Pub Date : 2024-08-30DOI: 10.1088/2053-1583/ad70c9
Tong Tong, Yongli He, Yuan Gao, Yukang Liu, Kan Liao, Weisheng Li
Hybrid systems coupling two-dimensional (2D) semiconductors with functional ferroelectrics are attracting increasing attention owing to their excellent electronic/optoelectronic properties and new functionalities through the multiple heterointerface interactions. In our device architecture, interfacial states are introduced on the ferroelectric Hf0.5Zr0.5O2 thin film as a gate dielectric layer for the charge trapping effect. Utilizing the collaborative effects of charge trapping and ferroelectric polarization behavior, a multifunctional 2D WSe2/HZO memtransistor is demonstrated with an ultra-low off-state (dark) current of 10−13 A, high on/off ratio of 106 and linear conductance update. This device exhibits reliable memory properties and tunable synaptic functions including short-term plasticity/long-term plasticity, paired pulse facilitation, spike-timing dependent plasticity, synaptic potentiation/depression, and filtering in a single device. Extensive endurance tests ensure robust stability (1000 switching cycles, 2000 s holding time) and the synaptic weight update in the device exhibits excellent linearity. Based on the experimental data, our devices eventually achieve an accuracy of 94.8% in artificial neural network simulations. These results highlight a new approach for constructing hybrid systems coupling 2D semiconductors with functional ferroelectrics in a single device to tune synaptic weight, optimize circuit design, and build artificial neuromorphic computing systems.
{"title":"Reconfigurable dielectric engineered WSe2/HZO mem-transistor","authors":"Tong Tong, Yongli He, Yuan Gao, Yukang Liu, Kan Liao, Weisheng Li","doi":"10.1088/2053-1583/ad70c9","DOIUrl":"https://doi.org/10.1088/2053-1583/ad70c9","url":null,"abstract":"Hybrid systems coupling two-dimensional (2D) semiconductors with functional ferroelectrics are attracting increasing attention owing to their excellent electronic/optoelectronic properties and new functionalities through the multiple heterointerface interactions. In our device architecture, interfacial states are introduced on the ferroelectric Hf<sub>0.5</sub>Zr<sub>0.5</sub>O<sub>2</sub> thin film as a gate dielectric layer for the charge trapping effect. Utilizing the collaborative effects of charge trapping and ferroelectric polarization behavior, a multifunctional 2D WSe<sub>2</sub>/HZO memtransistor is demonstrated with an ultra-low off-state (dark) current of 10<sup>−13</sup> A, high on/off ratio of 10<sup>6</sup> and linear conductance update. This device exhibits reliable memory properties and tunable synaptic functions including short-term plasticity/long-term plasticity, paired pulse facilitation, spike-timing dependent plasticity, synaptic potentiation/depression, and filtering in a single device. Extensive endurance tests ensure robust stability (1000 switching cycles, 2000 s holding time) and the synaptic weight update in the device exhibits excellent linearity. Based on the experimental data, our devices eventually achieve an accuracy of 94.8% in artificial neural network simulations. These results highlight a new approach for constructing hybrid systems coupling 2D semiconductors with functional ferroelectrics in a single device to tune synaptic weight, optimize circuit design, and build artificial neuromorphic computing systems.","PeriodicalId":6812,"journal":{"name":"2D Materials","volume":"294 1","pages":""},"PeriodicalIF":5.5,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142198541","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-29DOI: 10.1088/2053-1583/ad70c7
Na Xin
Magnetoresistance (MR) refers to the alteration in electrical resistance within a material when influenced by a magnetic field. Studying MR at the atomic level holds a significant interest both in fundamental research and practical applications. Atomically thin two-dimensional (2D) van der Waals materials and their heterostructures offer an unprecedented platform to investigate MR, thanks to the very broad range of properties and no requirement for lattice matching. Here, we review the various mechanisms of MR effect in 2D materials and their heterostructures, including tunneling MR, extremely large unsaturated MR, layer MR, and colossal MR, as well as explore their potential in device applications. Furthermore, we discuss the limitations and main challenges that still exist for the development of practical devices based on MR and provide our considerations towards real applications.
