K Schwach-Abdellaoui, P J Loup, N Vivien-Castioni, A Mombelli, P Baehni, J Barr, J Heller, R Gurny
The semisolid consistency of poly(ortho esters) (POEs) containing tetracycline free base allows direct injection in the periodontal pocket and shows sustained and almost constant in vitro release in phosphate buffer, pH 7.4 at 37 degrees C, for up to 14 days. Total polymer degradation concomitant with drug release was obtained. Formulations containing 10% or 20% (wt/wt) tetracycline were evaluated in a panel of 12 patients suffering from severe and recurrent periodontitis. In the first trial including 6 patients, single-rooted teeth and molar teeth with furcations were treated immediately after scaling and root planing. Patients tolerated both formulations well, experienced no pain during application, and showed no signs of irritation or discomfort during the observation period. However, retention of the formulation was minimal in this first study. An improved clinical protocol followed in the second study (stopping bleeding after scaling and root planning) prolonged the retention of the formulations in the inflamed periodontal pockets. For up to 11 days, tetracycline concentrations in the gingival crevicular fluid were higher than the minimum inhibitory concentration of tetracycline against most periodontal pathogens.
{"title":"Bioerodible injectable poly(ortho ester) for tetracycline controlled delivery to periodontal pockets: preliminary trial in humans.","authors":"K Schwach-Abdellaoui, P J Loup, N Vivien-Castioni, A Mombelli, P Baehni, J Barr, J Heller, R Gurny","doi":"10.1208/ps040420","DOIUrl":"https://doi.org/10.1208/ps040420","url":null,"abstract":"<p><p>The semisolid consistency of poly(ortho esters) (POEs) containing tetracycline free base allows direct injection in the periodontal pocket and shows sustained and almost constant in vitro release in phosphate buffer, pH 7.4 at 37 degrees C, for up to 14 days. Total polymer degradation concomitant with drug release was obtained. Formulations containing 10% or 20% (wt/wt) tetracycline were evaluated in a panel of 12 patients suffering from severe and recurrent periodontitis. In the first trial including 6 patients, single-rooted teeth and molar teeth with furcations were treated immediately after scaling and root planing. Patients tolerated both formulations well, experienced no pain during application, and showed no signs of irritation or discomfort during the observation period. However, retention of the formulation was minimal in this first study. An improved clinical protocol followed in the second study (stopping bleeding after scaling and root planning) prolonged the retention of the formulations in the inflamed periodontal pockets. For up to 11 days, tetracycline concentrations in the gingival crevicular fluid were higher than the minimum inhibitory concentration of tetracycline against most periodontal pathogens.</p>","PeriodicalId":6918,"journal":{"name":"AAPS PharmSci","volume":"4 4","pages":"E20"},"PeriodicalIF":0.0,"publicationDate":"2002-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1208/ps040420","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"22297764","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Objective: Our objective was to assess the pharmacokinetics and pharmacodynamics of RWJ-270201 (BCX-1812), an oral neuraminidase inhibitor for the treatment of influenza A and B virus in healthy volunteers.
Methods: This was a double-blind, randomized, placebo-controlled, parallel group study. A total of 80 adult male and female subjects were enrolled for the influenza A challenge study. This was a 5-arm study (100 mg/qd, 200 mg/qd, 200 mg/bid, 400 mg/qd, and placebo). In the challenge B virus model, 60 subjects were enrolled for a 3-arm study (800 mg on Day 1 followed by 400 mg on Days 2-5; 800 mg on Days 1-5; and placebo). The pharmacokinetics of RWJ-270201 (BCX-1812) were characterized with the use of a population approach and were described by a 2-compartmental model with first-order absorption and elimination. The pharmacodynamic data, mean log viral titers, were described with the use of an empirical equation relating the viral growth and the effect of drug on changes in viral titers.
