Pub Date : 2021-11-15DOI: 10.33892/aph.2021.91.247-248
Adrienn Kazsoki, A. Farkas, Diána Balogh‐Weiser, E. Mancuso, P. Sharma, D. Lamprou, R. Zelkó
In the recent past, one of the major challenges of the pharmaceutical industry was to overcome the poor aqueous solubility and permeability of new drug candidates, leading to their low bioavailability [1]. To solve these problems, novel structures were developed involving the polymer-based nanofibrous drug delivery systems [2,3]. The unique properties of the nanofibers as the high porosity with interconnected pore network and the increased surface area of the fibrous sheets, together with the active pharmaceutical ingredients can be embedded into the polymeric matrix carrier in an amorphous state, could lead to an increased dissolution and thus the bioavailability of drugs with a lower solubility [4,5]. Due to their structure, the formulation of nanofibrous materials loaded with different drugs have been widely used as drug delivery systems, scaffolds for tissue engineering and wound bandage. Electrospinning is a well controllable, simple and cost-effective technique for preparing matrices with nanometer-sized fibers with similar features and morphologies to the extracellular matrix (ECM) [6]. The ECM is the non-cellular component presents within all tissues and organs and plays a vital role in the wound healing process [7]. Therefore from those materials which can mimic their structure are believed to stimulate cell proliferation and could help the wound healing [6]. The diverse field of application of the nanofibrous materials required adequate functionalityrelated characteristics. One of the emerging improvements is the development of a bi-component core-shell fiber structure [8], which can offer several benefits for these samples: the core polymer/ composite can provide the required mechanical, physicochemical properties, and can control the release of the incorporated drug(s). The shell materials could preserve the unstable active pharmaceutical ingredients embedded into the core from the unfavorable environmental effect, which can increase the hydrophilicity and the biocompatibility of the fibrous samples. Besides that, one of the significant advantages of this core-shell nanostructures lies in the potential to tailor release properties of the incorporated drug and combine features of different polymers to achieve the required functionality-related characteristic and mechanical properties also [5].
{"title":"Formulation and Complex Morphological Characterization of Core-Shell Fibrous Mats for Chronic Wound Healing","authors":"Adrienn Kazsoki, A. Farkas, Diána Balogh‐Weiser, E. Mancuso, P. Sharma, D. Lamprou, R. Zelkó","doi":"10.33892/aph.2021.91.247-248","DOIUrl":"https://doi.org/10.33892/aph.2021.91.247-248","url":null,"abstract":"In the recent past, one of the major challenges of the pharmaceutical industry was to overcome the poor aqueous solubility and permeability of new drug candidates, leading to their low bioavailability [1]. To solve these problems, novel structures were developed involving the polymer-based nanofibrous drug delivery systems [2,3]. The unique properties of the nanofibers as the high porosity with interconnected pore network and the increased surface area of the fibrous sheets, together with the active pharmaceutical ingredients can be embedded into the polymeric matrix carrier in an amorphous state, could lead to an increased dissolution and thus the bioavailability of drugs with a lower solubility [4,5]. Due to their structure, the formulation of nanofibrous materials loaded with different drugs have been widely used as drug delivery systems, scaffolds for tissue engineering and wound bandage. Electrospinning is a well controllable, simple and cost-effective technique for preparing matrices with nanometer-sized fibers with similar features and morphologies to the extracellular matrix (ECM) [6]. The ECM is the non-cellular component presents within all tissues and organs and plays a vital role in the wound healing process [7]. Therefore from those materials which can mimic their structure are believed to stimulate cell proliferation and could help the wound healing [6]. The diverse field of application of the nanofibrous materials required adequate functionalityrelated characteristics. One of the emerging improvements is the development of a bi-component core-shell fiber structure [8], which can offer several benefits for these samples: the core polymer/ composite can provide the required mechanical, physicochemical properties, and can control the release of the incorporated drug(s). The shell materials could preserve the unstable active pharmaceutical ingredients embedded into the core from the unfavorable environmental effect, which can increase the hydrophilicity and the biocompatibility of the fibrous samples. Besides that, one of the significant advantages of this core-shell nanostructures lies in the potential to tailor release properties of the incorporated drug and combine features of different polymers to achieve the required functionality-related characteristic and mechanical properties also [5].","PeriodicalId":6941,"journal":{"name":"Acta pharmaceutica Hungarica","volume":"62 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84413145","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-11-15DOI: 10.33892/aph.2021.91.310-311
