性位点的独特纳米结构的发展,但它们往往导致引入元素的不受控制的配置。本文提出了一种利用微波激波法合成具有a位锶取代的二维(2D)多孔GdFeO3钙钛矿的新方法。该技术能够精确控制Sr含量,并在一步中同时构建2D多孔结构,利用快速加热和冷却(温度~ 1100 K,速率~ 70 K s−1)的优势。通过电子构型的模拟和晶体结构的综合分析,可以清楚地揭示这种富氧缺陷结构的活性位点。在电催化析氧反应中,合成的二维多孔Gd0.8Sr0.2FeO3电催化剂在10 mA cm−2电流密度下具有294 mV的过电位,在碱性电解质中具有55.85 mV dec−1的Tafel斜率。该研究为钙钛矿晶体结构的设计和纳米结构的构建提供了新的视角。
{"title":"Microwave shock motivating the Sr substitution of 2D porous GdFeO3 perovskite for highly active oxygen evolution","authors":"Jinglin Xian ,&nbsp;Huiyu Jiang ,&nbsp;Zhiao Wu ,&nbsp;Huimin Yu ,&nbsp;Kaisi Liu ,&nbsp;Miao Fan ,&nbsp;Rong Hu ,&nbsp;Guangyu Fang ,&nbsp;Liyun Wei ,&nbsp;Jingyan Cai ,&nbsp;Weilin Xu ,&nbsp;Huanyu Jin ,&nbsp;Jun Wan","doi":"10.1016/j.jechem.2023.09.016","DOIUrl":"10.1016/j.jechem.2023.09.016","url":null,"abstract":"<div><p>The incorporation of partial A-site substitution in perovskite oxides represents a promising strategy for precisely controlling the electronic configuration and enhancing its intrinsic catalytic activity. Conventional methods for A-site substitution typically involve prolonged high-temperature processes. While these processes promote the development of unique nanostructures with highly exposed active sites, they often result in the uncontrolled configuration of introduced elements. Herein, we present a novel approach for synthesizing two-dimensional (2D) porous GdFeO<sub>3</sub> perovskite with A-site strontium (Sr) substitution utilizing microwave shock method. This technique enables precise control of the Sr content and simultaneous construction of 2D porous structures in one step, capitalizing on the advantages of rapid heating and cooling (temperature ∼1100 K, rate ∼70 K s<sup>−1</sup>). The active sites of this oxygen-rich defect structure can be clearly revealed through the simulation of the electronic configuration and the comprehensive analysis of the crystal structure. For electrocatalytic oxygen evolution reaction application, the synthesized 2D porous Gd<sub>0.8</sub>Sr<sub>0.2</sub>FeO<sub>3</sub> electrocatalyst exhibits an exceptional overpotential of 294 mV at a current density of 10 mA cm<sup>−2</sup> and a small Tafel slope of 55.85 mV dec<sup>−1</sup> in alkaline electrolytes. This study offers a fresh perspective on designing crystal configurations and the construction of nanostructures in perovskite.</p></div>","PeriodicalId":67498,"journal":{"name":"能源化学","volume":"88 ","pages":"Pages 232-241"},"PeriodicalIF":0.0,"publicationDate":"2023-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2095495623005314/pdfft?md5=77e7eff90061bb67e396a2d6d55968dc&pid=1-s2.0-S2095495623005314-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134995405","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Porous metal oxides in the role of electrochemical CO2 reduction reaction 多孔金属氧化物在电化学CO2还原反应中的作用
1区 化学 Q1 CHEMISTRY, APPLIED Pub Date : 2023-09-27 DOI: 10.1016/j.jechem.2023.09.018
Ziqi Zhang , Jinyun Xu , Yu Zhang , Liping Zhao , Ming Li , Guoqiang Zhong , Di Zhao , Minjing Li , Xudong Hu , Wenju Zhu , Chunming Zheng , Xiaohong Sun

The global energy-related CO2 emissions have rapidly increased as the world economy heavily relied on fossil fuels. This paper explores the pressing challenge of CO2 emissions and highlights the role of porous metal oxide materials in the electrocatalytic reduction of CO2 (CO2RR). The focus is on the development of robust and selective catalysts, particularly metal and metal-oxide-based materials. Porous metal oxides offer high surface area, enhancing the accessibility to active sites and improving reaction kinetics. The tunability of these materials allows for tailored catalytic behavior, targeting optimized reaction mechanisms for CO2RR. The work also discusses the various synthesis strategies and identifies key structural and compositional features, addressing challenges like high overpotential, poor selectivity, and low stability. Based on these insights, we suggest avenues for future research on porous metal oxide materials for electrochemical CO2 reduction.

