Pub Date : 2024-09-06DOI: 10.1016/j.acthis.2024.152188
Ting Sun , Liming Xu , Hongtian Yao , Jing Zhao , Zhen Chen , Zexin Chen , Bo Wang , Wei Ding
Bone marrow biopsy depends on tissue morphology, immunohistochemical staining, and moleculardetection. Tissue pretreatment is required for bone marrow samples, from clinical specimen acquisition to pathological reporting, but during the process, proteins and nucleic acids are often altered because of the acid in fixation and decalcification solutions. In our study, we present an easy and effective pretreatment protocol and compared this novel pretreatment protocol (Set 2) with an existing traditional pretreatment process (Set 1) using tissue morphology, IHC staining, and molecular pathological analyses. Granulocytic IHC markers showed more intensive staining in samples of Set 2 than in those of Set 1. The Set 2 protocol provided a higher DNA yield and less fragmentation; moreover, samples processed with the Set 2 protocol could be subsequently used in FISH and DNA sequencing assays. Our optimized novel pretreatment protocol could better protect proteins and DNA molecules while maintaining good cell morphology compared to traditional pretreatment The novel pretreatment reagents could role as a reference by more laboratories for pretreating bone marrow biopsy samples and scientific research.
骨髓活检取决于组织形态、免疫组化染色和分子检测。从临床标本采集到病理报告,骨髓样本都需要进行组织预处理,但在这一过程中,蛋白质和核酸往往会因固定和脱钙溶液中的酸而发生改变。在我们的研究中,我们提出了一种简便有效的预处理方案,并利用组织形态学、IHC 染色和分子病理学分析比较了这种新型预处理方案(Set 2)和现有的传统预处理流程(Set 1)。与第一套方案相比,第二套方案样本中的粒细胞 IHC 标记显示出更密集的染色。第2套方案的DNA产量更高,碎片更少;此外,用第2套方案处理的样本随后还可用于FISH和DNA测序检测。与传统预处理相比,我们优化的新型预处理方案能更好地保护蛋白质和 DNA 分子,同时保持良好的细胞形态。新型预处理试剂可为更多实验室对骨髓活检样本进行预处理和科学研究提供参考。
{"title":"A set of pretreatment reagents including improved formula fixation and decalcification facilitating immunohistochemistry and DNA analyses of formalin-fixed paraffin-embedded bone marrow trephine biopsy","authors":"Ting Sun , Liming Xu , Hongtian Yao , Jing Zhao , Zhen Chen , Zexin Chen , Bo Wang , Wei Ding","doi":"10.1016/j.acthis.2024.152188","DOIUrl":"10.1016/j.acthis.2024.152188","url":null,"abstract":"<div><p>Bone marrow biopsy depends on tissue morphology, immunohistochemical staining, and moleculardetection. Tissue pretreatment is required for bone marrow samples, from clinical specimen acquisition to pathological reporting, but during the process, proteins and nucleic acids are often altered because of the acid in fixation and decalcification solutions. In our study, we present an easy and effective pretreatment protocol and compared this novel pretreatment protocol (Set 2) with an existing traditional pretreatment process (Set 1) using tissue morphology, IHC staining, and molecular pathological analyses. Granulocytic IHC markers showed more intensive staining in samples of Set 2 than in those of Set 1. The Set 2 protocol provided a higher DNA yield and less fragmentation; moreover, samples processed with the Set 2 protocol could be subsequently used in FISH and DNA sequencing assays. Our optimized novel pretreatment protocol could better protect proteins and DNA molecules while maintaining good cell morphology compared to traditional pretreatment The novel pretreatment reagents could role as a reference by more laboratories for pretreating bone marrow biopsy samples and scientific research.</p></div>","PeriodicalId":6961,"journal":{"name":"Acta histochemica","volume":"126 8","pages":"Article 152188"},"PeriodicalIF":2.3,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142144911","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tumour endothelial cells (TECs) are genetically and phenotypically distinct from their normal, healthy counterparts and provide various pro-tumourigenic effects. This study aimed to investigate the impact of conditioned media (CM) from non-tumourigenic MCF-12A breast epithelial cells as well as from MCF-7 and MDA-MB-231 breast cancer cells on human umbilical vein endothelial cells (HUVECs). Significant increases in cell viability were observed across all breast CM groups compared to controls, with notable differences between the MCF-12A, MCF-7, and MDA-MB-231 groups. Despite increased viability, no significant differences in MCM2 expression, a marker of cell proliferation, were detected. Morphological changes in HUVECs, including elongation, lumen formation, and branching, were more pronounced in breast cancer CM groups, especially in the MDA-MB-231 CM group. qPCR and Western blot analyses showed increased expression of TEC markers such as MDR1, LOX, and TEM8 in HUVECs treated with MCF-12A CM. The MCF-7 CM group significantly enhanced HUVEC migratory activity compared to MCF-12A CM, as evidenced by a scratch assay. These findings underscore distinct angiogenic responses elicited by non-tumourigenic and tumourigenic breast epithelial cells, with tumourigenic cells inducing a hyperactivated angiogenic response. The study highlights the differential effects of breast cancer cell paracrine signalling on endothelial cells and suggests the need for further investigation into TEC markers' role in both physiological and tumour angiogenesis.
