首页 > 最新文献

物理化学学报最新文献

英文 中文
Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production
IF 10.8 2区 化学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2024-12-01 DOI: 10.3866/PKU.WHXB202407020
Kaihui Huang , Dejun Chen , Xin Zhang , Rongchen Shen , Peng Zhang , Difa Xu , Xin Li
The development of efficient photocatalysts for hydrogen production is crucial in sustainable energy research. In this study, we designed and prepared a Covalent Triazine Framework (CTF)-Cu2O@NC composite featuring an S-scheme heterojunction structure aimed at enhancing the photocatalytic hydrogen production. The light absorption capacity, electron-hole separation efficiency and H2-evolution activity of the composite were significantly enhanced due to the synergistic effects of the nitrogen-doped carbon (NC) layer and the S-scheme heterojunction. Structural and photoelectrochemical characterization of the system reveal that the S-scheme heterojunctions not only enhance the separation efficiency of photogenerated carriers but also maintain the strong redox capabilities to further promote the photocatalytic reactions. Moreover, the NC layer could simultaneously reduce the photocorrosion of Cu2O and promote the electron transfer. Experimental results demonstrate that the CTF-7% Cu2O@NC composite shows outstanding hydrogen-production performance under visible light, achieving 15645 μmol∙g−1∙h−1, significantly surpassing the photocatalytic activity of pure CTF (2673 μmol∙g−1∙h−1). This study introduces a novel approach to the development of efficient and innovative photocatalytic materials, strongly supporting the advancement of sustainable hydrogen energy.
  1. Download: Download high-res image (131KB)
  2. Download: Download full-size image
{"title":"Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production","authors":"Kaihui Huang ,&nbsp;Dejun Chen ,&nbsp;Xin Zhang ,&nbsp;Rongchen Shen ,&nbsp;Peng Zhang ,&nbsp;Difa Xu ,&nbsp;Xin Li","doi":"10.3866/PKU.WHXB202407020","DOIUrl":"10.3866/PKU.WHXB202407020","url":null,"abstract":"<div><div>The development of efficient photocatalysts for hydrogen production is crucial in sustainable energy research. In this study, we designed and prepared a Covalent Triazine Framework (CTF)-Cu<sub>2</sub>O@NC composite featuring an S-scheme heterojunction structure aimed at enhancing the photocatalytic hydrogen production. The light absorption capacity, electron-hole separation efficiency and H<sub>2</sub>-evolution activity of the composite were significantly enhanced due to the synergistic effects of the nitrogen-doped carbon (NC) layer and the S-scheme heterojunction. Structural and photoelectrochemical characterization of the system reveal that the S-scheme heterojunctions not only enhance the separation efficiency of photogenerated carriers but also maintain the strong redox capabilities to further promote the photocatalytic reactions. Moreover, the NC layer could simultaneously reduce the photocorrosion of Cu<sub>2</sub>O and promote the electron transfer. Experimental results demonstrate that the CTF-7% Cu<sub>2</sub>O@NC composite shows outstanding hydrogen-production performance under visible light, achieving 15645 μmol∙g<sup>−1</sup>∙h<sup>−1</sup>, significantly surpassing the photocatalytic activity of pure CTF (2673 μmol∙g<sup>−1</sup>∙h<sup>−1</sup>). This study introduces a novel approach to the development of efficient and innovative photocatalytic materials, strongly supporting the advancement of sustainable hydrogen energy.</div><div><span><figure><span><img><ol><li><span><span>Download: <span>Download high-res image (131KB)</span></span></span></li><li><span><span>Download: <span>Download full-size image</span></span></span></li></ol></span></figure></span></div></div>","PeriodicalId":6964,"journal":{"name":"物理化学学报","volume":"40 12","pages":"Article 2407020"},"PeriodicalIF":10.8,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143127804","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Photocatalytic CO2 Reduction by Modified g-C3N4
IF 10.8 2区 化学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2024-12-01 DOI: 10.3866/PKU.WHXB202408005
Xuejiao Wang , Suiying Dong , Kezhen Qi , Vadim Popkov , Xianglin Xiang
The use of carbon-based fuels causes a significant increase in CO2 emissions, posing a serious threat to the environment. This review explores the potential application of graphitic carbon nitride (g-C3N4) in photocatalytic CO2 reduction as a strategy to mitigate global warming. The effectiveness of g-C3N4 (gCN) in this process is hindered by several factors, including rapid exciton recombination, limited solar light absorption, and a lack of active sites for conducting the reduction. To address these challenges, various amendment techniques have been executed, such as adjusting the morphology of g-C3N4, doping it with different atoms, and forming heterojunctions with other semiconductors. This review highlights the role of S-scheme heterojunctions in expanding the photocatalytic activity of g-C3N4 and emphasizes that, despite its potential as a photocatalyst for CO2 reduction, further research and innovation are essential to overcome its current limitations.