Andrea Rónavári, N. Igaz, M. K. Gopisetty, Bettina Szerencsés, Dávid Kovács, C. Vágvölgyi, Z. Kónya, M. Kiricsi, I. Pfeiffer
Epidemiologic observations indicate that the number of systemic fungal infections has increased significantly during the past decades, however in human mycosis, mainly cutaneous infections predominate, generating major public health concerns and providing much of the impetus for current attempts to develop novel and efficient agents against cutaneous mycosis causing species1. Innovative, environmentally benign and economic nanotechnology-based approaches have recently emerged utilizing principally biological sources to produce nanosized structures with unique antimicrobial properties2. Due to the obvious advantages, the green synthesis of nanoparticles is a rapidly progressing area of the nanobiotechnology. In line with this, the aim of this present study was to investigate the suitability of various green materials such as Parthenocissus quinquefolia plant extract and Phaffia rhodozyma cell-free extract for the preparation of iron nanoparticles (FeNPs), silver nanoparticles (AgNPs) and gold nanoparticles (AuNPs) by biological synthesis and to determine the toxicity of nanoparticles to human keratinocyte cells as well as against various fungal species with a special emphasis on antifungal efficiency against dermatophytes.
{"title":"Biogenic Iron, Silver and Gold Nanoparticles Against Opportunistic Pathogenic Yeasts and Dermatophytes","authors":"Andrea Rónavári, N. Igaz, M. K. Gopisetty, Bettina Szerencsés, Dávid Kovács, C. Vágvölgyi, Z. Kónya, M. Kiricsi, I. Pfeiffer","doi":"10.33892/aph.2021.91.310-311","DOIUrl":"https://doi.org/10.33892/aph.2021.91.310-311","url":null,"abstract":"Epidemiologic observations indicate that the number of systemic fungal infections has increased significantly during the past decades, however in human mycosis, mainly cutaneous infections predominate, generating major public health concerns and providing much of the impetus for current attempts to develop novel and efficient agents against cutaneous mycosis causing species1. Innovative, environmentally benign and economic nanotechnology-based approaches have recently emerged utilizing principally biological sources to produce nanosized structures with unique antimicrobial properties2. Due to the obvious advantages, the green synthesis of nanoparticles is a rapidly progressing area of the nanobiotechnology. In line with this, the aim of this present study was to investigate the suitability of various green materials such as Parthenocissus quinquefolia plant extract and Phaffia rhodozyma cell-free extract for the preparation of iron nanoparticles (FeNPs), silver nanoparticles (AgNPs) and gold nanoparticles (AuNPs) by biological synthesis and to determine the toxicity of nanoparticles to human keratinocyte cells as well as against various fungal species with a special emphasis on antifungal efficiency against dermatophytes.","PeriodicalId":6941,"journal":{"name":"Acta pharmaceutica Hungarica","volume":"8 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82683520","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-11-15DOI: 10.33892/aph.2021.91.293-295
Duong Thi Thuan, A. Isomäki, Urve Paaver, Ivo Laidmäe, A. Tõnisoo, Tran Thi Hai Yen, Karin Kogermann, A. Raal, J. Heinämäki, Pham Thi Minh Hue
The poor solubility in water is very often a problem for active pharmaceutical substances of plant origin. The formulation of such drugs as liposomal preparations enables to improve the bioavailability of these drugs. Berberine (BBR) is a quaternary isoquinoline alkaloid derived from many native plant species (Coptis spp., Berberis spp., Hydrastis canadensis etc.). BBR has been traditionally used for the treatment of different disorders including hyper-cholesterolemia and cardiovascular diseases [1,2]. BBR has a strong antimicrobial activity enabling the use of it as an anti-diarrheal, anti-protozoal, fungal, candida, yeast, and parasitic intestinal active ingredient [3]. In addition, BBR has shown an anti-inflammatory, anti-diabetic, lipid peroxidation, and neuroprotective activity [3,4]. Unfortunaterly, BBR is poorly soluble in water and has a low bioavailability (<10%) due to the induced activity of multidrug efflux transporter Pglycoprotein (P-gp) in the intestine itself [2]. Such limitations associated with a poor oral bioavailability of BBR could be overcome by nanoformulating BBR to liposomes. Pharmaceutical liposomes can be fabricated by ethanol-injection and thin-film hydration methods. The lamellarity, size, shape and ultra-structure of liposomes can be determined by using different advanced techniques, such as cryogenic electron microscopy (Cryo-EM), dynamic light scattering (DLS), size-exclusion chromatography (SEC), and atomic force microscopy (AFM) [5]. Confocal laser scanning microscopy (CLSM) has been also used for such imaging [6]. The aim of our study is to investigate ethanolinjection and film hydration methods for generating BBR-loaded liposomes and to study the structure, size, size distribution and entrapment efficiency of the liposomes. The liposomes are ultimately intended for the oral treatment of hypercholesterolemia.