肿瘤内皮细胞(TECs)在基因和表型上有别于正常健康的内皮细胞,具有各种促肿瘤作用。本研究旨在探讨非致癌 MCF-12A 乳腺上皮细胞、MCF-7 和 MDA-MB-231 乳腺癌细胞的条件培养基(CM)对人脐静脉内皮细胞(HUVECs)的影响。与对照组相比,所有乳腺 CM 组的细胞存活率都有显著提高,其中 MCF-12A、MCF-7 和 MDA-MB-231 组之间的差异明显。尽管细胞活力增加了,但细胞增殖标志物 MCM2 的表达却没有发现明显差异。qPCR 和 Western 印迹分析表明,经 MCF-12A CM 处理的 HUVEC 中 MDR1、LOX 和 TEM8 等 TEC 标志物的表达增加。划痕试验表明,与 MCF-12A CM 相比,MCF-7 CM 组明显增强了 HUVEC 的迁移活性。这些发现强调了非致瘤乳腺上皮细胞和致瘤乳腺上皮细胞引起的不同血管生成反应,其中致瘤细胞会诱导过度活跃的血管生成反应。该研究强调了乳腺癌细胞旁分泌信号对内皮细胞的不同影响,并表明有必要进一步研究 TEC 标记在生理性和肿瘤性血管生成中的作用。
{"title":"Paracrine signalling in breast cancer: Insights into the tumour endothelial phenotype","authors":"Atarah Rass , Carla Eksteen , Anna-Mart Engelbrecht","doi":"10.1016/j.acthis.2024.152191","DOIUrl":"10.1016/j.acthis.2024.152191","url":null,"abstract":"<div><p>Tumour endothelial cells (TECs) are genetically and phenotypically distinct from their normal, healthy counterparts and provide various pro-tumourigenic effects. This study aimed to investigate the impact of conditioned media (CM) from non-tumourigenic MCF-12A breast epithelial cells as well as from MCF-7 and MDA-MB-231 breast cancer cells on human umbilical vein endothelial cells (HUVECs). Significant increases in cell viability were observed across all breast CM groups compared to controls, with notable differences between the MCF-12A, MCF-7, and MDA-MB-231 groups. Despite increased viability, no significant differences in MCM2 expression, a marker of cell proliferation, were detected. Morphological changes in HUVECs, including elongation, lumen formation, and branching, were more pronounced in breast cancer CM groups, especially in the MDA-MB-231 CM group. qPCR and Western blot analyses showed increased expression of TEC markers such as MDR1, LOX, and TEM8 in HUVECs treated with MCF-12A CM. The MCF-7 CM group significantly enhanced HUVEC migratory activity compared to MCF-12A CM, as evidenced by a scratch assay. These findings underscore distinct angiogenic responses elicited by non-tumourigenic and tumourigenic breast epithelial cells, with tumourigenic cells inducing a hyperactivated angiogenic response. The study highlights the differential effects of breast cancer cell paracrine signalling on endothelial cells and suggests the need for further investigation into TEC markers' role in both physiological and tumour angiogenesis.</p></div>","PeriodicalId":6961,"journal":{"name":"Acta histochemica","volume":"126 5","pages":"Article 152191"},"PeriodicalIF":2.3,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S006512812400059X/pdfft?md5=85680f7e54fc6e034bcef4d9085b736d&pid=1-s2.0-S006512812400059X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142094833","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-27DOI: 10.1016/j.acthis.2024.152189
Lin Li , Qin-qin Song , Shuang-ru Li , Zhi-gang Jia , Xing‑chen Sun , Yu‑ting Zhao , Jia-bin Deng , Jun-jun Wu , Tao Ni , Ji-song Liu
Our previous study has shown that exosomes derived from human umbilical cord mesenchymal stem cells (hUCMSCs-exo) alleviated burn-induced acute lung injury (ALI). In this study, we explored a novel mechanism by which hUCMSCs-exo contributed to the inhibition of burn-induced ALI. The ALI rat model with severe burn was established for the in vivo experiments, and rats PMVECs were stimulated with the serum from burn-induced ALI rats for the in vitro experiments. The pathological changes of lung tissues were evaluated by HE staining; the cell viability was measured using CCK-8; the iron level and Fe2+ concentration were assessed using Iron Assay Kit and Fe2+ fluorescence detection probe; the mRNA expression of SLC7A11 and GPX4 were measured by qRT-PCR; the protein levels of SLC7A11, GPX4, Nrf2 and HO-1 were detected by western blot. Both the in vivo and in vitro experiments revealed that ferroptosis was significantly induced in burn-induced ALI, which as verified by increased iron level and Fe2+ concentration, and decreased SLC7A11 and GPX4 mRNA and protein levels. Furthermore, both hUCMSCs-exo and Fer-1 (the inhibitor of ferroptosis) alleviated lung inflammation and up-regulated protein levels of Nrf2 and HO-1 in the lung tissues of burn-induced ALI rats. These results suggested that hUCMSCs-exo exhibited a protective role against burn-induced ALI by inhibiting ferroptosis, partly owing to the activation of Nrf2/HO-1 pathway, thus providing a novel therapeutic strategy for burn-induced ALI.