由于世界经济严重依赖化石燃料,全球与能源相关的二氧化碳排放量迅速增加。本文探讨了二氧化碳排放的紧迫挑战,并强调了多孔金属氧化物材料在二氧化碳电催化还原(CO2RR)中的作用。重点是发展稳健和选择性催化剂,特别是金属和金属氧化物基材料。多孔金属氧化物提供了高表面积,提高了活性位点的可及性,改善了反应动力学。这些材料的可调节性允许定制催化行为,针对优化的CO2RR反应机制。该工作还讨论了各种合成策略,并确定了关键的结构和组成特征,解决了高过电位、低选择性和低稳定性等挑战。基于这些见解,我们提出了用于电化学CO2还原的多孔金属氧化物材料的未来研究方向。
{"title":"Porous metal oxides in the role of electrochemical CO2 reduction reaction","authors":"Ziqi Zhang ,&nbsp;Jinyun Xu ,&nbsp;Yu Zhang ,&nbsp;Liping Zhao ,&nbsp;Ming Li ,&nbsp;Guoqiang Zhong ,&nbsp;Di Zhao ,&nbsp;Minjing Li ,&nbsp;Xudong Hu ,&nbsp;Wenju Zhu ,&nbsp;Chunming Zheng ,&nbsp;Xiaohong Sun","doi":"10.1016/j.jechem.2023.09.018","DOIUrl":"https://doi.org/10.1016/j.jechem.2023.09.018","url":null,"abstract":"<div><p>The global energy-related CO<sub>2</sub> emissions have rapidly increased as the world economy heavily relied on fossil fuels. This paper explores the pressing challenge of CO<sub>2</sub> emissions and highlights the role of porous metal oxide materials in the electrocatalytic reduction of CO<sub>2</sub> (CO<sub>2</sub>RR). The focus is on the development of robust and selective catalysts, particularly metal and metal-oxide-based materials. Porous metal oxides offer high surface area, enhancing the accessibility to active sites and improving reaction kinetics. The tunability of these materials allows for tailored catalytic behavior, targeting optimized reaction mechanisms for CO<sub>2</sub>RR. The work also discusses the various synthesis strategies and identifies key structural and compositional features, addressing challenges like high overpotential, poor selectivity, and low stability. Based on these insights, we suggest avenues for future research on porous metal oxide materials for electrochemical CO<sub>2</sub> reduction.</p></div>","PeriodicalId":67498,"journal":{"name":"能源化学","volume":"88 ","pages":"Pages 373-398"},"PeriodicalIF":0.0,"publicationDate":"2023-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"137116361","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A defective iron-based perovskite cathode for high-performance IT-SOFCs: Tailoring the oxygen vacancies using Nb/Ta co-doping 用于高性能IT-SOFCs的缺陷铁基钙钛矿阴极:利用Nb/Ta共掺杂裁剪氧空位
1区 化学 Q1 CHEMISTRY, APPLIED Pub Date : 2023-09-26 DOI: 10.1016/j.jechem.2023.09.015
Bayu Admasu Beshiwork , Xinyu Wan , Min Xu , Haoran Guo , Birkneh Sirak Teketel , Yu Chen , Jun Song Chen , Tingshuai Li , Enrico Traversa

The sluggish kinetics of the electrochemical oxygen reduction reaction (ORR) in intermediate-temperature solid oxide fuel cells (IT-SOFCs) greatly limits the overall cell performance. In this study, an efficient and durable cathode material for IT-SOFCs is designed based on density functional theory (DFT) calculations by co-doping with Nb and Ta the B-site of the SrFeO3−δ perovskite oxide. The DFT calculations suggest that Nb/Ta co-doping can regulate the energy band of the parent SrFeO3−δ and help electron transfer. In symmetrical cells, such cathode with a SrFe0.8Nb0.1Ta0.1O3−δ (SFNT) detailed formula achieves a low cathode polarization resistance of 0.147 Ω cm2 at 650 °C. Electron spin resonance (ESR) and X-ray photoelectron spectroscopy (XPS) analysis confirm that the co-doping of Nb/Ta in SrFeO3−δ B-site increases the balanced concentration of oxygen vacancies, enhancing the electrochemical performance when compared to 20 mol% Nb single-doped perovskite oxide. The cathode button cell with Ni-SDC|SDC|SFNT configuration achieves an outstanding peak power density of 1.3 W cm−2 at 650 °C. Moreover, the button cell shows durability for 110 h under 0.65 V at 600 °C using wet H2 as fuel.

中温固体氧化物燃料电池(IT-SOFCs)的电化学氧还原反应(ORR)动力学缓慢,极大地限制了电池的整体性能。在本研究中,基于密度泛函理论(DFT)计算,通过在SrFeO3−δ钙钛矿氧化物的b位共掺杂Nb和Ta,设计了一种高效耐用的IT-SOFCs正极材料。DFT计算表明,Nb/Ta共掺杂可以调节母体SrFeO3−δ的能带,有助于电子转移。在对称电池中,采用SrFe0.8Nb0.1Ta0.1O3−δ (SFNT)详细配方的阴极在650°C时可获得0.147 Ω cm2的低阴极极化电阻。电子自旋共振(ESR)和x射线光电子能谱(XPS)分析证实,在SrFeO3−δ b位点共掺杂Nb/Ta增加了氧空位的平衡浓度,与单掺杂20 mol% Nb的钙钛矿氧化物相比,电化学性能有所提高。采用Ni-SDC|SDC|SFNT结构的阴极纽扣电池在650℃下的峰值功率密度为1.3 W cm−2。此外,纽扣电池在0.65 V和600°C下,使用湿H2作为燃料,耐久性为110小时。
{"title":"A defective iron-based perovskite cathode for high-performance IT-SOFCs: Tailoring the oxygen vacancies using Nb/Ta co-doping","authors":"Bayu Admasu Beshiwork ,&nbsp;Xinyu Wan ,&nbsp;Min Xu ,&nbsp;Haoran Guo ,&nbsp;Birkneh Sirak Teketel ,&nbsp;Yu Chen ,&nbsp;Jun Song Chen ,&nbsp;Tingshuai Li ,&nbsp;Enrico Traversa","doi":"10.1016/j.jechem.2023.09.015","DOIUrl":"https://doi.org/10.1016/j.jechem.2023.09.015","url":null,"abstract":"<div><p>The sluggish kinetics of the electrochemical oxygen reduction reaction (ORR) in intermediate-temperature solid oxide fuel cells (IT-SOFCs) greatly limits the overall cell performance. In this study, an efficient and durable cathode material for IT-SOFCs is designed based on density functional theory (DFT) calculations by co-doping with Nb and Ta the B-site of the SrFeO<sub>3−</sub><em><sub>δ</sub></em> perovskite oxide. The DFT calculations suggest that Nb/Ta co-doping can regulate the energy band of the parent SrFeO<sub>3−</sub><em><sub>δ</sub></em> and help electron transfer. In symmetrical cells, such cathode with a SrFe<sub>0.8</sub>Nb<sub>0.1</sub>Ta<sub>0.1</sub>O<sub>3−</sub><em><sub>δ</sub></em> (SFNT) detailed formula achieves a low cathode polarization resistance of 0.147 Ω cm<sup>2</sup> at 650 °C. Electron spin resonance (ESR) and X-ray photoelectron spectroscopy (XPS) analysis confirm that the co-doping of Nb/Ta in SrFeO<sub>3−</sub><em><sub>δ</sub></em> B-site increases the balanced concentration of oxygen vacancies, enhancing the electrochemical performance when compared to 20 mol% Nb single-doped perovskite oxide. The cathode button cell with Ni-SDC|SDC|SFNT configuration achieves an outstanding peak power density of 1.3 W cm<sup>−2</sup> at 650 °C. Moreover, the button cell shows durability for 110 h under 0.65 V at 600 °C using wet H<sub>2</sub> as fuel.</p></div>","PeriodicalId":67498,"journal":{"name":"能源化学","volume":"88 ","pages":"Pages 306-316"},"PeriodicalIF":0.0,"publicationDate":"2023-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"92280373","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Active and passive modulation of solar light transmittance in a uniquely multifunctional dual-band single molecule for smart window applications 主动和被动调制太阳光透过率在一个独特的多功能双波段单分子智能窗口应用
1区 化学 Q1 CHEMISTRY, APPLIED Pub Date : 2023-09-26 DOI: 10.1016/j.jechem.2023.09.014
Pooja V. Chavan , Pramod V. Rathod , Joohyung Lee , Sergei V. Kostjuk , Hern Kim