  1. Download: Download high-res image (108KB)
  2. Download: Download full-size image
{"title":"Photocatalytic CO2 Reduction by Modified g-C3N4","authors":"Xuejiao Wang ,&nbsp;Suiying Dong ,&nbsp;Kezhen Qi ,&nbsp;Vadim Popkov ,&nbsp;Xianglin Xiang","doi":"10.3866/PKU.WHXB202408005","DOIUrl":"10.3866/PKU.WHXB202408005","url":null,"abstract":"<div><div>The use of carbon-based fuels causes a significant increase in CO<sub>2</sub> emissions, posing a serious threat to the environment. This review explores the potential application of graphitic carbon nitride (g-C<sub>3</sub>N<sub>4</sub>) in photocatalytic CO<sub>2</sub> reduction as a strategy to mitigate global warming. The effectiveness of g-C<sub>3</sub>N<sub>4</sub> (gCN) in this process is hindered by several factors, including rapid exciton recombination, limited solar light absorption, and a lack of active sites for conducting the reduction. To address these challenges, various amendment techniques have been executed, such as adjusting the morphology of g-C<sub>3</sub>N<sub>4</sub>, doping it with different atoms, and forming heterojunctions with other semiconductors. This review highlights the role of S-scheme heterojunctions in expanding the photocatalytic activity of g-C<sub>3</sub>N<sub>4</sub> and emphasizes that, despite its potential as a photocatalyst for CO<sub>2</sub> reduction, further research and innovation are essential to overcome its current limitations.</div><div><span><figure><span><img><ol><li><span><span>Download: <span>Download high-res image (108KB)</span></span></span></li><li><span><span>Download: <span>Download full-size image</span></span></span></li></ol></span></figure></span></div></div>","PeriodicalId":6964,"journal":{"name":"物理化学学报","volume":"40 12","pages":"Article 2408005"},"PeriodicalIF":10.8,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143128018","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
In Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction
IF 10.8 2区 化学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2024-12-01 DOI: 10.3866/PKU.WHXB202408002
Jianyu Qin, Yuejiao An, Yanfeng Zhang
Reforming CO2 into storable solar fuels via semiconductor photocatalysis is considered an effective strategy to solve the greenhouse effect and resource shortage. Unfortunately, the problem of rapid photogenerated carriers severely limits the CO2 reduction capability of one-component catalysts. The fabrication of S-scheme heterojunctions with defects can result in efficient spatial separation of photo-generated charge carriers and increase adsorption and activation of nonpolar molecules. Herein, ZnWO4/g-C3N4 S-scheme heterojunctions with defects are constructed through in situ growth method. The experiments show that the generation rate of CO from CO2 reduction is up to 232.4 μmol∙g−1∙h−1 with a selectivity close to 100%, which is 11.6 and 8.5 times higher than those of pristine ZnWO4 and g-C3N4, respectively. In situ XPS and work function analyses demonstrate the S-scheme charge transport pathway, which facilitates the spatial segregation of photogenerated carriers and promotes CO2 reduction. In situ ESR illustrates that CO₂ molecules are adsorbed by nitrogen vacancies, which act as photoelectron acceptors during the photocatalytic reaction and are favorable for charge trapping and separation. The S-scheme charge transport mode and nitrogen vacancy work together to stimulate the efficient conversion of CO2 to CO. This work presents significant insights to the cooperative influence of the S-scheme charge transport mode and defects in regulating CO2 reduction activity.