我们之前的研究表明,从人脐带间充质干细胞(hUCMSCs-exo)中提取的外泌体可减轻烧伤诱导的急性肺损伤(ALI)。在本研究中,我们探索了人脐带间充质干细胞外泌体抑制烧伤诱导的急性肺损伤的新机制。体内实验建立了严重烧伤的 ALI 大鼠模型,体外实验用烧伤诱导的 ALI 大鼠血清刺激大鼠 PMVECs。HE染色评估肺组织的病理变化;CCK-8测定细胞活力;铁测定试剂盒和Fe2+荧光检测探针评估铁水平和Fe2+浓度;qRT-PCR测定SLC7A11和GPX4的mRNA表达;Western印迹检测SLC7A11、GPX4、Nrf2和HO-1的蛋白水平。体内和体外实验均显示,铁变态反应在烧伤诱导的 ALI 中被显著诱导,表现为铁水平和 Fe2+ 浓度升高,SLC7A11 和 GPX4 mRNA 和蛋白水平降低。此外,hUCMSCs-exo 和 Fer-1(铁变态反应抑制剂)都能缓解肺部炎症,并上调烧伤诱导的 ALI 大鼠肺组织中 Nrf2 和 HO-1 的蛋白水平。这些结果表明,hUCMSCs-exo 通过抑制铁变态反应对烧伤诱导的 ALI 具有保护作用,部分原因是激活了 Nrf2/HO-1 通路,从而为烧伤诱导的 ALI 提供了一种新的治疗策略。
{"title":"Human umbilical cord mesenchymal stem cells-derived exosomes attenuate burn-induced acute lung injury via inhibiting ferroptosis","authors":"Lin Li , Qin-qin Song , Shuang-ru Li , Zhi-gang Jia , Xing‑chen Sun , Yu‑ting Zhao , Jia-bin Deng , Jun-jun Wu , Tao Ni , Ji-song Liu","doi":"10.1016/j.acthis.2024.152189","DOIUrl":"10.1016/j.acthis.2024.152189","url":null,"abstract":"<div><p>Our previous study has shown that exosomes derived from human umbilical cord mesenchymal stem cells (hUCMSCs-exo) alleviated burn-induced acute lung injury (ALI). In this study, we explored a novel mechanism by which hUCMSCs-exo contributed to the inhibition of burn-induced ALI. The ALI rat model with severe burn was established for the <em>in vivo</em> experiments, and rats PMVECs were stimulated with the serum from burn-induced ALI rats for the <em>in vitro</em> experiments. The pathological changes of lung tissues were evaluated by HE staining; the cell viability was measured using CCK-8; the iron level and Fe<sup>2+</sup> concentration were assessed using Iron Assay Kit and Fe<sup>2+</sup> fluorescence detection probe; the mRNA expression of SLC7A11 and GPX4 were measured by qRT-PCR; the protein levels of SLC7A11, GPX4, Nrf2 and HO-1 were detected by western blot. Both the <em>in vivo</em> and <em>in vitro</em> experiments revealed that ferroptosis was significantly induced in burn-induced ALI, which as verified by increased iron level and Fe<sup>2+</sup> concentration, and decreased SLC7A11 and GPX4 mRNA and protein levels. Furthermore, both hUCMSCs-exo and Fer-1 (the inhibitor of ferroptosis) alleviated lung inflammation and up-regulated protein levels of Nrf2 and HO-1 in the lung tissues of burn-induced ALI rats. These results suggested that hUCMSCs-exo exhibited a protective role against burn-induced ALI by inhibiting ferroptosis, partly owing to the activation of Nrf2/HO-1 pathway, thus providing a novel therapeutic strategy for burn-induced ALI.</p></div>","PeriodicalId":6961,"journal":{"name":"Acta histochemica","volume":"126 5","pages":"Article 152189"},"PeriodicalIF":2.3,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142087770","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-21DOI: 10.1016/j.acthis.2024.152190
Jing Xun , Yuan Ma , Botao Wang , Xiaolin Jiang , Bin Liu , Ruifang Gao , Qiongli Zhai , Runfen Cheng , Xueliang Wu , Yu Wu , Qi Zhang
Background
Esophageal cancer is one of the most common malignant tumors in the world. It is urgent to prevent the development and progression of esophageal cancer. Cancer stem cells (CSCs) were reported to have the ability to initiate tumorigenesis, and reducing the stem cell-like characteristics of tumors is an important strategy to inhibit the occurrence and development of tumors. miRNAs are key regulators of the stemness of cancer. Here, we aimed to investigate the role and regulatory mechanism of miR-191-3p in the stemness properties of esophageal cancer cells.
Methods
Esophageal cancer cells with stable expression of miR-191-3p were established by lentivirus system. CCK-8 assay, transwell assay, wound healing assay were used to evaluate the effect of miR-191-3p on proliferation and metastasis of esophageal cancer cells. The expression of stemness-related markers (NANOG, OCT4, SOX2), ALDH activity, sphere-forming assay and subcutaneous tumor model in nude mice were performed to evaluate the stemness properties of esophageal cancer cells in vitro and in vivo. Dual-luciferase reporter assay was used to verify the molecular mechanism.