Functional materials may change color by heat and electricity separately or simultaneously in smart windows. These materials have not only demonstrated remarkable potential in the modulation of solar radiation but are also leading to the development of indoor environments that are more comfortable and conducive to improving individuals' quality of life. Unfortunately, dual-responsive materials have not received ample research attention due to economic and technological challenges. As a consequence, the broader utilization of smart windows faces hindrances. To address this new generational multi-stimulus responsive chromic materials, our group has adopted a developmental strategy to create a poly(NIPAM)n-HV as a switchable material by anchoring active viologen (HV) onto a phase-changing poly(NIPAM)n-based smart material for better utility and activity. These constructed smart windows facilitate individualistic reversible switching, from a highly transparent state to an opaque state (thermochromic) and a red state (electrochromic), as well as facilitate a simultaneous dual-stimuli response reversible switching from a clear transparent state to a fully opaque (thermochromic) and orange (electrochromic) states. Absolute privacy can be attained in smart windows designed for exclusive settings by achieving zero transmittance. Each unique chromic mode operates independently and modulates visible and near-infrared (NIR) light in a distinct manner. Hence, these smart windows with thermal and electric dual-stimuli responsiveness demonstrate remarkable heat regulation capabilities, rendering them highly attractive for applications in building facades, energy harvesting, privacy protection, and color display.

在智能窗户中,功能材料可以单独或同时通过热和电改变颜色。这些材料不仅在调节太阳辐射方面显示出显著的潜力,而且还导致室内环境的发展,更舒适,有利于提高个人的生活质量。不幸的是,由于经济和技术方面的挑战,双响应材料并没有得到足够的研究关注。因此,智能窗户的广泛使用面临障碍。为了解决这种新一代多刺激响应的铬材料,我们的团队采用了一种开发策略,通过将活性紫素(HV)锚定在相变聚(NIPAM)n基智能材料上,创造出一种聚(NIPAM)n-HV作为可切换材料,以获得更好的效用和活性。这些构建的智能窗口促进了从高透明状态到不透明状态(热致变色)和红色状态(电致变色)的个性化可逆切换,以及促进了同时的双刺激响应,从透明状态到完全不透明(热致变色)和橙色(电致变色)状态的可逆切换。通过实现零透射率,可以在专为独家设置设计的智能窗口中获得绝对隐私。每个独特的色模式独立运作,并以不同的方式调制可见光和近红外(NIR)光。因此,这些具有热和电双刺激响应能力的智能窗户显示出卓越的热调节能力,使它们在建筑立面、能量收集、隐私保护和彩色显示方面的应用非常有吸引力。
{"title":"Active and passive modulation of solar light transmittance in a uniquely multifunctional dual-band single molecule for smart window applications","authors":"Pooja V. Chavan ,&nbsp;Pramod V. Rathod ,&nbsp;Joohyung Lee ,&nbsp;Sergei V. Kostjuk ,&nbsp;Hern Kim","doi":"10.1016/j.jechem.2023.09.014","DOIUrl":"10.1016/j.jechem.2023.09.014","url":null,"abstract":"<div><p>Functional materials may change color by heat and electricity separately or simultaneously in smart windows. These materials have not only demonstrated remarkable potential in the modulation of solar radiation but are also leading to the development of indoor environments that are more comfortable and conducive to improving individuals' quality of life. Unfortunately, dual-responsive materials have not received ample research attention due to economic and technological challenges. As a consequence, the broader utilization of smart windows faces hindrances. To address this new generational multi-stimulus responsive chromic materials, our group has adopted a developmental strategy to create a poly(NIPAM)<em><sub>n</sub></em>-HV as a switchable material by anchoring active viologen (HV) onto a phase-changing poly(NIPAM)<em><sub>n</sub></em>-based smart material for better utility and activity. These constructed smart windows facilitate individualistic reversible switching, from a highly transparent state to an opaque state (thermochromic) and a red state (electrochromic), as well as facilitate a simultaneous dual-stimuli response reversible switching from a clear transparent state to a fully opaque (thermochromic) and orange (electrochromic) states. Absolute privacy can be attained in smart windows designed for exclusive settings by achieving zero transmittance. Each unique chromic mode operates independently and modulates visible and near-infrared (NIR) light in a distinct manner. Hence, these smart windows with thermal and electric dual-stimuli responsiveness demonstrate remarkable heat regulation capabilities, rendering them highly attractive for applications in building facades, energy harvesting, privacy protection, and color display.</p></div>","PeriodicalId":67498,"journal":{"name":"能源化学","volume":"88 ","pages":"Pages 293-305"},"PeriodicalIF":0.0,"publicationDate":"2023-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134915392","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Reversed charge transfer induced by nickel in Fe-Ni/Mo2C@nitrogen-doped carbon nanobox for promoted reversible oxygen electrocatalysis Fe-Ni/Mo2C@nitrogen-doped碳纳米盒中镍诱导的反向电荷转移促进可逆氧电催化
1区 化学 Q1 CHEMISTRY, APPLIED Pub Date : 2023-09-22 DOI: 10.1016/j.jechem.2023.09.009
Zhicheng Nie , Lei Zhang , Qiliang Zhu , Zhifan Ke , Yingtang Zhou , Thomas Wågberg , Guangzhi Hu