  1. Download: Download high-res image (65KB)
  2. Download: Download full-size image
{"title":"In Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction","authors":"Jianyu Qin,&nbsp;Yuejiao An,&nbsp;Yanfeng Zhang","doi":"10.3866/PKU.WHXB202408002","DOIUrl":"10.3866/PKU.WHXB202408002","url":null,"abstract":"<div><div>Reforming CO<sub>2</sub> into storable solar fuels <em>via</em> semiconductor photocatalysis is considered an effective strategy to solve the greenhouse effect and resource shortage. Unfortunately, the problem of rapid photogenerated carriers severely limits the CO<sub>2</sub> reduction capability of one-component catalysts. The fabrication of S-scheme heterojunctions with defects can result in efficient spatial separation of photo-generated charge carriers and increase adsorption and activation of nonpolar molecules. Herein, ZnWO<sub>4</sub>/g-C<sub>3</sub>N<sub>4</sub> S-scheme heterojunctions with defects are constructed through <em>in situ</em> growth method. The experiments show that the generation rate of CO from CO<sub>2</sub> reduction is up to 232.4 μmol∙g<sup>−1</sup>∙h<sup>−1</sup> with a selectivity close to 100%, which is 11.6 and 8.5 times higher than those of pristine ZnWO<sub>4</sub> and g-C<sub>3</sub>N<sub>4</sub>, respectively. <em>In situ</em> XPS and work function analyses demonstrate the S-scheme charge transport pathway, which facilitates the spatial segregation of photogenerated carriers and promotes CO<sub>2</sub> reduction. <em>In situ</em> ESR illustrates that CO₂ molecules are adsorbed by nitrogen vacancies, which act as photoelectron acceptors during the photocatalytic reaction and are favorable for charge trapping and separation. The S-scheme charge transport mode and nitrogen vacancy work together to stimulate the efficient conversion of CO<sub>2</sub> to CO. This work presents significant insights to the cooperative influence of the S-scheme charge transport mode and defects in regulating CO<sub>2</sub> reduction activity.</div><div><span><figure><span><img><ol><li><span><span>Download: <span>Download high-res image (65KB)</span></span></span></li><li><span><span>Download: <span>Download full-size image</span></span></span></li></ol></span></figure></span></div></div>","PeriodicalId":6964,"journal":{"name":"物理化学学报","volume":"40 12","pages":"Article 2408002"},"PeriodicalIF":10.8,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143128710","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction
IF 10.8 2区 化学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2024-12-01 DOI: 10.3866/PKU.WHXB202408012
Jiaxin Su , Jiaqi Zhang , Shuming Chai , Yankun Wang , Sibo Wang , Yuanxing Fang
Polymer-based photoanodes for the water oxidation reaction have recently garnered attention, with carbon nitride standing out due to its numerous advantages. This study focuses on synthesizing crystalline carbon nitride photoanodes, specifically poly(heptazine imide) (PHI), and explores the role of salts in their production. Using a binary molten salt system, optimal photocurrent density of 365 μA·cm−2 was achieved with a voltage bias of 1.23 V versus the reversible hydrogen electrode under AM 1.5G illumination, this performance is ca. 18 times to the pristine PCN photoanode. In this process, NH₄SCN facilitates the growth of SnS2 seeding layers, while K2CO3 enhances film crystallinity. In situ electrochemical analyses show that this salt combination improves photoexcited charge transfer efficiency and minimizes resistance in the SnS2 layer. This study clarifies the role of salts in synthesizing the PHI photoanode and provides insights for designing high-crystallinity carbon nitride-based functional films.
  1. Download: Download high-res image (164KB)
  2. Download: Download full-size image
{"title":"Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction","authors":"Jiaxin Su ,&nbsp;Jiaqi Zhang ,&nbsp;Shuming Chai ,&nbsp;Yankun Wang ,&nbsp;Sibo Wang ,&nbsp;Yuanxing Fang","doi":"10.3866/PKU.WHXB202408012","DOIUrl":"10.3866/PKU.WHXB202408012","url":null,"abstract":"<div><div>Polymer-based photoanodes for the water oxidation reaction have recently garnered attention, with carbon nitride standing out due to its numerous advantages. This study focuses on synthesizing crystalline carbon nitride photoanodes, specifically poly(heptazine imide) (PHI), and explores the role of salts in their production. Using a binary molten salt system, optimal photocurrent density of 365 μA·cm<sup>−2</sup> was achieved with a voltage bias of 1.23 V <em>versus</em> the reversible hydrogen electrode under AM 1.5G illumination, this performance is <em>ca</em>. 18 times to the pristine PCN photoanode. In this process, NH₄SCN facilitates the growth of SnS<sub>2</sub> seeding layers, while K<sub>2</sub>CO<sub>3</sub> enhances film crystallinity. <em>In situ</em> electrochemical analyses show that this salt combination improves photoexcited charge transfer efficiency and minimizes resistance in the SnS<sub>2</sub> layer. This study clarifies the role of salts in synthesizing the PHI photoanode and provides insights for designing high-crystallinity carbon nitride-based functional films.</div><div><span><figure><span><img><ol><li><span><span>Download: <span>Download high-res image (164KB)</span></span></span></li><li><span><span>Download: <span>Download full-size image</span></span></span></li></ol></span></figure></span></div></div>","PeriodicalId":6964,"journal":{"name":"物理化学学报","volume":"40 12","pages":"Article 2408012"},"PeriodicalIF":10.8,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143093319","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhanced Performance of Ternary NASICON-Type Na3.5−xMn0.5V1.5−xZrx (PO4)3/C Cathodes for Sodium-Ion Batteries
IF 10.8 2区 化学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2024-12-01 DOI: 10.3866/PKU.WHXB202407023
Jianbao Mei , Bei Li , Shu Zhang , Dongdong Xiao , Pu Hu , Geng Zhang
Sodium-ion batteries (SIBs) are widely studied for energy storage applications, but achieving cathode materials with balanced high energy density, stability, and fast charge/discharge performance remains a key challenge. In this study, we successfully synthesized a series of NASICON-type Na3.5−xMn0.5V1.5−xZrx(PO4)3/C, incorporating Mn, V, and Zr to investigate their impact on electrochemical performance. By introducing Zr alongside Mn and V, we developed a novel strategy to activate V4+/V5+ redox reactions, achieving high energy density. Moreover, this substitution promotes Na-ion migration by widening the migration pathways and generating additional Na vacancies, which greatly enhances electrode reaction kinetics and boosts overall performance. Na3.4Mn0.5V1.4Zr0.1(PO4)3/C demonstrates superior stability, retaining 90% of its capacity after 800 cycles, and delivers high-rate performance (84 mAh∙g−1 at 20C), significantly outperforming pristine Na3.5Mn0.5V1.5(PO4)3/C. These advancements highlight a potential approach for developing efficient and sustainable SIBs.