Result
Here we found that overexpression of miR-191-3p promoted the stemness properties of esophageal cancer cells in vitro and in vivo, including increasing esophageal cancer cell proliferation and metastasis ability, the expression of stemness-related markers NANOG, OCT4, and SOX2, ALDH activity, the number of spheres formed and tumor growth. Bioinformatic analysis and dual-luciferase assay demonstrated that regulator of G protein signaling 1 (RGS1) was the directed target gene of miR-191-3p and attenuated the promotion effect of miR-191-3p on the stemness of esophageal cancer cells. Furthermore, we found that RGS1 knockdown activated the PI3K/AKT pathway by negatively regulating CXCR4 to promote the stemness of esophageal cancer cells.
Conclusions
Our findings revealed that RGS1 targeted by miR-191-3p inhibited the stemness of esophageal cancer cells by suppressing the CXCR4/PI3K/AKT pathway, which provide potential prognostic markers and therapeutic targets in the future.
{"title":"RGS1 targeted by miR-191-3p inhibited the stemness properties of esophageal cancer cells by suppressing CXCR4/PI3K/AKT signaling","authors":"Jing Xun , Yuan Ma , Botao Wang , Xiaolin Jiang , Bin Liu , Ruifang Gao , Qiongli Zhai , Runfen Cheng , Xueliang Wu , Yu Wu , Qi Zhang","doi":"10.1016/j.acthis.2024.152190","DOIUrl":"10.1016/j.acthis.2024.152190","url":null,"abstract":"<div><h3>Background</h3><p>Esophageal cancer is one of the most common malignant tumors in the world. It is urgent to prevent the development and progression of esophageal cancer. Cancer stem cells (CSCs) were reported to have the ability to initiate tumorigenesis, and reducing the stem cell-like characteristics of tumors is an important strategy to inhibit the occurrence and development of tumors. miRNAs are key regulators of the stemness of cancer. Here, we aimed to investigate the role and regulatory mechanism of miR-191-3p in the stemness properties of esophageal cancer cells.</p></div><div><h3>Methods</h3><p>Esophageal cancer cells with stable expression of miR-191-3p were established by lentivirus system. CCK-8 assay, transwell assay<strong>,</strong> wound healing assay were used to evaluate the effect of miR-191-3p on proliferation and metastasis of esophageal cancer cells. The expression of stemness-related markers (NANOG, OCT4, SOX2), ALDH activity, sphere-forming assay and subcutaneous tumor model in nude mice were performed to evaluate the stemness properties of esophageal cancer cells <em>in vitro</em> and <em>in vivo</em>. Dual-luciferase reporter assay was used to verify the molecular mechanism.</p></div><div><h3>Result</h3><p>Here we found that overexpression of miR-191-3p promoted the stemness properties of esophageal cancer cells <em>in vitro</em> and <em>in vivo</em>, including increasing esophageal cancer cell proliferation and metastasis ability, the expression of stemness-related markers NANOG, OCT4, and SOX2, ALDH activity, the number of spheres formed and tumor growth. Bioinformatic analysis and dual-luciferase assay demonstrated that regulator of G protein signaling 1 (RGS1) was the directed target gene of miR-191-3p and attenuated the promotion effect of miR-191-3p on the stemness of esophageal cancer cells. Furthermore, we found that RGS1 knockdown activated the PI3K/AKT pathway by negatively regulating CXCR4 to promote the stemness of esophageal cancer cells.</p></div><div><h3>Conclusions</h3><p>Our findings revealed that RGS1 targeted by miR-191-3p inhibited the stemness of esophageal cancer cells by suppressing the CXCR4/PI3K/AKT pathway, which provide potential prognostic markers and therapeutic targets in the future.</p></div>","PeriodicalId":6961,"journal":{"name":"Acta histochemica","volume":"126 5","pages":"Article 152190"},"PeriodicalIF":2.3,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0065128124000588/pdfft?md5=9a42e6ff9fd33276cd17e59dd8234b62&pid=1-s2.0-S0065128124000588-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142034910","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-13DOI: 10.1016/j.acthis.2024.152186
Ni Tang, Yunhui Li, Junchi Tang, Juexin Chen, Lili Chen, Lin Dang
Cutaneous melanoma (cM) is a prevalent invasive cancer resulting from the malignant transformation of melanocytes. At present, the primary treatment for melanoma is surgical resection, which is not appropriate for patients with metastasis. Therefore, it is necessary to identify effective therapeutic targets for the early diagnosis and treatment of metastatic melanoma. Acyl-CoA thioesterase 7 (ACOT7) has been reported to be involved in the progression of multiple cancer, while its role in melanoma has not been extensively researched. Through gain-of-function and loss-of-function experiments, ACOT7 was identified as a tumor promoter that facilitates the progression of melanoma cells. Cell proliferation was promoted by overexpressing ACOT7 in M14 cells, and was suppressed by silencing ACOT7 in MeWo cells. Knockdown of ACOT7 induced cell cycle arrest by increasing the expressions of cyclin dependent kinase inhibitor 1B (P27) and cyclin dependent kinase inhibitor 1 A (P21), while simultaneously reducing proliferating cell nuclear antigen (PCNA) expression. Upregulation of ACOT7 promoted the cell cycle of melanoma cells. Additionally, apoptosis was induced by the absence of ACOT7 through activating caspase-3 and poly (ADP-ribose) polymerase (PARP). The metastatic and invasive capacity of melanoma cells was significantly enhanced by the overexpression of ACOT7 and inhibited by the downregulation of ACOT7. Moreover, the cAMP responsive element binding protein 1 (CREB1) positively regulates ACOT7 expression by binding to its promoter region. A decrease of cell proliferation, migration and invasion, as well as an increase of cell apoptosis induced by silencing CREB1 were obviously reversed by ACOT7. In summary, ACOT7 transcriptionally activated by CREB1 elevates the progression of cM.