{"title":"Berberine-loaded Nano-Liposomes Generated with Ethanol-Injection and Thin-film Hydration Methods","authors":"Duong Thi Thuan, A. Isomäki, Urve Paaver, Ivo Laidmäe, A. Tõnisoo, Tran Thi Hai Yen, Karin Kogermann, A. Raal, J. Heinämäki, Pham Thi Minh Hue","doi":"10.33892/aph.2021.91.293-295","DOIUrl":"https://doi.org/10.33892/aph.2021.91.293-295","url":null,"abstract":"The poor solubility in water is very often a problem for active pharmaceutical substances of plant origin. The formulation of such drugs as liposomal preparations enables to improve the bioavailability of these drugs. Berberine (BBR) is a quaternary isoquinoline alkaloid derived from many native plant species (Coptis spp., Berberis spp., Hydrastis canadensis etc.). BBR has been traditionally used for the treatment of different disorders including hyper-cholesterolemia and cardiovascular diseases [1,2]. BBR has a strong antimicrobial activity enabling the use of it as an anti-diarrheal, anti-protozoal, fungal, candida, yeast, and parasitic intestinal active ingredient [3]. In addition, BBR has shown an anti-inflammatory, anti-diabetic, lipid peroxidation, and neuroprotective activity [3,4]. Unfortunaterly, BBR is poorly soluble in water and has a low bioavailability (<10%) due to the induced activity of multidrug efflux transporter Pglycoprotein (P-gp) in the intestine itself [2]. Such limitations associated with a poor oral bioavailability of BBR could be overcome by nanoformulating BBR to liposomes. Pharmaceutical liposomes can be fabricated by ethanol-injection and thin-film hydration methods. The lamellarity, size, shape and ultra-structure of liposomes can be determined by using different advanced techniques, such as cryogenic electron microscopy (Cryo-EM), dynamic light scattering (DLS), size-exclusion chromatography (SEC), and atomic force microscopy (AFM) [5]. Confocal laser scanning microscopy (CLSM) has been also used for such imaging [6]. The aim of our study is to investigate ethanolinjection and film hydration methods for generating BBR-loaded liposomes and to study the structure, size, size distribution and entrapment efficiency of the liposomes. The liposomes are ultimately intended for the oral treatment of hypercholesterolemia.","PeriodicalId":6941,"journal":{"name":"Acta pharmaceutica Hungarica","volume":"20 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77176836","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-11-15DOI: 10.33892/aph.2021.91.163-164
A. Ács, Dániel Szabó, K. Vékey, G. Sármay, L. Drahos, Lilla Turiák
The process of glycosylation is a highly conserved mechanism among species. The enzymatic addition of oligosaccharide chain to the protein significantly changes the physicochemical properties and protein-protein interactions. Therefore glycosylation considered as a CQA (Critical Quality Attribute) for biopharmaceutical products. At this point there is no routinely used, widespread analytical method to determine glycosylation. This may derive from the fact that the term glycosylation summarizes various features. The most often examined feature is the relative abundance of glycoforms. The position of different sugar residues within the oligosaccharide chain has been less frequently analyzed. In this study we have developed a method which, in addition to the commonly investigated features, determines the structural position of the fucose residue. We have examined glycosylation of three proteins: AGP (alpha-1-acid glycoprotein), PSA (Prostate Specific Antigen) and IgG (Immunoglobulin G).