  1. Download: Download high-res image (80KB)
  2. Download: Download full-size image
{"title":"Enhanced Performance of Ternary NASICON-Type Na3.5−xMn0.5V1.5−xZrx (PO4)3/C Cathodes for Sodium-Ion Batteries","authors":"Jianbao Mei ,&nbsp;Bei Li ,&nbsp;Shu Zhang ,&nbsp;Dongdong Xiao ,&nbsp;Pu Hu ,&nbsp;Geng Zhang","doi":"10.3866/PKU.WHXB202407023","DOIUrl":"10.3866/PKU.WHXB202407023","url":null,"abstract":"<div><div>Sodium-ion batteries (SIBs) are widely studied for energy storage applications, but achieving cathode materials with balanced high energy density, stability, and fast charge/discharge performance remains a key challenge. In this study, we successfully synthesized a series of NASICON-type Na<sub>3.5−<em>x</em></sub>Mn<sub>0.5</sub>V<sub>1.5−<em>x</em></sub>Zr<sub><em>x</em></sub>(PO<sub>4</sub>)<sub>3</sub>/C, incorporating Mn, V, and Zr to investigate their impact on electrochemical performance. By introducing Zr alongside Mn and V, we developed a novel strategy to activate V<sup>4+</sup>/V<sup>5+</sup> redox reactions, achieving high energy density. Moreover, this substitution promotes Na-ion migration by widening the migration pathways and generating additional Na vacancies, which greatly enhances electrode reaction kinetics and boosts overall performance. Na<sub>3.4</sub>Mn<sub>0.5</sub>V<sub>1.4</sub>Zr<sub>0.1</sub>(PO<sub>4</sub>)<sub>3</sub>/C demonstrates superior stability, retaining 90% of its capacity after 800 cycles, and delivers high-rate performance (84 mAh∙g<sup>−1</sup> at 20<em>C</em>), significantly outperforming pristine Na<sub>3.5</sub>Mn<sub>0.5</sub>V<sub>1.5</sub>(PO<sub>4</sub>)<sub>3</sub>/C. These advancements highlight a potential approach for developing efficient and sustainable SIBs.</div><div><span><figure><span><img><ol><li><span><span>Download: <span>Download high-res image (80KB)</span></span></span></li><li><span><span>Download: <span>Download full-size image</span></span></span></li></ol></span></figure></span></div></div>","PeriodicalId":6964,"journal":{"name":"物理化学学报","volume":"40 12","pages":"Article 2407023"},"PeriodicalIF":10.8,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143128695","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal
IF 10.8 2区 化学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2024-12-01 DOI: 10.3866/PKU.WHXB202403005
Shijie Li , Ke Rong , Xiaoqin Wang , Chuqi Shen , Fang Yang , Qinghong Zhang
Photocatalytic pollutant removal provides a competitive manner for wastewater purification. The exploration of efficient and durable photocatalysts is significant for this technique. Integrating carbon quantum dots and S-scheme junction into one system represents an effective strategy for achieving the outstanding photocatalytic efficacy. In comparison to S-scheme junction, photocatalysts combining carbon quantum dots and S-scheme junction harness the merits of both, thus holding greater potential. Herein, a multicomponent fibrous photocatalyst of carbon quantum dots/CdS/Ta3N5 that incorporates S-scheme heterojunction and carbon quantum dots is developed for high-efficient destruction of levofloxacin antibiotic. The as-prepared carbon quantum dots/CdS/Ta3N5 heterojunction nanofibers manifest a significantly strengthened photocatalytic levofloxacin degradation activity, with the rate constant (0.0404 min−1) exceeding Ta3N5, CdS/Ta3N5, and CdS by 39.4, 2.1, and 7.2 folds. Such remarkable photocatalytic performance is credited to the unique 1D/0D/0D core-shell heterostructure with compact-bound hetero-interface, which favors the synergistic effect between carbon quantum dots modification and S-scheme junction. This work offers a new way for developing new Ta3N5-based heterojunctions for environmental remediation.