{"title":"ACOT7 positively regulated by CREB1 promotes the progression of cutaneous melanoma","authors":"Ni Tang, Yunhui Li, Junchi Tang, Juexin Chen, Lili Chen, Lin Dang","doi":"10.1016/j.acthis.2024.152186","DOIUrl":"10.1016/j.acthis.2024.152186","url":null,"abstract":"<div><p>Cutaneous melanoma (cM) is a prevalent invasive cancer resulting from the malignant transformation of melanocytes. At present, the primary treatment for melanoma is surgical resection, which is not appropriate for patients with metastasis. Therefore, it is necessary to identify effective therapeutic targets for the early diagnosis and treatment of metastatic melanoma. Acyl-CoA thioesterase 7 (ACOT7) has been reported to be involved in the progression of multiple cancer, while its role in melanoma has not been extensively researched. Through gain-of-function and loss-of-function experiments, ACOT7 was identified as a tumor promoter that facilitates the progression of melanoma cells. Cell proliferation was promoted by overexpressing ACOT7 in M14 cells, and was suppressed by silencing ACOT7 in MeWo cells. Knockdown of ACOT7 induced cell cycle arrest by increasing the expressions of cyclin dependent kinase inhibitor 1B (P27) and cyclin dependent kinase inhibitor 1 A (P21), while simultaneously reducing proliferating cell nuclear antigen (PCNA) expression. Upregulation of ACOT7 promoted the cell cycle of melanoma cells. Additionally, apoptosis was induced by the absence of ACOT7 through activating caspase-3 and poly (ADP-ribose) polymerase (PARP). The metastatic and invasive capacity of melanoma cells was significantly enhanced by the overexpression of ACOT7 and inhibited by the downregulation of ACOT7. Moreover, the cAMP responsive element binding protein 1 (CREB1) positively regulates ACOT7 expression by binding to its promoter region. A decrease of cell proliferation, migration and invasion, as well as an increase of cell apoptosis induced by silencing CREB1 were obviously reversed by ACOT7. In summary, ACOT7 transcriptionally activated by CREB1 elevates the progression of cM.</p></div>","PeriodicalId":6961,"journal":{"name":"Acta histochemica","volume":"126 5","pages":"Article 152186"},"PeriodicalIF":2.3,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141979583","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Membrane trafficking and actin-remodeling are critical for well-maintained integrity of the cell organization and activity, and they require Arf6 (ADP ribosylation factor 6) activated by GEF (guanine nucleotide exchange factor) including EFA6 (exchange factor for Arf6). In the present immuno-electron microscopic study following previous immunohistochemical study by these authors (Chomphoo et al., 2020) of in situ skeletal myoblasts and myotubes of pre-and perinatal mice, the immunoreactivity for EFA6A was found to be localized at Z-bands and sarcoplasmic reticulum (SR) membranes in I-domains as well as I-domain myofilaments of skeletal myofibers of perinatal mice. Based on the previous finding that EFA6 anchored on the neuronal postsynaptic density via α-actinin which is known to be shared by muscular Z-bands, the present finding suggests that EFA6A is also anchored on Z-bands via α-actinin and involved in the membrane trafficking and actin-remodeling in skeletal myofibers. The localization of EFA6A-immunoreactivity in I-domain SR suggests a differential function in the membrane traffic between the I- and A-domain intracellular membranes in perinatal skeletal myofibers.