{"title":"Structural Analysis of Human Glycoproteins by Tandem Mass Spectrometry","authors":"A. Ács, Dániel Szabó, K. Vékey, G. Sármay, L. Drahos, Lilla Turiák","doi":"10.33892/aph.2021.91.163-164","DOIUrl":"https://doi.org/10.33892/aph.2021.91.163-164","url":null,"abstract":"The process of glycosylation is a highly conserved mechanism among species. The enzymatic addition of oligosaccharide chain to the protein significantly changes the physicochemical properties and protein-protein interactions. Therefore glycosylation considered as a CQA (Critical Quality Attribute) for biopharmaceutical products. At this point there is no routinely used, widespread analytical method to determine glycosylation. This may derive from the fact that the term glycosylation summarizes various features. The most often examined feature is the relative abundance of glycoforms. The position of different sugar residues within the oligosaccharide chain has been less frequently analyzed. In this study we have developed a method which, in addition to the commonly investigated features, determines the structural position of the fucose residue. We have examined glycosylation of three proteins: AGP (alpha-1-acid glycoprotein), PSA (Prostate Specific Antigen) and IgG (Immunoglobulin G).","PeriodicalId":6941,"journal":{"name":"Acta pharmaceutica Hungarica","volume":"16 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75879761","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-11-15DOI: 10.33892/aph.2021.91.177-178
Á. Barna, K. Sántha, Nikolett Kállai-Szabó, E. Balogh, Bálint Basa, G. Jakab, I. Antal
{"title":"Comparative Dissolution Study of Coated Pellets Containing Microcrystalline Cellulose and Lactose As Core Materials","authors":"Á. Barna, K. Sántha, Nikolett Kállai-Szabó, E. Balogh, Bálint Basa, G. Jakab, I. Antal","doi":"10.33892/aph.2021.91.177-178","DOIUrl":"https://doi.org/10.33892/aph.2021.91.177-178","url":null,"abstract":"","PeriodicalId":6941,"journal":{"name":"Acta pharmaceutica Hungarica","volume":"123 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79478837","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-11-15DOI: 10.33892/aph.2021.91.154-155
Orsolya Kóréh, L. Milivojevic
the focus has turned to automation and software development to allow for automated identification and quantitative analysis of each molecular attribute. With automation and software developments, a true benefit of MAM can be realized by building a comprehensive molecular attribute database linked to process conditions which can then be used to increase product and process knowledge throughout the development pipeline. With this increased product and process knowledge, MAM can reduce the amount of time taken to develop a product, reduce the time needed to manufacture and release a product by add-ing efficient process controls, and reduce the time needed to investigate a process issue. MAM can help to solve major manufacturing challenges plaguing the biopharmaceutical industry today as they strive to develop more biotherapeutics on a faster timeline. The multi-attribute for the of monoclonal critical quality describe the optimization and applica-tion of the Multi- Attribute Method as a complete workflow to monitor CQAs of the NISTmAb including glycosylation, deamidation, isomerization, succinimide formation, oxidation,
{"title":"Is the Multi-Attribute Method (MAM) the Next Big Thing? A High-Resolution Accurate Mass Multi-Attribute Method for Critical Quality Attribute Monitoring","authors":"Orsolya Kóréh, L. Milivojevic","doi":"10.33892/aph.2021.91.154-155","DOIUrl":"https://doi.org/10.33892/aph.2021.91.154-155","url":null,"abstract":"the focus has turned to automation and software development to allow for automated identification and quantitative analysis of each molecular attribute. With automation and software developments, a true benefit of MAM can be realized by building a comprehensive molecular attribute database linked to process conditions which can then be used to increase product and process knowledge throughout the development pipeline. With this increased product and process knowledge, MAM can reduce the amount of time taken to develop a product, reduce the time needed to manufacture and release a product by add-ing efficient process controls, and reduce the time needed to investigate a process issue. MAM can help to solve major manufacturing challenges plaguing the biopharmaceutical industry today as they strive to develop more biotherapeutics on a faster timeline. The multi-attribute for the of monoclonal critical quality describe the optimization and applica-tion of the Multi- Attribute Method as a complete workflow to monitor CQAs of the NISTmAb including glycosylation, deamidation, isomerization, succinimide formation, oxidation,","PeriodicalId":6941,"journal":{"name":"Acta pharmaceutica Hungarica","volume":"138 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73017269","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-11-15DOI: 10.33892/aph.2021.91.187-188