Results: Pharmacokinetic analyses show that weight was the most significant covariate for all estimated pharmacokinetic parameters. The pharmacodynamic data, mean log viral titers showed a decrease in viral titers with increase in plasma exposure. The decrease in viral titer started to occur 12 hours following the drug dosing, and viral suppression lasted 72 hours to 96 hours. The exposures associated with a 50% decrease in viral titers were 1089 ng-h/mL and 1898 ng-h/mL, respectively.
Conclusions: A PK/PD model was well utilized to characterize the effect of RWJ-270201 (BCX-1812) on the influenza A and B virus. The results from this model showed that both the loading dose and the standard dose regimens are efficacious against A and B virus. RWJ-270201 (BCX-1812) is under clinical development for the treatment of influenza A and B infections in adult and high-risk populations. It is a potent and selective inhibitor of both influenza A and B virus neuraminidases and inhibits the viral cleavage of sialic acid from cell surface glycoproteins and glycolipids. Consequently, RWJ-270201 (BCX-1812) prevents infection by stopping the release of newly formed virus from the surface of infected cells and preventing viral spread across the mucous lining of the respiratory tract. It therefore represents an attractive agent for antiviral therapy.
{"title":"Population analysis of the pharmacokinetics and pharmacodynamics of RWJ-270201 (BCX-1812) in treating experimental influenza A and B virus in healthy volunteers.","authors":"Ganesh R Iyer, Sam Liao, Joseph Massarella","doi":"10.1208/ps040422","DOIUrl":"https://doi.org/10.1208/ps040422","url":null,"abstract":"<p><strong>Objective: </strong>Our objective was to assess the pharmacokinetics and pharmacodynamics of RWJ-270201 (BCX-1812), an oral neuraminidase inhibitor for the treatment of influenza A and B virus in healthy volunteers.</p><p><strong>Methods: </strong>This was a double-blind, randomized, placebo-controlled, parallel group study. A total of 80 adult male and female subjects were enrolled for the influenza A challenge study. This was a 5-arm study (100 mg/qd, 200 mg/qd, 200 mg/bid, 400 mg/qd, and placebo). In the challenge B virus model, 60 subjects were enrolled for a 3-arm study (800 mg on Day 1 followed by 400 mg on Days 2-5; 800 mg on Days 1-5; and placebo). The pharmacokinetics of RWJ-270201 (BCX-1812) were characterized with the use of a population approach and were described by a 2-compartmental model with first-order absorption and elimination. The pharmacodynamic data, mean log viral titers, were described with the use of an empirical equation relating the viral growth and the effect of drug on changes in viral titers.</p><p><strong>Results: </strong>Pharmacokinetic analyses show that weight was the most significant covariate for all estimated pharmacokinetic parameters. The pharmacodynamic data, mean log viral titers showed a decrease in viral titers with increase in plasma exposure. The decrease in viral titer started to occur 12 hours following the drug dosing, and viral suppression lasted 72 hours to 96 hours. The exposures associated with a 50% decrease in viral titers were 1089 ng-h/mL and 1898 ng-h/mL, respectively.</p><p><strong>Conclusions: </strong>A PK/PD model was well utilized to characterize the effect of RWJ-270201 (BCX-1812) on the influenza A and B virus. The results from this model showed that both the loading dose and the standard dose regimens are efficacious against A and B virus. RWJ-270201 (BCX-1812) is under clinical development for the treatment of influenza A and B infections in adult and high-risk populations. It is a potent and selective inhibitor of both influenza A and B virus neuraminidases and inhibits the viral cleavage of sialic acid from cell surface glycoproteins and glycolipids. Consequently, RWJ-270201 (BCX-1812) prevents infection by stopping the release of newly formed virus from the surface of infected cells and preventing viral spread across the mucous lining of the respiratory tract. It therefore represents an attractive agent for antiviral therapy.</p>","PeriodicalId":6918,"journal":{"name":"AAPS PharmSci","volume":"4 4","pages":"E22"},"PeriodicalIF":0.0,"publicationDate":"2002-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1208/ps040422","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"22298250","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