The interaction between metal and support is critical in oxygen catalysis as it governs the charge transfer between these two entities, influences the electronic structures of the supported metal, affects the adsorption energies of reaction intermediates, and ultimately impacts the catalytic performance. In this study, we discovered a unique charge transfer reversal phenomenon in a metal/carbon nanohybrid system. Specifically, electrons were transferred from the metal-based species to N-doped carbon, while the carbon support reciprocally donated electrons to the metal domain upon the introduction of nickel. This led to the exceptional electrocatalytic performances of the resulting Ni-Fe/Mo2C@nitrogen-doped carbon catalyst, with a half-wave potential of 0.91 V towards oxygen reduction reaction (ORR) and a low overpotential of 290 mV at 10 mA cm−2 towards oxygen evolution reaction (OER) under alkaline conditions. Additionally, the Fe-Ni/Mo2C@carbon heterojunction catalyst demonstrated high specific capacity (794 mA h gZn−1) and excellent cycling stability (200 h) in a Zn-air battery. Theoretical calculations revealed that Mo2C effectively inhibited charge transfer from Fe to the support, while secondary doping of Ni induced a charge transfer reversal, resulting in electron accumulation in the Fe-Ni alloy region. This local electronic structure modulation significantly reduced energy barriers in the oxygen catalysis process, enhancing the catalytic efficiency of both ORR and OER. Consequently, our findings underscore the potential of manipulating charge transfer reversal between the metal and support as a promising strategy for developing highly-active and durable bi-functional oxygen electrodes.

金属和载体之间的相互作用在氧催化中是至关重要的,因为它控制着这两个实体之间的电荷转移,影响载体金属的电子结构,影响反应中间体的吸附能,并最终影响催化性能。在本研究中,我们在金属/碳纳米杂化体系中发现了一种独特的电荷转移反转现象。具体来说,电子从金属基转移到n掺杂的碳上,而碳载体在引入镍后相互向金属畴提供电子。这使得Ni-Fe/Mo2C@nitrogen-doped碳催化剂具有优异的电催化性能,在碱性条件下,对氧还原反应(ORR)具有0.91 V的半波电位,对氧析反应(OER)在10 mA cm−2下具有290 mV的低过电位。此外,Fe-Ni/Mo2C@carbon异质结催化剂在锌空气电池中表现出高比容量(794 mA h gZn−1)和优异的循环稳定性(200 h)。理论计算表明,Mo2C有效地抑制了Fe向载体的电荷转移,而Ni的二次掺杂导致电荷转移逆转,导致Fe-Ni合金区电子积累。这种局部电子结构调制显著降低了氧催化过程中的能垒,提高了ORR和OER的催化效率。因此,我们的研究结果强调了操纵金属和载体之间电荷转移逆转的潜力,作为开发高活性和耐用双功能氧电极的有希望的策略。
{"title":"Reversed charge transfer induced by nickel in Fe-Ni/Mo2C@nitrogen-doped carbon nanobox for promoted reversible oxygen electrocatalysis","authors":"Zhicheng Nie ,&nbsp;Lei Zhang ,&nbsp;Qiliang Zhu ,&nbsp;Zhifan Ke ,&nbsp;Yingtang Zhou ,&nbsp;Thomas Wågberg ,&nbsp;Guangzhi Hu","doi":"10.1016/j.jechem.2023.09.009","DOIUrl":"10.1016/j.jechem.2023.09.009","url":null,"abstract":"<div><p>The interaction between metal and support is critical in oxygen catalysis as it governs the charge transfer between these two entities, influences the electronic structures of the supported metal, affects the adsorption energies of reaction intermediates, and ultimately impacts the catalytic performance. In this study, we discovered a unique charge transfer reversal phenomenon in a metal/carbon nanohybrid system. Specifically, electrons were transferred from the metal-based species to N-doped carbon, while the carbon support reciprocally donated electrons to the metal domain upon the introduction of nickel. This led to the exceptional electrocatalytic performances of the resulting Ni-Fe/Mo<sub>2</sub>C@nitrogen-doped carbon catalyst, with a half-wave potential of 0.91 V towards oxygen reduction reaction (ORR) and a low overpotential of 290 mV at 10 mA cm<sup>−2</sup> towards oxygen evolution reaction (OER) under alkaline conditions. Additionally, the Fe-Ni/Mo<sub>2</sub>C@carbon heterojunction catalyst demonstrated high specific capacity (794 mA h g<sub>Zn</sub><sup>−1</sup>) and excellent cycling stability (200 h) in a Zn-air battery. Theoretical calculations revealed that Mo<sub>2</sub>C effectively inhibited charge transfer from Fe to the support, while secondary doping of Ni induced a charge transfer reversal, resulting in electron accumulation in the Fe-Ni alloy region. This local electronic structure modulation significantly reduced energy barriers in the oxygen catalysis process, enhancing the catalytic efficiency of both ORR and OER. Consequently, our findings underscore the potential of manipulating charge transfer reversal between the metal and support as a promising strategy for developing highly-active and durable bi-functional oxygen electrodes.</p></div>","PeriodicalId":67498,"journal":{"name":"能源化学","volume":"88 ","pages":"Pages 202-212"},"PeriodicalIF":0.0,"publicationDate":"2023-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135685819","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Rational design of vitamin C/defective carbon van der Waals heterostructure for enhanced activity, durability and storage stability toward oxygen reduction reaction 维生素C/缺陷碳范德华异质结构的合理设计,提高氧还原反应的活性、耐久性和储存稳定性
1区 化学 Q1 CHEMISTRY, APPLIED Pub Date : 2023-09-22 DOI: 10.1016/j.jechem.2023.09.011
Ruiqi Cheng , Kaiqi Li , Huanxin Li , Tianshuo Zhao , Yibo Wang , Qingyue Xue , Jiao Zhang , Chaopeng Fu