细胞膜贩运和肌动蛋白重塑对维持细胞组织和活动的完整性至关重要,它们需要 Arf6(ADP 核糖基化因子 6)通过包括 EFA6(Arf6 的交换因子)在内的 GEF(鸟嘌呤核苷酸交换因子)激活。在本免疫电镜研究中,继这些作者之前(Chomphoo 等人,2020 年)对出生前和围产期小鼠的原位骨骼肌母细胞和肌管进行免疫组化研究之后,发现 EFA6A 的免疫反应定位于围产期小鼠骨骼肌纤维 I 域和 I 域肌丝的 Z 带和肌浆网(SR)膜。之前的研究发现,EFA6通过α-肌动蛋白固定在神经元突触后密度上,而已知肌肉Z带也共享α-肌动蛋白,因此本研究结果表明,EFA6A也通过α-肌动蛋白固定在Z带上,并参与骨骼肌纤维的膜运输和肌动蛋白重塑。EFA6A免疫反应在I域SR中的定位表明,它在围产期骨骼肌纤维I域和A域细胞内膜之间的膜运输中发挥着不同的功能。
{"title":"Localization of EFA6A, an exchange factor for Arf6, in Z-lines and sarcoplasmic reticulum membranes in addition to myofilaments in I-domains of skeletal myofibers of peri-natal mice","authors":"Surang Chomphoo , Hiroyuki Sakagami , Hisatake Kondo , Wiphawi Hipkaeo","doi":"10.1016/j.acthis.2024.152187","DOIUrl":"10.1016/j.acthis.2024.152187","url":null,"abstract":"<div><p>Membrane trafficking and actin-remodeling are critical for well-maintained integrity of the cell organization and activity, and they require Arf6 (ADP ribosylation factor 6) activated by GEF (guanine nucleotide exchange factor) including EFA6 (exchange factor for Arf6). In the present immuno-electron microscopic study following previous immunohistochemical study by these authors (Chomphoo et al., 2020) of <em>in situ</em> skeletal myoblasts and myotubes of pre-and perinatal mice, the immunoreactivity for EFA6A was found to be localized at Z-bands and sarcoplasmic reticulum (SR) membranes in I-domains as well as I-domain myofilaments of skeletal myofibers of perinatal mice. Based on the previous finding that EFA6 anchored on the neuronal postsynaptic density via α-actinin which is known to be shared by muscular Z-bands, the present finding suggests that EFA6A is also anchored on Z-bands via α-actinin and involved in the membrane trafficking and actin-remodeling in skeletal myofibers. The localization of EFA6A-immunoreactivity in I-domain SR suggests a differential function in the membrane traffic between the I- and A-domain intracellular membranes in perinatal skeletal myofibers.</p></div>","PeriodicalId":6961,"journal":{"name":"Acta histochemica","volume":"126 5","pages":"Article 152187"},"PeriodicalIF":2.3,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141911325","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-26DOI: 10.1016/j.acthis.2024.152185
Leonardo Vitorino Costa de Aquino , Samara Lima Olindo , Yara Letícia Frutuoso e Silva , Lhara Ricarliany Medeiros de Oliveira , Yasmin Beatriz França Moura , Ana Lívia Rocha Rodrigues , Érika Almeida Praxedes , Moacir Franco de Oliveira , Alexandre Rodrigues Silva , Alexsandra Fernandes Pereira
Background
In vitro culture of fibroblasts is a technique based on cell isolation, physiological characterization, and cryopreservation. This technique has not been described for Galea spixii, therefore, it can be used to learn about its cellular biology and genetic diversity.
Objective
We established fibroblast lines of six G. spixii individuals from several passages (second, fifth, eighth, and tenth) and cryopreserved them.
Methods
Fibroblasts recovered from skin biopsies were identified based on morphology, immunocytochemistry, and karyotyping. The cells were analyzed for morphology, ultrastructure, viability, proliferation, metabolism, oxidative stress, bioenergetic potential, and apoptosis before and after cryopreservation.
Results
After the eighth passage, the fibroblasts showed morphological and karyotypic changes, although their viability, metabolism, and proliferation did not change. An increase in oxidative stress and bioenergetic potential from the fifth to the eighth passages were also observed. Post cryopreservation, cell damage with respect to the ultrastructure, viability, proliferative rate, apoptotic levels, oxidative stress, and bioenergetic potential were verified.
Conclusion
Fibroblasts up to the tenth passage could be cultured in vitro. However, cells at the fifth passage were of better quality to be used for reproductive techniques. Additionally, optimization of the cryopreservation protocol is essential to improve the physiological parameters of these cells.
背景:成纤维细胞体外培养是一种基于细胞分离、生理特征描述和冷冻保存的技术。这种技术尚未用于 Galea spixii,因此可用于了解其细胞生物学和遗传多样性:我们从六个 G. spixii 个体的多个传代(第二、第五、第八和第十个传代)中建立了成纤维细胞系,并对其进行了冷冻保存:方法:根据形态学、免疫细胞化学和核型鉴定从皮肤活检中提取的成纤维细胞。对细胞冷冻前后的形态、超微结构、活力、增殖、新陈代谢、氧化应激、生物能潜能和细胞凋亡进行分析:结果:经过第八次冷冻后,成纤维细胞的活力、新陈代谢和增殖没有发生变化,但形态和核型发生了变化。此外,还观察到从第五次传代到第八次传代,氧化应激和生物能潜能有所增加。冷冻保存后,细胞的超微结构、存活率、增殖率、凋亡水平、氧化应激和生物能潜能方面的损伤得到了验证:结论:可在体外培养成纤维细胞至第 10 个阶段。结论:可在体外培养长达第十个生长期的成纤维细胞,但第五个生长期的细胞质量更好,可用于繁殖技术。此外,优化冷冻保存方案对改善这些细胞的生理参数至关重要。
{"title":"Cryopreservation and passaging optimization for Galea spixii (Wagler, 1831) adult skin fibroblast lines: A step forward in species management and genetic studies","authors":"Leonardo Vitorino Costa de Aquino , Samara Lima Olindo , Yara Letícia Frutuoso e Silva , Lhara Ricarliany Medeiros de Oliveira , Yasmin Beatriz França Moura , Ana Lívia Rocha Rodrigues , Érika Almeida Praxedes , Moacir Franco de Oliveira , Alexandre Rodrigues Silva , Alexsandra Fernandes Pereira","doi":"10.1016/j.acthis.2024.152185","DOIUrl":"10.1016/j.acthis.2024.152185","url":null,"abstract":"<div><h3>Background</h3><p><em>In vitro</em> culture of fibroblasts is a technique based on cell isolation, physiological characterization, and cryopreservation. This technique has not been described for <em>Galea spixii</em>, therefore, it can be used to learn about its cellular biology and genetic diversity.</p></div><div><h3>Objective</h3><p>We established fibroblast lines of six <em>G. spixii</em> individuals from several passages (second, fifth, eighth, and tenth) and cryopreserved them.</p></div><div><h3>Methods</h3><p>Fibroblasts recovered from skin biopsies were identified based on morphology, immunocytochemistry, and karyotyping. The cells were analyzed for morphology, ultrastructure, viability, proliferation, metabolism, oxidative stress, bioenergetic potential, and apoptosis before and after cryopreservation.