VNP40101M (1,2-Bis(methylsulfonyl)-1-(2-chloroethyl)-2-[(2 methylamino)carbonyl] hydrazine), a novel DNA alkylating agent, is currently under clinical development for the treatment of cancer in Phase I clinical trials. This study investigated the pharmacokinetics, mass balance, and tissue distribution of [14C]-VNP40101M in rats following a single intravenous dose of 10 mg/kg. After 7 days, the total recovery of radioactivity was 85% for males and 79% for females. Most of the radioactivity was eliminated within 48 hours through urine (70%), with less excreted in feces (6%). Tissue contained relatively high radioactive residues with the highest concentrations in kidneys, liver, lung, and spleen. After 7 days, tissue still contained 9% of the dose. At both 5 minutes and 1 hour post-dose, brain contained relatively high radioactivity (5.9 and 3.3 micro g equivalence/g and 50% and 30% of the blood concentration, respectively), suggesting that VNP40101M penetrated the blood-brain barrier. The elimination half-life of VNP40101M was approximately 20 minutes, the peak plasma concentration (Cmax) averaged 11.3 micro g/mL, the volume of distribution (Vss) averaged 0.91 L/kg, and the total body clearance (Cl) averaged 33.5 mL/min/kg. The metabolite profile in urine was complex, indicating VNP40101M was extensively metabolized. There were no apparent sex differences in pharmacokinetic parameters of VNP40101M in the rat.
{"title":"Pharmacokinetics, mass balance, and tissue distribution of a novel DNA alkylating agent, VNP40101M, in rat.","authors":"John Mao, Yang Xu, Diana Wu, Bijan Almassain","doi":"10.1208/ps040424","DOIUrl":"https://doi.org/10.1208/ps040424","url":null,"abstract":"<p><p>VNP40101M (1,2-Bis(methylsulfonyl)-1-(2-chloroethyl)-2-[(2 methylamino)carbonyl] hydrazine), a novel DNA alkylating agent, is currently under clinical development for the treatment of cancer in Phase I clinical trials. This study investigated the pharmacokinetics, mass balance, and tissue distribution of [14C]-VNP40101M in rats following a single intravenous dose of 10 mg/kg. After 7 days, the total recovery of radioactivity was 85% for males and 79% for females. Most of the radioactivity was eliminated within 48 hours through urine (70%), with less excreted in feces (6%). Tissue contained relatively high radioactive residues with the highest concentrations in kidneys, liver, lung, and spleen. After 7 days, tissue still contained 9% of the dose. At both 5 minutes and 1 hour post-dose, brain contained relatively high radioactivity (5.9 and 3.3 micro g equivalence/g and 50% and 30% of the blood concentration, respectively), suggesting that VNP40101M penetrated the blood-brain barrier. The elimination half-life of VNP40101M was approximately 20 minutes, the peak plasma concentration (Cmax) averaged 11.3 micro g/mL, the volume of distribution (Vss) averaged 0.91 L/kg, and the total body clearance (Cl) averaged 33.5 mL/min/kg. The metabolite profile in urine was complex, indicating VNP40101M was extensively metabolized. There were no apparent sex differences in pharmacokinetic parameters of VNP40101M in the rat.</p>","PeriodicalId":6918,"journal":{"name":"AAPS PharmSci","volume":"4 4","pages":"E24"},"PeriodicalIF":0.0,"publicationDate":"2002-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1208/ps040424","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"22298252","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The overall objective of this study was to provide 'semi-quantitative' or 'rigorous' definitions of the fluidity, lubricity and compactibility requirements of formulation for representative dosator and dosing disc capsule filling machines. To that end, model formulations were developed for those properties using Carr's compressibility index, ejection force, and plug breaking force at a specified compression force to gauge fluidity, lubricity, and compactibility, respectively. These formulations were each encapsulated on an Hofliger-Karg GKF-400 dosing disc machine and a Zanasi LZ-64 dosator machine. Each machine was instrumented to measure plug compression and ejection forces. The encapsulation process was evaluated for %CV of fill-weight, ejection force, plug breaking force and the dissolution of marker drugs incorporated in the formulations. The f2 metric was used to compare dissolution profiles. The results suggest: (1) formulations should meet different flow criteria for successful encapsulation on the two machines, (2) a relatively lower level of lubricant may be sufficient for the dosing disc machine, (3) a higher degree of formulation compactibility is needed for the dosator machine, and (4) transferring formulations between these machine types (same class, different subclass per FDA's SUPAC-IR/MR Manufacturing Equipment Addendum) could be challenging. In certain cases dissolution profiles for the same formulation filled on the two machines with equivalent compression force were different based on f2 < 50. Overall, the results of this study suggest a range of formulation characteristics appropriate for transferring formulations between these two types of machines.