  1. Download: Download high-res image (136KB)
  2. Download: Download full-size image
{"title":"Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal","authors":"Shijie Li ,&nbsp;Ke Rong ,&nbsp;Xiaoqin Wang ,&nbsp;Chuqi Shen ,&nbsp;Fang Yang ,&nbsp;Qinghong Zhang","doi":"10.3866/PKU.WHXB202403005","DOIUrl":"10.3866/PKU.WHXB202403005","url":null,"abstract":"<div><div>Photocatalytic pollutant removal provides a competitive manner for wastewater purification. The exploration of efficient and durable photocatalysts is significant for this technique. Integrating carbon quantum dots and S-scheme junction into one system represents an effective strategy for achieving the outstanding photocatalytic efficacy. In comparison to S-scheme junction, photocatalysts combining carbon quantum dots and S-scheme junction harness the merits of both, thus holding greater potential. Herein, a multicomponent fibrous photocatalyst of carbon quantum dots/CdS/Ta<sub>3</sub>N<sub>5</sub> that incorporates S-scheme heterojunction and carbon quantum dots is developed for high-efficient destruction of levofloxacin antibiotic. The as-prepared carbon quantum dots/CdS/Ta<sub>3</sub>N<sub>5</sub> heterojunction nanofibers manifest a significantly strengthened photocatalytic levofloxacin degradation activity, with the rate constant (0.0404 min<sup>−1</sup>) exceeding Ta<sub>3</sub>N<sub>5</sub>, CdS/Ta<sub>3</sub>N<sub>5</sub>, and CdS by 39.4, 2.1, and 7.2 folds. Such remarkable photocatalytic performance is credited to the unique 1D/0D/0D core-shell heterostructure with compact-bound hetero-interface, which favors the synergistic effect between carbon quantum dots modification and S-scheme junction. This work offers a new way for developing new Ta<sub>3</sub>N<sub>5</sub>-based heterojunctions for environmental remediation.</div><div><span><figure><span><img><ol><li><span><span>Download: <span>Download high-res image (136KB)</span></span></span></li><li><span><span>Download: <span>Download full-size image</span></span></span></li></ol></span></figure></span></div></div>","PeriodicalId":6964,"journal":{"name":"物理化学学报","volume":"40 12","pages":"Article 2403005"},"PeriodicalIF":10.8,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143093318","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides
IF 10.8 2区 化学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2024-12-01 DOI: 10.3866/PKU.WHXB202407005
Xiaofeng Zhu , Bingbing Xiao , Jiaxin Su , Shuai Wang , Qingran Zhang , Jun Wang
Electrochemical oxygen reduction reaction via the two-electron pathway (2e-ORR) is becoming a promising and sustainable approach to producing hydrogen peroxide (H2O2) without significant carbon footprints. To achieve better performance, most of the recent progress and investigations have focused on developing novel carbon-based electrocatalysts. Nevertheless, the sophisticated preparations, decreased selectivity and undefined active sites of carbon-based catalysts have been generally acknowledged and criticized. To this end, transition metal oxides and chalcogenides have increasingly emerged for 2e-ORR, due to their catalytic stability and tunable microstructure. Here, the development of metal oxides and chalcogenides for O2-to-H2O2 conversion is prospectively reviewed. By summarizing previous theoretical and experimental efforts, their diversity and outstanding catalytic activity are firstly provided. Meanwhile, the topological and chemical factors influencing 2e-ORR selectivity of the metal oxides/chalcogenides are systematically elucidated, including morphology, phase structures, doping and defects engineering. Thus, emphasizing the influence on the binding of ORR intermediates, the active sites and the underlying mechanism is highlighted. Finally, future opportunities and challenges in designing metal oxides/chalcogenides-based catalysts for H2O2 electro-synthesis are outlined. The present review provides insights and fundamentals of metal oxides/chalcogenides as 2e-ORR catalysts, promoting their practical application in the energy-related industry.