</p></div><div><h3>Results</h3><p>After the eighth passage, the fibroblasts showed morphological and karyotypic changes, although their viability, metabolism, and proliferation did not change. An increase in oxidative stress and bioenergetic potential from the fifth to the eighth passages were also observed. Post cryopreservation, cell damage with respect to the ultrastructure, viability, proliferative rate, apoptotic levels, oxidative stress, and bioenergetic potential were verified.</p></div><div><h3>Conclusion</h3><p>Fibroblasts up to the tenth passage could be cultured <em>in vitro</em>. However, cells at the fifth passage were of better quality to be used for reproductive techniques. Additionally, optimization of the cryopreservation protocol is essential to improve the physiological parameters of these cells.</p></div>","PeriodicalId":6961,"journal":{"name":"Acta histochemica","volume":"126 5","pages":"Article 152185"},"PeriodicalIF":2.3,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141764809","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-24DOI: 10.1016/j.acthis.2024.152184
Yang Jiao , Qing-Min Sun , Yu-Chen Shen , Qing-Shan Li , Yong-Jun Piao , Lin Gong
Background
There is an urgent need for new treatments to solve hair loss problem. As mesenchymal stem cells were proved to have effects on promoting tissue repair and regeneration, in which the exosome plays a vital role, we aim to investigate the influence of umbilical cord mesenchymal stem cells exosome (UCMSC-Exos) on hair growth and its mechanism.
Methods
The hUCMSC-Exos were extracted by ultracentrifugation. Primary fibroblasts were cultured with or without hUCMSC-Exos and cell proliferation was evaluated by CCK-8 assay. C57BL/6 mice model of depilation-induced hair regrowth was treated with either hUCMSC-Exos (200 μg/mL) or PBS on one side of the dorsal back. Real time quantitative PCR, flow cytometry analysis, immunohistochemistry and Immunofluorescent staining were used to analyze the regulative effect of hUCMSC-Exos on hair follicle stem/progenitor cells and Wnt/β-catenin pathway.
Results
The proliferation of fibroblasts incubated with hUCMSC-Exos at the concentration of 200 μg/mL was greater than other groups. Treatment with hUCMSC-Exos resulted in rapid reentry into anagen. Hair follicle stem/progenitor cell markers (K15, Lgr5, Lgr6, CD34 and Lrig1) and Wnt/β-catenin pathway related factors (Wnt5, Lef1, Lrp5 and β-catenin) were increased in hUCMSC-Exos-injected region.
Conclusion
hUCMSC-Exos promote fibroblasts proliferation and accelerate mouse hair regrowth by upregulating hair follicle stem/progenitor cell and Wnt/β-catenin pathway, which suggests potential therapeutic approaches for hair loss disorders.
{"title":"Stimulation of mouse hair regrowth by exosomes derived from human umbilical cord mesenchymal stem cells","authors":"Yang Jiao , Qing-Min Sun , Yu-Chen Shen , Qing-Shan Li , Yong-Jun Piao , Lin Gong","doi":"10.1016/j.acthis.2024.152184","DOIUrl":"10.1016/j.acthis.2024.152184","url":null,"abstract":"<div><h3>Background</h3><p>There is an urgent need for new treatments to solve hair loss problem. As mesenchymal stem cells were proved to have effects on promoting tissue repair and regeneration, in which the exosome plays a vital role, we aim to investigate the influence of umbilical cord mesenchymal stem cells exosome (UCMSC-Exos) on hair growth and its mechanism.</p></div><div><h3>Methods</h3><p>The hUCMSC-Exos were extracted by ultracentrifugation. Primary fibroblasts were cultured with or without hUCMSC-Exos and cell proliferation was evaluated by CCK-8 assay. C57BL/6 mice model of depilation-induced hair regrowth was treated with either hUCMSC-Exos (200 μg/mL) or PBS on one side of the dorsal back. Real time quantitative PCR, flow cytometry analysis, immunohistochemistry and Immunofluorescent staining were used to analyze the regulative effect of hUCMSC-Exos on hair follicle stem/progenitor cells and Wnt/β-catenin pathway.</p></div><div><h3>Results</h3><p>The proliferation of fibroblasts incubated with hUCMSC-Exos at the concentration of 200 μg/mL was greater than other groups. Treatment with hUCMSC-Exos resulted in rapid reentry into anagen. Hair follicle stem/progenitor cell markers (K15, Lgr5, Lgr6, CD34 and Lrig1) and Wnt/β-catenin pathway related factors (Wnt5, Lef1, Lrp5 and β-catenin) were increased in hUCMSC-Exos-injected region.</p></div><div><h3>Conclusion</h3><p>hUCMSC-Exos promote fibroblasts proliferation and accelerate mouse hair regrowth by upregulating hair follicle stem/progenitor cell and Wnt/β-catenin pathway, which suggests potential therapeutic approaches for hair loss disorders.</p></div>","PeriodicalId":6961,"journal":{"name":"Acta histochemica","volume":"126 5","pages":"Article 152184"},"PeriodicalIF":2.3,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141756504","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-18DOI: 10.1016/j.acthis.2024.152183
Suncica Kapor , Milica Radojković , Juan F. Santibanez
Myeloid malignancies stem from a modified hematopoietic stem cell and predominantly include acute myeloid leukemia, myelodysplastic neoplasms, myeloproliferative malignancies, and chronic myelomonocytic leukemia. Myeloid-derived suppressor cells (MDSCs) exhibit immunoregulatory properties by governing the innate and adaptive immune systems, creating a permissive and supportive environment for neoplasm growth. This review examines the key characteristics of MDSCs in myeloid malignancies, highlighting that an increased MDSC count corresponds to heightened immunosuppressive capabilities, fostering an immune-tolerant neoplasm microenvironment. Also, this review analyzes and describes the potential of combined cancer therapies, focusing on targeting MDSC generation, expansion, and their inherent immunosuppressive activities to enhance the efficacy of current cancer immunotherapies. A comprehensive understanding of the implications of myeloid malignancies may enhance the exploration of immunotherapeutic strategies for their potential application.