{"title":"Comparison of the formulation requirements of dosator and dosing disc automatic capsule filling machines.","authors":"Pavan K Heda, Kapiamba Muteba, Larry L Augsburger","doi":"10.1208/ps040317","DOIUrl":"10.1208/ps040317","url":null,"abstract":"<p><p>The overall objective of this study was to provide 'semi-quantitative' or 'rigorous' definitions of the fluidity, lubricity and compactibility requirements of formulation for representative dosator and dosing disc capsule filling machines. To that end, model formulations were developed for those properties using Carr's compressibility index, ejection force, and plug breaking force at a specified compression force to gauge fluidity, lubricity, and compactibility, respectively. These formulations were each encapsulated on an Hofliger-Karg GKF-400 dosing disc machine and a Zanasi LZ-64 dosator machine. Each machine was instrumented to measure plug compression and ejection forces. The encapsulation process was evaluated for %CV of fill-weight, ejection force, plug breaking force and the dissolution of marker drugs incorporated in the formulations. The f2 metric was used to compare dissolution profiles. The results suggest: (1) formulations should meet different flow criteria for successful encapsulation on the two machines, (2) a relatively lower level of lubricant may be sufficient for the dosing disc machine, (3) a higher degree of formulation compactibility is needed for the dosator machine, and (4) transferring formulations between these machine types (same class, different subclass per FDA's SUPAC-IR/MR Manufacturing Equipment Addendum) could be challenging. In certain cases dissolution profiles for the same formulation filled on the two machines with equivalent compression force were different based on f2 < 50. Overall, the results of this study suggest a range of formulation characteristics appropriate for transferring formulations between these two types of machines.</p>","PeriodicalId":6918,"journal":{"name":"AAPS PharmSci","volume":"4 3","pages":"E17"},"PeriodicalIF":0.0,"publicationDate":"2002-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2751356/pdf/12248_2008_Article_43045.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"22103901","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Aditya S Tatavarti, David Dollimore, Kenneth S Alexander
Four non-polymeric plasticizers, propylene glycol, diethyl phthalate, triacetin, and glycerin have been subjected to rising temperature thermogravimetry for kinetic analysis and vaporization-based thermal stability evaluation. Since volatile loss of a substance is a function of its vapor pressure, the thermal stability of these plasticizers has been analyzed by generating vapor pressure curves using the Antoine and Langmuir equations. Unknown Antoine constants for the sample compounds, triacetin and glycerin have been derived by subjecting the vapor pressure curves to nonlinear regression. For the first time, the entire process of obtaining the unknown Antoine constants through thermogravimetry has been validated by developing an approach called the 'double reference method.' Based on this method, it has been possible to show that this technique is accurate even for structurally diverse compounds. Kinetic analysis on the volatilization of compounds revealed a predominant zero order process. The activation energy values for vaporization of propylene glycol, diethyl phthalate, triacetin, and glycerin, as deduced from the Arrhenius plots, have been determined to be 55.80, 66.45, 65.12, and 67.54 kJ/mol, respectively. The enthalpies of vaporization of the compounds have been determined from the Clausius-Clapeyron plots. Rising temperature thermogravimetry coupled with nonlinear regression analysis has been shown to be an effective and rapid technique for accurately predicting the vapor pressure behavior and thermal stability evaluation of volatile compounds.