{"title":"Magnetoresistance in two-dimensional materials and van der Waals heterostructures","authors":"Na Xin","doi":"10.1088/2053-1583/ad70c7","DOIUrl":"https://doi.org/10.1088/2053-1583/ad70c7","url":null,"abstract":"Magnetoresistance (MR) refers to the alteration in electrical resistance within a material when influenced by a magnetic field. Studying MR at the atomic level holds a significant interest both in fundamental research and practical applications. Atomically thin two-dimensional (2D) van der Waals materials and their heterostructures offer an unprecedented platform to investigate MR, thanks to the very broad range of properties and no requirement for lattice matching. Here, we review the various mechanisms of MR effect in 2D materials and their heterostructures, including tunneling MR, extremely large unsaturated MR, layer MR, and colossal MR, as well as explore their potential in device applications. Furthermore, we discuss the limitations and main challenges that still exist for the development of practical devices based on MR and provide our considerations towards real applications.","PeriodicalId":6812,"journal":{"name":"2D Materials","volume":"74 1","pages":""},"PeriodicalIF":5.5,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142198542","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-27DOI: 10.1088/2053-1583/ad64e1
Alexander N Rudenko, Mikhail I Katsnelson
Among a huge variety of known two-dimensional (2D) materials, some of them have anisotropic crystal structures; examples include different systems such as a few-layer black phosphorus (phosphorene), beryllium nitride BeN4, the van der Waals magnet CrSBr, and rhenium dichalcogenides ReX2. As a consequence, their optical and electronic properties are highly anisotropic as well. In some cases, the anisotropy results in not only smooth renormalization of observable properties in comparison with the isotropic case, but in the appearance of dramatically new physics. The examples are hyperbolic plasmons and excitons, strongly anisotropic ordering of adatoms at the surface of 2D or van der Waals materials, and essential changes in transport and superconducting properties. Here, we present a systematic review of the electronic structure, transport, and optical properties of several representative groups of anisotropic 2D materials, including semiconductors, anisotropic Dirac and semi-Dirac materials, and superconductors.
{"title":"Anisotropic effects in two-dimensional materials","authors":"Alexander N Rudenko, Mikhail I Katsnelson","doi":"10.1088/2053-1583/ad64e1","DOIUrl":"https://doi.org/10.1088/2053-1583/ad64e1","url":null,"abstract":"Among a huge variety of known two-dimensional (2D) materials, some of them have anisotropic crystal structures; examples include different systems such as a few-layer black phosphorus (phosphorene), beryllium nitride BeN<sub>4</sub>, the van der Waals magnet CrSBr, and rhenium dichalcogenides ReX<sub>2</sub>. As a consequence, their optical and electronic properties are highly anisotropic as well. In some cases, the anisotropy results in not only smooth renormalization of observable properties in comparison with the isotropic case, but in the appearance of dramatically new physics. The examples are hyperbolic plasmons and excitons, strongly anisotropic ordering of adatoms at the surface of 2D or van der Waals materials, and essential changes in transport and superconducting properties. Here, we present a systematic review of the electronic structure, transport, and optical properties of several representative groups of anisotropic 2D materials, including semiconductors, anisotropic Dirac and semi-Dirac materials, and superconductors.","PeriodicalId":6812,"journal":{"name":"2D Materials","volume":"43 1","pages":""},"PeriodicalIF":5.5,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142198543","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-27DOI: 10.1088/2053-1583/ad6ba2
Majeed Ur Rehman, Zia Ur Rahman, Azizur Rahman, Waqas Ahmad, Sadeeq Ullah
Unlike single layers of 2H transition metal dichalcogenides (TMDCs), bilayers of 2H TMDCs maintain inversion and time reversal (TR) symmetries, resulting in a vanishing Berry curvature (