Metal-free defective carbon materials with abundant active sites have been widely studied as low-cost and efficient oxygen reduction reaction (ORR) electrocatalysts in metal-air batteries. However, the active sites in defective carbon are easily subjected to serious oxidation or hydroxylation during ORR or storage, leading to rapid degradation of activity. Herein, we design a van der Waals heterostructure comprised of vitamin C (VC) and defective carbon (DC) to not only boost the activity but also enhance the durability and storage stability of the DC-VC electrocatalyst. The formation of VC van der Waals between DC and VC is demonstrated to be an effective strategy to protect the defect active sites from oxidation and hydroxylation degradation, thus significantly enhancing the electrochemical durability and storage anti-aging performance. Moreover, the DC-VC van der Waals can reduce the reaction energy barrier to facilitate the ORR. These findings are also confirmed by operando Fourier transform infrared spectroscopy and density functional theory calculations. It is necessary to mention that the preparation of this DC-VC electrocatalyst can be scaled up, and the ORR performance of the largely produced electrocatalyst is demonstrated to be very consistent. Furthermore, the DC-VC-based aluminum-air batteries display very competitive power density with good performance maintenance.

具有丰富活性位点的无金属缺陷碳材料作为金属-空气电池中低成本、高效的氧还原反应(ORR)电催化剂已被广泛研究。然而,缺陷碳中的活性位点在ORR或储存过程中很容易发生严重的氧化或羟基化,导致活性的快速降解。在此,我们设计了一种由维生素C(VC)和缺陷碳(DC)组成的范德华异质结构,不仅提高了DC-VC电催化剂的活性,还提高了其耐久性和储存稳定性。在DC和VC之间形成VC范德华被证明是保护缺陷活性位点免受氧化和羟基化降解的有效策略,从而显著提高电化学耐久性和储存抗老化性能。此外,DC-VC范德华可以降低反应能垒以促进ORR。这些发现也得到了操作傅立叶变换红外光谱和密度泛函理论计算的证实。有必要提及的是,这种DC-VC电催化剂的制备可以按比例进行,并且大量生产的电催化剂的ORR性能被证明是非常一致的。此外,基于直流VC的铝空气电池显示出非常有竞争力的功率密度和良好的性能维护。
{"title":"Rational design of vitamin C/defective carbon van der Waals heterostructure for enhanced activity, durability and storage stability toward oxygen reduction reaction","authors":"Ruiqi Cheng ,&nbsp;Kaiqi Li ,&nbsp;Huanxin Li ,&nbsp;Tianshuo Zhao ,&nbsp;Yibo Wang ,&nbsp;Qingyue Xue ,&nbsp;Jiao Zhang ,&nbsp;Chaopeng Fu","doi":"10.1016/j.jechem.2023.09.011","DOIUrl":"https://doi.org/10.1016/j.jechem.2023.09.011","url":null,"abstract":"<div><p>Metal-free defective carbon materials with abundant active sites have been widely studied as low-cost and efficient oxygen reduction reaction (ORR) electrocatalysts in metal-air batteries. However, the active sites in defective carbon are easily subjected to serious oxidation or hydroxylation during ORR or storage, leading to rapid degradation of activity. Herein, we design a van der Waals heterostructure comprised of vitamin C (VC) and defective carbon (DC) to not only boost the activity but also enhance the durability and storage stability of the DC-VC electrocatalyst. The formation of VC van der Waals between DC and VC is demonstrated to be an effective strategy to protect the defect active sites from oxidation and hydroxylation degradation, thus significantly enhancing the electrochemical durability and storage anti-aging performance. Moreover, the DC-VC van der Waals can reduce the reaction energy barrier to facilitate the ORR. These findings are also confirmed by operando Fourier transform infrared spectroscopy and density functional theory calculations. It is necessary to mention that the preparation of this DC-VC electrocatalyst can be scaled up, and the ORR performance of the largely produced electrocatalyst is demonstrated to be very consistent. Furthermore, the DC-VC-based aluminum-air batteries display very competitive power density with good performance maintenance.</p></div>","PeriodicalId":67498,"journal":{"name":"能源化学","volume":"88 ","pages":"Pages 103-111"},"PeriodicalIF":0.0,"publicationDate":"2023-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67740084","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
From charge storage mechanism to performance: A strategy toward boosted lithium/sodium storage through heterostructure optimization 从电荷存储机制到性能:通过异质结构优化提高锂/钠存储的策略
1区 化学 Q1 CHEMISTRY, APPLIED Pub Date : 2023-09-22 DOI: 10.1016/j.jechem.2023.09.012
Xiaoke Zhang , Guangfa Deng , Mianying Huang , Zhaohui Xu , Jianlin Huang , Xuan Xu , Zhiguang Xu , Maochan Li , Lei Hu , Xiaoming Lin

Solving the problems of low electrical conductivity and poor cycling durability in transition metal oxides-based anode materials for lithium-ion batteries (LIBs) and sodium-ion batteries (SIBs) has already turned into an urgent requirement. In this paper, we successfully synthesized Co2VO4/Co compounds with Co-V-MOF (metal-organic framework) as a sacrificial template and investigated their electrochemical mechanism in order to improve the electrochemical properties of LIBs and SIBs. The optimized heaping configuration and the existence of metallic Co catalyzed the formation of radical ions, thereby facilitating higher conductivity, shortening Li+ and Na+ transport paths, and providing more active sites. Co2VO4/Co constructed with 2-methylimidazole as a ligand showed a discharge capacity of 1605.1 mA h g−1 after 300 cycles at 0.1 A g−1 in LIB and 677.2 mA h g−1 in SIB. Density functional theory (DFT) calculation emphasizes the crucial role of Co2VO4/Co in enhancing electrode conductivity, decreasing the migratory energy barrier, and thereby strengthening electrochemical properties. This heterostructure building technique may pave the way for the development of high-performance LIBs and SIBs. Furthermore, the problem of the low first-loop coulombic efficiency faced by transition metal oxides is improved.