{"title":"A thermogravimetric analysis of non-polymeric pharmaceutical plasticizers: kinetic analysis, method validation, and thermal stability evaluation.","authors":"Aditya S Tatavarti, David Dollimore, Kenneth S Alexander","doi":"10.1208/ps040445","DOIUrl":"https://doi.org/10.1208/ps040445","url":null,"abstract":"<p><p>Four non-polymeric plasticizers, propylene glycol, diethyl phthalate, triacetin, and glycerin have been subjected to rising temperature thermogravimetry for kinetic analysis and vaporization-based thermal stability evaluation. Since volatile loss of a substance is a function of its vapor pressure, the thermal stability of these plasticizers has been analyzed by generating vapor pressure curves using the Antoine and Langmuir equations. Unknown Antoine constants for the sample compounds, triacetin and glycerin have been derived by subjecting the vapor pressure curves to nonlinear regression. For the first time, the entire process of obtaining the unknown Antoine constants through thermogravimetry has been validated by developing an approach called the 'double reference method.' Based on this method, it has been possible to show that this technique is accurate even for structurally diverse compounds. Kinetic analysis on the volatilization of compounds revealed a predominant zero order process. The activation energy values for vaporization of propylene glycol, diethyl phthalate, triacetin, and glycerin, as deduced from the Arrhenius plots, have been determined to be 55.80, 66.45, 65.12, and 67.54 kJ/mol, respectively. The enthalpies of vaporization of the compounds have been determined from the Clausius-Clapeyron plots. Rising temperature thermogravimetry coupled with nonlinear regression analysis has been shown to be an effective and rapid technique for accurately predicting the vapor pressure behavior and thermal stability evaluation of volatile compounds.</p>","PeriodicalId":6918,"journal":{"name":"AAPS PharmSci","volume":"4 4","pages":"E45"},"PeriodicalIF":0.0,"publicationDate":"2002-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1208/ps040445","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"22298112","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The objective of this brief article is to provide an overview of some of the important harmonization efforts that are currently under way within the animal health community. Topics include: scientific networks and interdisciplinary communication; organizations that address animal-related public health concerns; the role of the veterinary pharmaceutical scientist within human health-oriented professional organizations; recent publications pertaining to veterinary pharmacology, pharmaceutics and therapeutics; and the role of global networking in veterinary product research and development.
{"title":"Linking human and veterinary health: trends, directions and initiatives.","authors":"Marilyn Martinez, Michael J Rathbone","doi":"10.1208/ps040432","DOIUrl":"10.1208/ps040432","url":null,"abstract":"<p><p>The objective of this brief article is to provide an overview of some of the important harmonization efforts that are currently under way within the animal health community. Topics include: scientific networks and interdisciplinary communication; organizations that address animal-related public health concerns; the role of the veterinary pharmaceutical scientist within human health-oriented professional organizations; recent publications pertaining to veterinary pharmacology, pharmaceutics and therapeutics; and the role of global networking in veterinary product research and development.</p>","PeriodicalId":6918,"journal":{"name":"AAPS PharmSci","volume":"4 4","pages":"E32"},"PeriodicalIF":0.0,"publicationDate":"2002-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2751321/pdf/12248_2008_Article_44117.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"22296912","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kishor M Wasan, Manisha Ramaswamy, Mona Kwong, Kathy D Boulanger
Lipoproteins are a heterogeneous population of macromolecular aggregates of lipids and proteins that are responsible for the transport of lipids through the vascular and extravascular fluids from their site of synthesis or absorption to peripheral tissues. Lipoproteins are involved in other biological processes as well, including coagulation and tissue repair, and serve as carriers of a number of hydrophobic compounds within the systemic circulation. It has been well documented that disease states (eg, AIDS, diabetes, cancer) significantly influence circulating lipoprotein content and composition. Therefore, it appears possible that changes in the lipoprotein profile would affect not only the ability of a compound to associate with lipoproteins but also the distribution of the compound within the lipoprotein subclasses. Such an effect could alter the pharmacokinetics and pharmacological action of the drug. This paper reviews the factors that influence the interaction of one model hydrophobic compound, cyclosporine A, with lipoproteins and the implications of altered plasma lipoprotein concentrations on the pharmacological behavior of this compound.