  1. Download: Download high-res image (140KB)
  2. Download: Download full-size image
{"title":"Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides","authors":"Xiaofeng Zhu ,&nbsp;Bingbing Xiao ,&nbsp;Jiaxin Su ,&nbsp;Shuai Wang ,&nbsp;Qingran Zhang ,&nbsp;Jun Wang","doi":"10.3866/PKU.WHXB202407005","DOIUrl":"10.3866/PKU.WHXB202407005","url":null,"abstract":"<div><div>Electrochemical oxygen reduction reaction <em>via</em> the two-electron pathway (2e-ORR) is becoming a promising and sustainable approach to producing hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) without significant carbon footprints. To achieve better performance, most of the recent progress and investigations have focused on developing novel carbon-based electrocatalysts. Nevertheless, the sophisticated preparations, decreased selectivity and undefined active sites of carbon-based catalysts have been generally acknowledged and criticized. To this end, transition metal oxides and chalcogenides have increasingly emerged for 2e-ORR, due to their catalytic stability and tunable microstructure. Here, the development of metal oxides and chalcogenides for O<sub>2</sub>-to-H<sub>2</sub>O<sub>2</sub> conversion is prospectively reviewed. By summarizing previous theoretical and experimental efforts, their diversity and outstanding catalytic activity are firstly provided. Meanwhile, the topological and chemical factors influencing 2e-ORR selectivity of the metal oxides/chalcogenides are systematically elucidated, including morphology, phase structures, doping and defects engineering. Thus, emphasizing the influence on the binding of ORR intermediates, the active sites and the underlying mechanism is highlighted. Finally, future opportunities and challenges in designing metal oxides/chalcogenides-based catalysts for H<sub>2</sub>O<sub>2</sub> electro-synthesis are outlined. The present review provides insights and fundamentals of metal oxides/chalcogenides as 2e-ORR catalysts, promoting their practical application in the energy-related industry.</div><div><span><figure><span><img><ol><li><span><span>Download: <span>Download high-res image (140KB)</span></span></span></li><li><span><span>Download: <span>Download full-size image</span></span></span></li></ol></span></figure></span></div></div>","PeriodicalId":6964,"journal":{"name":"物理化学学报","volume":"40 12","pages":"Article 2407005"},"PeriodicalIF":10.8,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143128038","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Insights into the Development of Copper-based Photocatalysts for CO2 Conversion
IF 10.8 2区 化学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2024-12-01 DOI: 10.3866/PKU.WHXB202406029
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang
Utilizing sunlight as a renewable energy source, photocatalysis offers a potential solution to global warming and energy shortages by converting CO2 into useful solar fuels, including CO, CH4, CH3OH, and C2H5OH. Among the various formulations investigated, copper-based photocatalysts stand out as particularly appealing for CO2 conversion due to their cost-effectiveness and higher abundance in comparison to catalysts based on precious metals. This literature review provides a thorough summary of the latest developments in copper-based photocatalysts used for CO2 reduction reactions, including metallic copper, copper oxide, and cuprous oxide photocatalysts. The review also provides a categorical summary of the CO2 reduction products and a detailed categorical discussion of the means of modulation and modification of each copper-based catalyst. Finally, this review highlights the existing challenges and proposes future research directions in the development of copper-based photocatalysts for CO2 reduction, focusing on boosting energy utilization and improving product formation rates.
  1. Download: Download high-res image (70KB)
  2. Download: Download full-size image
{"title":"Insights into the Development of Copper-based Photocatalysts for CO2 Conversion","authors":"Zhiquan Zhang ,&nbsp;Baker Rhimi ,&nbsp;Zheyang Liu ,&nbsp;Min Zhou ,&nbsp;Guowei Deng ,&nbsp;Wei Wei ,&nbsp;Liang Mao ,&nbsp;Huaming Li ,&nbsp;Zhifeng Jiang","doi":"10.3866/PKU.WHXB202406029","DOIUrl":"10.3866/PKU.WHXB202406029","url":null,"abstract":"<div><div>Utilizing sunlight as a renewable energy source, photocatalysis offers a potential solution to global warming and energy shortages by converting CO<sub>2</sub> into useful solar fuels, including CO, CH<sub>4</sub>, CH<sub>3</sub>OH, and C<sub>2</sub>H<sub>5</sub>OH. Among the various formulations investigated, copper-based photocatalysts stand out as particularly appealing for CO<sub>2</sub> conversion due to their cost-effectiveness and higher abundance in comparison to catalysts based on precious metals. This literature review provides a thorough summary of the latest developments in copper-based photocatalysts used for CO<sub>2</sub> reduction reactions, including metallic copper, copper oxide, and cuprous oxide photocatalysts. The review also provides a categorical summary of the CO<sub>2</sub> reduction products and a detailed categorical discussion of the means of modulation and modification of each copper-based catalyst. Finally, this review highlights the existing challenges and proposes future research directions in the development of copper-based photocatalysts for CO<sub>2</sub> reduction, focusing on boosting energy utilization and improving product formation rates.</div><div><span><figure><span><img><ol><li><span><span>Download: <span>Download high-res image (70KB)</span></span></span></li><li><span><span>Download: <span>Download full-size image</span></span></span></li></ol></span></figure></span></div></div>","PeriodicalId":6964,"journal":{"name":"物理化学学报","volume":"40 12","pages":"Article 2406029"},"PeriodicalIF":10.8,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143128682","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modulating NH2 Lewis Basicity in CTF-NH2 through Donor-Acceptor Groups for Optimizing Photocatalytic Water Splitting
IF 10.8 2区 化学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2024-12-01 DOI: 10.3866/PKU.WHXB202405005
Zhao Lu , Hu Lv , Qinzhuang Liu , Zhongliao Wang
Photocatalytic water splitting (PWS) provides an optimal approach for the sustainable production of green hydrogen. NH2-modified covalent triazine frameworks (CTFs-NH2) hold potential in PWS due to robust light uptake, optimal charge separation, and considerable redox potential. However, the high surface reaction barriers hinder the efficiency of PWS owing to the conversion difficulty of intermediate products. Modulating the Lewis basicity of NH2 on CTFs offers a feasible route for addressing this challenge. In this work, electron-donating ethyl (C2H5) and electron-withdrawing 5-fluoroethyl groups (C2F5) are introduced at the para position of amine groups, producing C2H5-CTF-NH2 and C2F5-CTF-NH2, to adjust the Lewis basicity of CTF-NH2. Through DFT calculations, the optical properties, excited states, electronic structures, dipole moments, and surface reaction processes of the CTF-NH2, C2H5-CTF-NH2 and C2F5-CTF-NH2 are simulated. The results indicate that the electron-withdrawing C2F5 group can decrease the electron density and Lewis basicity on NH2, thereby lowering the energy barriers for hydrogen and oxygen evolution reactions, effectively ameliorating the PWS efficiency of CTF-NH2. This work unveils an innovative approach for donor-acceptor-regulated CTFs for the application of PWS.