解决用于锂离子电池(LIBs)和钠离子电池(SIBs)的基于过渡金属氧化物的阳极材料的低电导率和较差的循环耐久性问题已经成为迫切需要。在本文中,我们成功地合成了以Co-V-MOF(金属有机框架)为牺牲模板的Co2VO4/Co化合物,并研究了它们的电化学机理,以改善LIBs和SIBs的电化学性能。优化的堆积结构和金属Co的存在催化了自由基离子的形成,从而促进了更高的电导率,缩短了Li+和Na+的传输路径,并提供了更多的活性位点。以2-甲基咪唑为配体构建的Co2VO4/Co在LIB中0.1 a g−1和SIB中677.2 mA h g−1下循环300次后显示出1605.1 mA h g–1的放电容量。密度泛函理论(DFT)计算强调了Co2VO4/Co在提高电极导电性、降低迁移能垒从而增强电化学性能方面的关键作用。这种异质结构构建技术可能为高性能LIBs和SIB的开发铺平道路。此外,改善了过渡金属氧化物所面临的第一回路库仑效率低的问题。
{"title":"From charge storage mechanism to performance: A strategy toward boosted lithium/sodium storage through heterostructure optimization","authors":"Xiaoke Zhang ,&nbsp;Guangfa Deng ,&nbsp;Mianying Huang ,&nbsp;Zhaohui Xu ,&nbsp;Jianlin Huang ,&nbsp;Xuan Xu ,&nbsp;Zhiguang Xu ,&nbsp;Maochan Li ,&nbsp;Lei Hu ,&nbsp;Xiaoming Lin","doi":"10.1016/j.jechem.2023.09.012","DOIUrl":"https://doi.org/10.1016/j.jechem.2023.09.012","url":null,"abstract":"<div><p>Solving the problems of low electrical conductivity and poor cycling durability in transition metal oxides-based anode materials for lithium-ion batteries (LIBs) and sodium-ion batteries (SIBs) has already turned into an urgent requirement. In this paper, we successfully synthesized Co<sub>2</sub>VO<sub>4</sub>/Co compounds with Co-V-MOF (metal-organic framework) as a sacrificial template and investigated their electrochemical mechanism in order to improve the electrochemical properties of LIBs and SIBs. The optimized heaping configuration and the existence of metallic Co catalyzed the formation of radical ions, thereby facilitating higher conductivity, shortening Li<sup>+</sup> and Na<sup>+</sup> transport paths, and providing more active sites. Co<sub>2</sub>VO<sub>4</sub>/Co constructed with 2-methylimidazole as a ligand showed a discharge capacity of 1605.1 mA h g<sup>−1</sup> after 300 cycles at 0.1 A g<sup>−1</sup> in LIB and 677.2 mA h g<sup>−1</sup> in SIB. Density functional theory (DFT) calculation emphasizes the crucial role of Co<sub>2</sub>VO<sub>4</sub>/Co in enhancing electrode conductivity, decreasing the migratory energy barrier, and thereby strengthening electrochemical properties. This heterostructure building technique may pave the way for the development of high-performance LIBs and SIBs. Furthermore, the problem of the low first-loop coulombic efficiency faced by transition metal oxides is improved.</p></div>","PeriodicalId":67498,"journal":{"name":"能源化学","volume":"88 ","pages":"Pages 112-124"},"PeriodicalIF":0.0,"publicationDate":"2023-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67740088","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tuning electronic structure of RuO2 by single atom Zn and oxygen vacancies to boost oxygen evolution reaction in acidic medium 利用单原子Zn和氧空位调节RuO2的电子结构以促进酸性介质中的析氧反应
1区 化学 Q1 CHEMISTRY, APPLIED Pub Date : 2023-09-22 DOI: 10.1016/j.jechem.2023.09.010
Qing Qin , Tiantian Wang , Zijian Li , Guolin Zhang , Haeseong Jang , Liqiang Hou , Yu Wang , Min Gyu Kim , Shangguo Liu , Xien Liu

The poor stability of RuO2 electrocatalysts has been the primary obstacles for their practical application in polymer electrolyte membrane electrolyzers. To dramatically enhance the durability of RuO2 to construct activity-stability trade-off model is full of significance but challenging. Herein, a single atom Zn stabilized RuO2 with enriched oxygen vacancies (SA Zn-RuO2) is developed as a promising alternative to iridium oxide for acidic oxygen evolution reaction (OER). Compared with commercial RuO2, the enhanced Ru–O bond strength of SA Zn-RuO2 by forming Zn-O-Ru local structure motif is favorable to stabilize surface Ru, while the electrons transferred from Zn single atoms to adjacent Ru atoms protects the Ru active sites from overoxidation. Simultaneously, the optimized surrounding electronic structure of Ru sites in SA Zn-RuO2 decreases the adsorption energies of OER intermediates to reduce the reaction barrier. As a result, the representative SA Zn-RuO2 exhibits a low overpotential of 210 mV to achieve 10 mA cm−2 and a greatly enhanced durability than commercial RuO2. This work provides a promising dual-engineering strategy by coupling single atom doping and vacancy for the tradeoff of high activity and catalytic stability toward acidic OER.