{"title":"Role of plasma lipoproteins in modifying the toxic effects of water-insoluble drugs: studies with cyclosporine A.","authors":"Kishor M Wasan, Manisha Ramaswamy, Mona Kwong, Kathy D Boulanger","doi":"10.1208/ps040430","DOIUrl":"https://doi.org/10.1208/ps040430","url":null,"abstract":"<p><p>Lipoproteins are a heterogeneous population of macromolecular aggregates of lipids and proteins that are responsible for the transport of lipids through the vascular and extravascular fluids from their site of synthesis or absorption to peripheral tissues. Lipoproteins are involved in other biological processes as well, including coagulation and tissue repair, and serve as carriers of a number of hydrophobic compounds within the systemic circulation. It has been well documented that disease states (eg, AIDS, diabetes, cancer) significantly influence circulating lipoprotein content and composition. Therefore, it appears possible that changes in the lipoprotein profile would affect not only the ability of a compound to associate with lipoproteins but also the distribution of the compound within the lipoprotein subclasses. Such an effect could alter the pharmacokinetics and pharmacological action of the drug. This paper reviews the factors that influence the interaction of one model hydrophobic compound, cyclosporine A, with lipoproteins and the implications of altered plasma lipoprotein concentrations on the pharmacological behavior of this compound.</p>","PeriodicalId":6918,"journal":{"name":"AAPS PharmSci","volume":"4 4","pages":"E30"},"PeriodicalIF":0.0,"publicationDate":"2002-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1208/ps040430","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"22296910","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Methods to control infectious diseases in livestock are growing in importance. As the size of the average farm increases - for poultry, dairy and beef cattle, swine, and fish - the risk of rapid spread of infectious diseases increases as well. This increases the need for alternative methods of control of infectious agents. Improvements in specific immunogens, adjuvants, and delivery systems are needed to meet the demand for vaccines to ensure a healthy and safe meat supply. This article explores the challenges, trends, and recent advances in the control of infectious diseases through the use of biologics.
{"title":"Evolving importance of biologics and novel delivery systems in the face of microbial resistance.","authors":"Terry L Bowersock","doi":"10.1208/ps040433","DOIUrl":"https://doi.org/10.1208/ps040433","url":null,"abstract":"<p><p>Methods to control infectious diseases in livestock are growing in importance. As the size of the average farm increases - for poultry, dairy and beef cattle, swine, and fish - the risk of rapid spread of infectious diseases increases as well. This increases the need for alternative methods of control of infectious agents. Improvements in specific immunogens, adjuvants, and delivery systems are needed to meet the demand for vaccines to ensure a healthy and safe meat supply. This article explores the challenges, trends, and recent advances in the control of infectious diseases through the use of biologics.</p>","PeriodicalId":6918,"journal":{"name":"AAPS PharmSci","volume":"4 4","pages":"E33"},"PeriodicalIF":0.0,"publicationDate":"2002-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1208/ps040433","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"22296913","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Like most scientific disciplines, pharmacology is replete with subspecialties. Certainly most scientists recognize the value of animal studies in drug development for human pharmaceuticals. However, animals as the target species also represent a major focus of investigation. According to recent estimates, in the United States for the year 2000, 98.1 million cattle, 59.8 million pigs, and 1.5 billion chickens existed. Added to that estimate were companion animals, including 4 million horses, 59 million cats, and 52.9 million dogs. The estimate does not include the so-called "minor" species, such as 7 million sheep and 320,000 acres of freshwater fish production. In most respects, the medical needs of these animals are addressed in a manner parallel to that of human medicine. One such parallel, with certain distinct differences from its human counterpart, is veterinary clinical pharmacology.