B. Bertók, G. Dormán, Z. Várkonyi, C. Magyar
{"title":"Novel E3 Ligase Ligand Libraries for Degradation of Proteins Implicated in Malignant Diseases","authors":"B. Bertók, G. Dormán, Z. Várkonyi, C. Magyar","doi":"10.33892/aph.2021.91.187-188","DOIUrl":"https://doi.org/10.33892/aph.2021.91.187-188","url":null,"abstract":"","PeriodicalId":6941,"journal":{"name":"Acta pharmaceutica Hungarica","volume":"50 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80910603","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-11-15DOI: 10.33892/aph.2021.91.131-132
M. Szentiványi
The National Institute of Pharmacy and Nutrition (NIPN) has a long tradition as the safeguard of patient safety and as an institution that is committed to ensure that Hungarian patients have access to good quality, safe and efficacious medicines. During the last few years responsibilities of the Institute has been broaden and now we are also a key player in the regulation of special food and medical devices. During the past two decades a transition can be seen in the role of medicines agencies. While in the past the role of regulators was mainly acting as a gatekeeper, nowadays we also need to act as enablers. And while ensuring regulatory compliance of new medicines is still a key activity, our role cannot be narrowed down to the review of documents and other authorization tasks. This is due to the enormous development in the field of biotechnology, precision medicine, the revolution in synthetic biology, just to name a few. On one hand regulators need to be prepared for these new scientific challenges, on the other hand we have to be ready to give the necessary regulatory support to those developers that are coming from various fields and have limited knowledge and experience in regulatory issues.
{"title":"Future of the Hungarian Drug Market : Role of the Hungarian Regulatory Authority","authors":"M. Szentiványi","doi":"10.33892/aph.2021.91.131-132","DOIUrl":"https://doi.org/10.33892/aph.2021.91.131-132","url":null,"abstract":"The National Institute of Pharmacy and Nutrition (NIPN) has a long tradition as the safeguard of patient safety and as an institution that is committed to ensure that Hungarian patients have access to good quality, safe and efficacious medicines. During the last few years responsibilities of the Institute has been broaden and now we are also a key player in the regulation of special food and medical devices. During the past two decades a transition can be seen in the role of medicines agencies. While in the past the role of regulators was mainly acting as a gatekeeper, nowadays we also need to act as enablers. And while ensuring regulatory compliance of new medicines is still a key activity, our role cannot be narrowed down to the review of documents and other authorization tasks. This is due to the enormous development in the field of biotechnology, precision medicine, the revolution in synthetic biology, just to name a few. On one hand regulators need to be prepared for these new scientific challenges, on the other hand we have to be ready to give the necessary regulatory support to those developers that are coming from various fields and have limited knowledge and experience in regulatory issues.","PeriodicalId":6941,"journal":{"name":"Acta pharmaceutica Hungarica","volume":"2 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78573439","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-11-15DOI: 10.33892/aph.2021.91.200-201
F. Demeter, M. Herczeg, Dóra Korponai, Erika Mező, A. Borbás
{"title":"Synthesis of Rhamnose-containing Oligosaccharides, and their Interaction with a Horseshoe Crab Plasma Lectin (HPL)","authors":"F. Demeter, M. Herczeg, Dóra Korponai, Erika Mező, A. Borbás","doi":"10.33892/aph.2021.91.200-201","DOIUrl":"https://doi.org/10.33892/aph.2021.91.200-201","url":null,"abstract":"","PeriodicalId":6941,"journal":{"name":"Acta pharmaceutica Hungarica","volume":"21 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78586830","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}