{"title":"Myeloid-derived suppressor cells: Implication in myeloid malignancies and immunotherapy","authors":"Suncica Kapor , Milica Radojković , Juan F. Santibanez","doi":"10.1016/j.acthis.2024.152183","DOIUrl":"10.1016/j.acthis.2024.152183","url":null,"abstract":"<div><p>Myeloid malignancies stem from a modified hematopoietic stem cell and predominantly include acute myeloid leukemia, myelodysplastic neoplasms, myeloproliferative malignancies, and chronic myelomonocytic leukemia. Myeloid-derived suppressor cells (MDSCs) exhibit immunoregulatory properties by governing the innate and adaptive immune systems, creating a permissive and supportive environment for neoplasm growth. This review examines the key characteristics of MDSCs in myeloid malignancies, highlighting that an increased MDSC count corresponds to heightened immunosuppressive capabilities, fostering an immune-tolerant neoplasm microenvironment. Also, this review analyzes and describes the potential of combined cancer therapies, focusing on targeting MDSC generation, expansion, and their inherent immunosuppressive activities to enhance the efficacy of current cancer immunotherapies. A comprehensive understanding of the implications of myeloid malignancies may enhance the exploration of immunotherapeutic strategies for their potential application.</p></div>","PeriodicalId":6961,"journal":{"name":"Acta histochemica","volume":"126 5","pages":"Article 152183"},"PeriodicalIF":2.3,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141726710","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-14DOI: 10.1016/j.acthis.2024.152173
Nida Andlib, Mohd Sajad, Sonu Chand Thakur
Reproductive impairment is the most prevalent yet most ignored complication of diabetes mellitus. In diabetes, the problem associated with reproductive health is comprehensive in both males and females. Diabetic females have problems like delayed menarche, irregular menstrual cycle, subfertility, complications in pregnancy and early menopause. This may decrease reproductive age in diabetic females as the menarche is delayed and menopause is early in them. Like diabetic males, diabetic females also have the negative effect of oxidative stress on the reproductive system. This may lead to dysfunction of the ovary. It affects the physiological cycle like the ovary’s maturation, embryo development and pregnancy. These complications also affect the offspring, and they may also become diabetic. This review aims to concentrate on the effect of diabetes on the reproductive system of females and the impairment caused by it. We will also discuss in detail the role of the hypothalamus-pituitary ovary axis, diabetes impact on different reproductive phases of females, and the sexual disorders that occur in them.
{"title":"Association of diabetes mellitus with risk of reproductive impairment in females: A comprehensive review","authors":"Nida Andlib, Mohd Sajad, Sonu Chand Thakur","doi":"10.1016/j.acthis.2024.152173","DOIUrl":"https://doi.org/10.1016/j.acthis.2024.152173","url":null,"abstract":"<div><p>Reproductive impairment is the most prevalent yet most ignored complication of diabetes mellitus. In diabetes, the problem associated with reproductive health is comprehensive in both males and females. Diabetic females have problems like delayed menarche, irregular menstrual cycle, subfertility, complications in pregnancy and early menopause. This may decrease reproductive age in diabetic females as the menarche is delayed and menopause is early in them. Like diabetic males, diabetic females also have the negative effect of oxidative stress on the reproductive system. This may lead to dysfunction of the ovary. It affects the physiological cycle like the ovary’s maturation, embryo development and pregnancy. These complications also affect the offspring, and they may also become diabetic. This review aims to concentrate on the effect of diabetes on the reproductive system of females and the impairment caused by it. We will also discuss in detail the role of the hypothalamus-pituitary ovary axis, diabetes impact on different reproductive phases of females, and the sexual disorders that occur in them.</p></div>","PeriodicalId":6961,"journal":{"name":"Acta histochemica","volume":"126 5","pages":"Article 152173"},"PeriodicalIF":2.3,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141605122","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}