{"title":"The role of the clinical pharmacologist in animal health.","authors":"Cory Langston, Cyril R Clarke","doi":"10.1208/ps040436","DOIUrl":"https://doi.org/10.1208/ps040436","url":null,"abstract":"<p><p>Like most scientific disciplines, pharmacology is replete with subspecialties. Certainly most scientists recognize the value of animal studies in drug development for human pharmaceuticals. However, animals as the target species also represent a major focus of investigation. According to recent estimates, in the United States for the year 2000, 98.1 million cattle, 59.8 million pigs, and 1.5 billion chickens existed. Added to that estimate were companion animals, including 4 million horses, 59 million cats, and 52.9 million dogs. The estimate does not include the so-called \"minor\" species, such as 7 million sheep and 320,000 acres of freshwater fish production. In most respects, the medical needs of these animals are addressed in a manner parallel to that of human medicine. One such parallel, with certain distinct differences from its human counterpart, is veterinary clinical pharmacology.</p>","PeriodicalId":6918,"journal":{"name":"AAPS PharmSci","volume":"4 4","pages":"E36"},"PeriodicalIF":0.0,"publicationDate":"2002-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1208/ps040436","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"22296916","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Signal-mediated protein transport through the nuclear pore complex is of considerable interest in the field of molecular pharmaceutics. Nuclear localization signals can be used to target genes/antisense delivery systems to the nucleus. Studying nuclear export is useful in enhancing the expression and the efficiency of action of these therapeutic agents. The mechanism of nuclear import has been well studied and most of the proteins participating in this mechanism have been identified. The subject of nuclear export is still in the initial stages, and there is a considerable amount of uncertainty in this area. Two main export receptors identified so far are Exportin 1 (Crm1) and Calreticulin. Crm1 recognizes certain leucine-rich amino acid sequences in the proteins it exports called classical nuclear export signals. This paper describes a model system to study, identify, and establish these classical nuclear export signals using green fluorescent protein (GFP). Two putative export signals in the human progesterone receptor (PR) and the strongest nuclear export signal known (from mitogen activated protein kinase kinase [MAPKK]) were studied using this model system.
{"title":"Model system to study classical nuclear export signals.","authors":"Charu Kanwal, Henan Li, Carol S Lim","doi":"10.1208/ps040318","DOIUrl":"10.1208/ps040318","url":null,"abstract":"<p><p>Signal-mediated protein transport through the nuclear pore complex is of considerable interest in the field of molecular pharmaceutics. Nuclear localization signals can be used to target genes/antisense delivery systems to the nucleus. Studying nuclear export is useful in enhancing the expression and the efficiency of action of these therapeutic agents. The mechanism of nuclear import has been well studied and most of the proteins participating in this mechanism have been identified. The subject of nuclear export is still in the initial stages, and there is a considerable amount of uncertainty in this area. Two main export receptors identified so far are Exportin 1 (Crm1) and Calreticulin. Crm1 recognizes certain leucine-rich amino acid sequences in the proteins it exports called classical nuclear export signals. This paper describes a model system to study, identify, and establish these classical nuclear export signals using green fluorescent protein (GFP). Two putative export signals in the human progesterone receptor (PR) and the strongest nuclear export signal known (from mitogen activated protein kinase kinase [MAPKK]) were studied using this model system.</p>","PeriodicalId":6918,"journal":{"name":"AAPS PharmSci","volume":"4 3","pages":"E18"},"PeriodicalIF":0.0,"publicationDate":"2002-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1208/ps040318","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"22103902","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}