RuO2电催化剂稳定性差是其在聚合物电解质膜电解槽中实际应用的主要障碍。为了显著提高RuO2的耐久性,构建活性-稳定性权衡模型意义重大,但具有挑战性。本文开发了一种具有富集氧空位的单原子Zn稳定的RuO2(SA Zn-RuO2),作为酸性析氧反应(OER)中氧化铱的一种有前途的替代品。与商业RuO2相比,SA Zn-RuO2通过形成Zn-O-Ru局部结构基序而增强的Ru–O键强度有利于稳定表面Ru,而从Zn单原子转移到相邻Ru原子的电子保护Ru活性位点免受过氧化。同时,SA Zn-RuO2中Ru位点的优化周围电子结构降低了OER中间体的吸附能,从而降低了反应势垒。因此,代表性的SA Zn-RuO2表现出210 mV的低过电位,以实现10 mA cm−2,并且比商业RuO2的耐用性大大增强。这项工作通过耦合单原子掺杂和空位,在高活性和对酸性OER的催化稳定性之间进行权衡,提供了一种很有前途的双工程策略。
{"title":"Tuning electronic structure of RuO2 by single atom Zn and oxygen vacancies to boost oxygen evolution reaction in acidic medium","authors":"Qing Qin ,&nbsp;Tiantian Wang ,&nbsp;Zijian Li ,&nbsp;Guolin Zhang ,&nbsp;Haeseong Jang ,&nbsp;Liqiang Hou ,&nbsp;Yu Wang ,&nbsp;Min Gyu Kim ,&nbsp;Shangguo Liu ,&nbsp;Xien Liu","doi":"10.1016/j.jechem.2023.09.010","DOIUrl":"https://doi.org/10.1016/j.jechem.2023.09.010","url":null,"abstract":"<div><p>The poor stability of RuO<sub>2</sub> electrocatalysts has been the primary obstacles for their practical application in polymer electrolyte membrane electrolyzers. To dramatically enhance the durability of RuO<sub>2</sub> to construct activity-stability trade-off model is full of significance but challenging. Herein, a single atom Zn stabilized RuO<sub>2</sub> with enriched oxygen vacancies (SA Zn-RuO<sub>2</sub>) is developed as a promising alternative to iridium oxide for acidic oxygen evolution reaction (OER). Compared with commercial RuO<sub>2</sub>, the enhanced Ru–O bond strength of SA Zn-RuO<sub>2</sub> by forming Zn-O-Ru local structure motif is favorable to stabilize surface Ru, while the electrons transferred from Zn single atoms to adjacent Ru atoms protects the Ru active sites from overoxidation. Simultaneously, the optimized surrounding electronic structure of Ru sites in SA Zn-RuO<sub>2</sub> decreases the adsorption energies of OER intermediates to reduce the reaction barrier. As a result, the representative SA Zn-RuO<sub>2</sub> exhibits a low overpotential of 210 mV to achieve 10 mA cm<sup>−2</sup> and a greatly enhanced durability than commercial RuO<sub>2</sub>. This work provides a promising dual-engineering strategy by coupling single atom doping and vacancy for the tradeoff of high activity and catalytic stability toward acidic OER.</p></div>","PeriodicalId":67498,"journal":{"name":"能源化学","volume":"88 ","pages":"Pages 94-102"},"PeriodicalIF":0.0,"publicationDate":"2023-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67740089","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exciting lattice oxygen of nickel–iron bi-metal alkoxide for efficient electrochemical oxygen evolution reaction 镍-铁双金属醇盐激发晶格氧进行高效电化学析氧反应
1区 化学 Q1 CHEMISTRY, APPLIED Pub Date : 2023-09-22 DOI: 10.1016/j.jechem.2023.09.013
Saihang Zhang , Senchuan Huang , Fengzhan Sun , Yinghui Li , Li Ren , Hao Xu , Zhao Li , Yifei Liu , Wei Li , Lina Chong , Jianxin Zou

High efficiency, cost-effective and durable electrocatalysts are of pivotal importance in energy conversion and storage systems. The electro-oxidation of water to oxygen plays a crucial role in such energy conversion technologies. Herein, we report a robust method for the synthesis of a bimetallic alkoxide for efficient oxygen evolution reaction (OER) for alkaline electrolysis, which yields current density of 10 mA cm−2 at an overpotential of 215 mV in 0.1 M KOH electrolyte. The catalyst demonstrates an excellent durability for more than 540 h operation with negligible degradation in activity. Raman spectra revealed that the catalyst underwent structure reconstruction during OER, evolving into oxyhydroxide, which was the active site proceeding OER in alkaline electrolyte. In-situ synchrotron X-ray absorption experiment combined with density functional theory calculation suggests a lattice oxygen involved electrocatalytic reaction mechanism for the in-situ generated nickel–iron bimetal-oxyhydroxide catalyst. This mechanism together with the synergy between nickel and iron are responsible for the enhanced catalytic activity and durability. These findings provide promising strategies for the rational design of non-noble metal OER catalysts.

高效、经济高效和耐用的电催化剂在能量转换和存储系统中至关重要。将水电氧化为氧气在这种能量转换技术中起着至关重要的作用。在此,我们报道了一种合成双金属醇盐的稳健方法,用于碱性电解的有效析氧反应(OER),该方法在0.1 M KOH电解质中,在215 mV的过电位下产生10 mA cm−2的电流密度。该催化剂在540小时以上的操作中表现出优异的耐久性,活性降解可忽略不计。拉曼光谱表明,催化剂在OER过程中进行了结构重建,演变为氢氧根,氢氧根是碱性电解质中进行OER的活性位点。原位同步加速器X射线吸收实验结合密度泛函理论计算,提出了原位生成的镍-铁双金属氢氧化物催化剂的晶格氧参与电催化反应机理。这种机制以及镍和铁之间的协同作用是提高催化活性和耐久性的原因。这些发现为非贵金属OER催化剂的合理设计提供了有希望的策略。
{"title":"Exciting lattice oxygen of nickel–iron bi-metal alkoxide for efficient electrochemical oxygen evolution reaction","authors":"Saihang Zhang ,&nbsp;Senchuan Huang ,&nbsp;Fengzhan Sun ,&nbsp;Yinghui Li ,&nbsp;Li Ren ,&nbsp;Hao Xu ,&nbsp;Zhao Li ,&nbsp;Yifei Liu ,&nbsp;Wei Li ,&nbsp;Lina Chong ,&nbsp;Jianxin Zou","doi":"10.1016/j.jechem.2023.09.013","DOIUrl":"https://doi.org/10.1016/j.jechem.2023.09.013","url":null,"abstract":"<div><p>High efficiency, cost-effective and durable electrocatalysts are of pivotal importance in energy conversion and storage systems. The electro-oxidation of water to oxygen plays a crucial role in such energy conversion technologies. Herein, we report a robust method for the synthesis of a bimetallic alkoxide for efficient oxygen evolution reaction (OER) for alkaline electrolysis, which yields current density of 10 mA cm<sup>−2</sup> at an overpotential of 215 mV in 0.1 M KOH electrolyte. The catalyst demonstrates an excellent durability for more than 540 h operation with negligible degradation in activity. Raman spectra revealed that the catalyst underwent structure reconstruction during OER, evolving into oxyhydroxide, which was the active site proceeding OER in alkaline electrolyte. In-situ synchrotron X-ray absorption experiment combined with density functional theory calculation suggests a lattice oxygen involved electrocatalytic reaction mechanism for the in-situ generated nickel–iron bimetal-oxyhydroxide catalyst. This mechanism together with the synergy between nickel and iron are responsible for the enhanced catalytic activity and durability. These findings provide promising strategies for the rational design of non-noble metal OER catalysts.</p></div>","PeriodicalId":67498,"journal":{"name":"能源化学","volume":"88 ","pages":"Pages 194-201"},"PeriodicalIF":0.0,"publicationDate":"2023-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67740103","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Single atom Cu-N-C catalysts for the electro-reduction of CO2 to CO assessed by rotating ring-disc electrode 通过旋转环盘电极评估用于CO2电还原为CO的单原子Cu-N-C催化剂
1区 化学 Q1 CHEMISTRY, APPLIED Pub Date : 2023-09-20 DOI: 10.1016/j.jechem.2023.09.005
S. Pérez-Rodríguez , M. Gutiérrez-Roa , C. Giménez-Rubio , D. Ríos-Ruiz , P. Arévalo-Cid , M.V. Martínez-Huerta , A. Zitolo , M.J. Lázaro , D. Sebastián