  1. Download: Download high-res image (76KB)
  2. Download: Download full-size image
{"title":"Modulating NH2 Lewis Basicity in CTF-NH2 through Donor-Acceptor Groups for Optimizing Photocatalytic Water Splitting","authors":"Zhao Lu ,&nbsp;Hu Lv ,&nbsp;Qinzhuang Liu ,&nbsp;Zhongliao Wang","doi":"10.3866/PKU.WHXB202405005","DOIUrl":"10.3866/PKU.WHXB202405005","url":null,"abstract":"<div><div>Photocatalytic water splitting (PWS) provides an optimal approach for the sustainable production of green hydrogen. NH<sub>2</sub>-modified covalent triazine frameworks (CTFs-NH<sub>2</sub>) hold potential in PWS due to robust light uptake, optimal charge separation, and considerable redox potential. However, the high surface reaction barriers hinder the efficiency of PWS owing to the conversion difficulty of intermediate products. Modulating the Lewis basicity of NH<sub>2</sub> on CTFs offers a feasible route for addressing this challenge. In this work, electron-donating ethyl (C<sub>2</sub>H<sub>5</sub>) and electron-withdrawing 5-fluoroethyl groups (C<sub>2</sub>F<sub>5</sub>) are introduced at the <em>para</em> position of amine groups, producing C<sub>2</sub>H<sub>5</sub>-CTF-NH<sub>2</sub> and C<sub>2</sub>F<sub>5</sub>-CTF-NH<sub>2</sub>, to adjust the Lewis basicity of CTF-NH<sub>2</sub>. Through DFT calculations, the optical properties, excited states, electronic structures, dipole moments, and surface reaction processes of the CTF-NH<sub>2</sub>, C<sub>2</sub>H<sub>5</sub>-CTF-NH<sub>2</sub> and C<sub>2</sub>F<sub>5</sub>-CTF-NH<sub>2</sub> are simulated. The results indicate that the electron-withdrawing C<sub>2</sub>F<sub>5</sub> group can decrease the electron density and Lewis basicity on NH<sub>2</sub>, thereby lowering the energy barriers for hydrogen and oxygen evolution reactions, effectively ameliorating the PWS efficiency of CTF-NH<sub>2</sub>. This work unveils an innovative approach for donor-acceptor-regulated CTFs for the application of PWS.</div><div><span><figure><span><img><ol><li><span><span>Download: <span>Download high-res image (76KB)</span></span></span></li><li><span><span>Download: <span>Download full-size image</span></span></span></li></ol></span></figure></span></div></div>","PeriodicalId":6964,"journal":{"name":"物理化学学报","volume":"40 12","pages":"Article 2405005"},"PeriodicalIF":10.8,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143128699","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Defective ultrathin two-dimensional materials for photo-/electrocatalytic CO2 reduction: Fundamentals and perspectives
IF 10.8 2区 化学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2024-11-29 DOI: 10.3866/PKU.WHXB202308052
Runhua Chen , Qiong Wu , Jingchen Luo , Xiaolong Zu , Shan Zhu , Yongfu Sun
Photo-/electrocatalytic reduction of carbon dioxide (CO2) to carbon-based fuel molecules driven by renewable energy is an attractive strategy for resource regeneration and energy storage, especially for achieving carbon peak and carbon-neutral goals. However, the high thermodynamic stability and chemical inertness of CO2 molecules make the conversion efficiency and selectivity of reduction products very low, which further hinders its application. In addition, different CO2 reduction products have similar reduction potential and usually face severe hydrogen evolution competition under aqueous system conditions, which makes the selectivity of specific reduction products unable to be effectively controlled. To overcome these bottlenecks, researchers have been working for many years to develop efficient photo/electrocatalysts to enhance the activity and product selectivity of CO2 reduction. Thanks to the ultrathin thickness and large specific surface area, ultrathin two-dimensional materials possess highly active sites with high density and high uniformity, which can effectively regulate the key thermodynamic and kinetic factors of CO2 photo-/electroreduction reactions. As a typical two-dimensional material, the defective ultrathin two-dimensional materials can provide a large number of electron-rich catalytic sites to efficiently adsorb and highly activate CO2 molecules, which can effectively reduce the reaction barrier, thus accelerating CO2 reduction and enhancing product selectivity. Moreover, the local atomic and electronic structure of the defects can effectively stabilize the intermediate of CO2 reduction reactions, thus further optimizing the kinetics of CO2 reduction reactions. Furthermore, the surface defects are beneficial to the mass and electron transfer in the catalytic process, thus further improving the catalytic activity of the catalysts. In this review, we overview the latest research progress in CO2 photo-/electrocatalytic reduction using defective ultrathin two-dimensional materials, including the controllable synthesis and fine structure characterization of defective ultrathin two-dimensional materials; the modulation effect of defect structure on the local atomic and electronic structure; the advantages of defective ultrathin two-dimensional materials for CO2 reduction. We also discuss the challenges and opportunities of defective ultrathin two-dimensional materials for future development of CO2 photo-/electrocatalytic reduction. It is expected that this review will provide a guide for designing highly efficient CO2 reduction systems.
{"title":"Defective ultrathin two-dimensional materials for photo-/electrocatalytic CO2 reduction: Fundamentals and perspectives","authors":"Runhua Chen ,&nbsp;Qiong Wu ,&nbsp;Jingchen Luo ,&nbsp;Xiaolong Zu ,&nbsp;Shan Zhu ,&nbsp;Yongfu Sun","doi":"10.3866/PKU.WHXB202308052","DOIUrl":"10.3866/PKU.WHXB202308052","url":null,"abstract":"<div><div>Photo-/electrocatalytic reduction of carbon dioxide (CO<sub>2</sub>) to carbon-based fuel molecules driven by renewable energy is an attractive strategy for resource regeneration and energy storage, especially for achieving carbon peak and carbon-neutral goals. However, the high thermodynamic stability and chemical inertness of CO<sub>2</sub> molecules make the conversion efficiency and selectivity of reduction products very low, which further hinders its application. In addition, different CO<sub>2</sub> reduction products have similar reduction potential and usually face severe hydrogen evolution competition under aqueous system conditions, which makes the selectivity of specific reduction products unable to be effectively controlled. To overcome these bottlenecks, researchers have been working for many years to develop efficient photo/electrocatalysts to enhance the activity and product selectivity of CO<sub>2</sub> reduction. Thanks to the ultrathin thickness and large specific surface area, ultrathin two-dimensional materials possess highly active sites with high density and high uniformity, which can effectively regulate the key thermodynamic and kinetic factors of CO<sub>2</sub> photo-/electroreduction reactions. As a typical two-dimensional material, the defective ultrathin two-dimensional materials can provide a large number of electron-rich catalytic sites to efficiently adsorb and highly activate CO<sub>2</sub> molecules, which can effectively reduce the reaction barrier, thus accelerating CO<sub>2</sub> reduction and enhancing product selectivity. Moreover, the local atomic and electronic structure of the defects can effectively stabilize the intermediate of CO<sub>2</sub> reduction reactions, thus further optimizing the kinetics of CO<sub>2</sub> reduction reactions. Furthermore, the surface defects are beneficial to the mass and electron transfer in the catalytic process, thus further improving the catalytic activity of the catalysts. In this review, we overview the latest research progress in CO<sub>2</sub> photo-/electrocatalytic reduction using defective ultrathin two-dimensional materials, including the controllable synthesis and fine structure characterization of defective ultrathin two-dimensional materials; the modulation effect of defect structure on the local atomic and electronic structure; the advantages of defective ultrathin two-dimensional materials for CO<sub>2</sub> reduction. We also discuss the challenges and opportunities of defective ultrathin two-dimensional materials for future development of CO<sub>2</sub> photo-/electrocatalytic reduction. It is expected that this review will provide a guide for designing highly efficient CO<sub>2</sub> reduction systems.</div></div>","PeriodicalId":6964,"journal":{"name":"物理化学学报","volume":"41 3","pages":"Article 100019"},"PeriodicalIF":10.8,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143104726","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
物理化学学报
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1