The electrochemical CO2 reduction reaction (CO2RR) to controllable chemicals is considered as a promising pathway to store intermittent renewable energy. Herein, a set of catalysts based on copper-nitrogen-doped carbon xerogel (Cu-N-C) are successfully developed varying the copper amount and the nature of the copper precursor, for the efficient CO2RR. The electrocatalytic performance of Cu-N-C materials is assessed by a rotating ring-disc electrode (RRDE), technique still rarely explored for CO2RR. For comparison, products are also characterized by online gas chromatography in a H-cell. The as-synthesized Cu-N-C catalysts are found to be active and highly CO selective at low overpotentials (from −0.6 to −0.8 V vs. RHE) in 0.1 M KHCO3, while H2 from the competitive water reduction appears at larger overpotentials (−0.9 V vs. RHE). The optimum copper acetate-derived catalyst containing Cu-N4 moieties exhibits a CO2-to-CO turnover frequency of 997 h−1 at −0.9 V vs. RHE with a H2/CO ratio of 1.8. These results demonstrate that RRDE configuration can be used as a feasible approach for identifying electrolysis products from CO2RR.

将电化学CO2还原反应(CO2RR)转化为可控化学品被认为是储存间歇性可再生能源的一种很有前途的途径。本文成功地开发了一套基于铜氮掺杂碳干凝胶(Cu-N-C)的催化剂,通过改变铜的量和铜前体的性质来实现有效的CO2RR。通过旋转环盘电极(RRDE)评估Cu-N-C材料的电催化性能,该技术对CO2RR仍很少探索。为了进行比较,产品还通过在线气相色谱法在H细胞中进行了表征。在0.1 M KHCO3中,合成的Cu-N-C催化剂在低过电位(相对于RHE为−0.6至−0.8 V)下具有活性和高CO选择性,而竞争性水还原产生的H2在较大过电位(相对RHE为-0.9 V)下出现。含有Cu-N4部分的最佳乙酸铜衍生催化剂在−0.9 V下相对于RHE表现出997 h−1的CO2与CO转换频率,H2/CO比为1.8。这些结果表明,RRDE配置可以作为从CO2RR中识别电解产物的可行方法。
{"title":"Single atom Cu-N-C catalysts for the electro-reduction of CO2 to CO assessed by rotating ring-disc electrode","authors":"S. Pérez-Rodríguez ,&nbsp;M. Gutiérrez-Roa ,&nbsp;C. Giménez-Rubio ,&nbsp;D. Ríos-Ruiz ,&nbsp;P. Arévalo-Cid ,&nbsp;M.V. Martínez-Huerta ,&nbsp;A. Zitolo ,&nbsp;M.J. Lázaro ,&nbsp;D. Sebastián","doi":"10.1016/j.jechem.2023.09.005","DOIUrl":"https://doi.org/10.1016/j.jechem.2023.09.005","url":null,"abstract":"<div><p>The electrochemical CO<sub>2</sub> reduction reaction (CO<sub>2</sub>RR) to controllable chemicals is considered as a promising pathway to store intermittent renewable energy. Herein, a set of catalysts based on copper-nitrogen-doped carbon xerogel (Cu-N-C) are successfully developed varying the copper amount and the nature of the copper precursor, for the efficient CO<sub>2</sub>RR. The electrocatalytic performance of Cu-N-C materials is assessed by a rotating ring-disc electrode (RRDE), technique still rarely explored for CO<sub>2</sub>RR. For comparison, products are also characterized by online gas chromatography in a H-cell. The as-synthesized Cu-N-C catalysts are found to be active and highly CO selective at low overpotentials (from −0.6 to −0.8 V vs. RHE) in 0.1 M KHCO<sub>3</sub>, while H<sub>2</sub> from the competitive water reduction appears at larger overpotentials (−0.9 V vs. RHE). The optimum copper acetate-derived catalyst containing Cu-N<sub>4</sub> moieties exhibits a CO<sub>2</sub>-to-CO turnover frequency of 997 h<sup>−1</sup> at −0.9 V vs. RHE with a H<sub>2</sub>/CO ratio of 1.8. These results demonstrate that RRDE configuration can be used as a feasible approach for identifying electrolysis products from CO<sub>2</sub>RR.</p></div>","PeriodicalId":67498,"journal":{"name":"能源化学","volume":"88 ","pages":"Pages 169-182"},"PeriodicalIF":0.0,"publicationDate":"2023-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67740102","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
期刊
能源化学
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1